Properties

Label 175.2.o.a
Level 175
Weight 2
Character orbit 175.o
Analytic conductor 1.397
Analytic rank 0
Dimension 4
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 175.o (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.39738203537\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -1 + \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{2} + ( 1 + \zeta_{12} - \zeta_{12}^{3} ) q^{3} + ( -1 - \zeta_{12}^{2} ) q^{4} + ( -1 + 2 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{6} + ( 3 - \zeta_{12}^{2} ) q^{7} + ( -\zeta_{12} + \zeta_{12}^{2} ) q^{8} + ( 2 - \zeta_{12} - \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{9} +O(q^{10})\) \( q + ( -1 + \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{2} + ( 1 + \zeta_{12} - \zeta_{12}^{3} ) q^{3} + ( -1 - \zeta_{12}^{2} ) q^{4} + ( -1 + 2 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{6} + ( 3 - \zeta_{12}^{2} ) q^{7} + ( -\zeta_{12} + \zeta_{12}^{2} ) q^{8} + ( 2 - \zeta_{12} - \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{9} + ( 1 - \zeta_{12} - \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{11} + ( -1 - 2 \zeta_{12} - \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{12} + ( 2 + 2 \zeta_{12}^{3} ) q^{13} + ( -2 + \zeta_{12} + 3 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{14} + ( -2 \zeta_{12} - \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{16} + ( -2 + 2 \zeta_{12} - 2 \zeta_{12}^{3} ) q^{17} + ( -1 + \zeta_{12} + \zeta_{12}^{2} ) q^{18} + ( -\zeta_{12} - \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{19} + ( 3 + 2 \zeta_{12} - \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{21} + ( -1 - \zeta_{12}^{3} ) q^{22} + ( -3 - 4 \zeta_{12} - \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{23} + ( -1 + \zeta_{12}^{2} ) q^{24} + ( -4 - 2 \zeta_{12} + 2 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{26} + ( -2 - 3 \zeta_{12} + 3 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{27} + ( -4 - \zeta_{12}^{2} ) q^{28} -3 \zeta_{12}^{3} q^{29} + ( -2 + 4 \zeta_{12} - 2 \zeta_{12}^{2} ) q^{31} + ( 5 + 5 \zeta_{12} - 4 \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{32} + ( -\zeta_{12} + \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{33} + 2 q^{34} + ( -3 + 2 \zeta_{12} - \zeta_{12}^{3} ) q^{36} + ( 4 - 2 \zeta_{12} - 2 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{37} + ( 3 + 3 \zeta_{12} - \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{38} + ( 2 + 2 \zeta_{12} + 2 \zeta_{12}^{2} ) q^{39} + ( -2 + 4 \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{41} + ( -1 + 2 \zeta_{12} + 5 \zeta_{12}^{2} + 4 \zeta_{12}^{3} ) q^{42} + ( 4 + 5 \zeta_{12} - 5 \zeta_{12}^{2} - 4 \zeta_{12}^{3} ) q^{43} + ( -2 + 3 \zeta_{12} + \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{44} + ( 7 + 4 \zeta_{12} - 7 \zeta_{12}^{2} - 8 \zeta_{12}^{3} ) q^{46} + ( -4 + \zeta_{12} + 5 \zeta_{12}^{2} - 5 \zeta_{12}^{3} ) q^{47} + ( -2 - 3 \zeta_{12} - 3 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{48} + ( 8 - 5 \zeta_{12}^{2} ) q^{49} -2 \zeta_{12}^{2} q^{51} + ( -2 + 2 \zeta_{12} - 2 \zeta_{12}^{2} - 4 \zeta_{12}^{3} ) q^{52} + ( -5 + 5 \zeta_{12} + 5 \zeta_{12}^{2} ) q^{53} + ( -2 \zeta_{12} - 5 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{54} + ( 1 - 3 \zeta_{12} + 2 \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{56} + ( -1 - 2 \zeta_{12} - 2 \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{57} + ( 3 + 3 \zeta_{12} ) q^{58} + ( -3 + 3 \zeta_{12} + 3 \zeta_{12}^{2} - 6 \zeta_{12}^{3} ) q^{59} + ( -4 - 5 \zeta_{12} + 2 \zeta_{12}^{2} + 5 \zeta_{12}^{3} ) q^{61} + ( -2 \zeta_{12} + 2 \zeta_{12}^{2} ) q^{62} + ( 5 - 2 \zeta_{12} - 4 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{63} + ( -1 + 2 \zeta_{12}^{2} + 4 \zeta_{12}^{3} ) q^{64} + ( -1 - \zeta_{12} - \zeta_{12}^{2} ) q^{66} + ( 1 + \zeta_{12} - 6 \zeta_{12}^{2} + 5 \zeta_{12}^{3} ) q^{67} + ( 2 - 4 \zeta_{12} + 2 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{68} + ( -7 - 8 \zeta_{12} + 4 \zeta_{12}^{3} ) q^{69} + ( 3 + 2 \zeta_{12} - \zeta_{12}^{3} ) q^{71} + ( 2 - 3 \zeta_{12} + \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{72} + ( -4 - 4 \zeta_{12} + 8 \zeta_{12}^{2} - 4 \zeta_{12}^{3} ) q^{73} + ( 2 + 6 \zeta_{12} + 2 \zeta_{12}^{2} ) q^{74} + ( -1 + 2 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{76} + ( 2 - \zeta_{12} - 3 \zeta_{12}^{2} + 5 \zeta_{12}^{3} ) q^{77} + ( -6 - 4 \zeta_{12} + 4 \zeta_{12}^{2} + 6 \zeta_{12}^{3} ) q^{78} + ( -2 - 5 \zeta_{12} + \zeta_{12}^{2} + 5 \zeta_{12}^{3} ) q^{79} + ( -2 - 5 \zeta_{12} + 2 \zeta_{12}^{2} + 10 \zeta_{12}^{3} ) q^{81} + ( 1 - \zeta_{12} - 2 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{82} + ( 1 - 3 \zeta_{12} - 3 \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{83} + ( -4 - 5 \zeta_{12} - \zeta_{12}^{2} + 4 \zeta_{12}^{3} ) q^{84} + ( 4 \zeta_{12} + 9 \zeta_{12}^{2} + 4 \zeta_{12}^{3} ) q^{86} + ( -3 \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{87} + ( 3 - 3 \zeta_{12} - \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{88} + ( 5 \zeta_{12} + 8 \zeta_{12}^{2} + 5 \zeta_{12}^{3} ) q^{89} + ( 6 + 2 \zeta_{12} - 2 \zeta_{12}^{2} + 4 \zeta_{12}^{3} ) q^{91} + ( 2 + 5 \zeta_{12} + 5 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{92} + ( 2 - 2 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{93} + ( 3 - \zeta_{12} - 3 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{94} + ( 10 + 6 \zeta_{12} - 5 \zeta_{12}^{2} - 6 \zeta_{12}^{3} ) q^{96} + ( -5 - 8 \zeta_{12} + 8 \zeta_{12}^{2} + 5 \zeta_{12}^{3} ) q^{97} + ( -3 + 5 \zeta_{12} + 8 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{98} + ( 2 - 4 \zeta_{12}^{2} + 4 \zeta_{12}^{3} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 2q^{2} + 4q^{3} - 6q^{4} + 10q^{7} + 2q^{8} + 6q^{9} + O(q^{10}) \) \( 4q - 2q^{2} + 4q^{3} - 6q^{4} + 10q^{7} + 2q^{8} + 6q^{9} + 2q^{11} - 6q^{12} + 8q^{13} - 2q^{14} - 2q^{16} - 8q^{17} - 2q^{18} - 2q^{19} + 10q^{21} - 4q^{22} - 14q^{23} - 2q^{24} - 12q^{26} - 2q^{27} - 18q^{28} - 12q^{31} + 12q^{32} + 2q^{33} + 8q^{34} - 12q^{36} + 12q^{37} + 10q^{38} + 12q^{39} + 6q^{42} + 6q^{43} - 6q^{44} + 14q^{46} - 6q^{47} - 14q^{48} + 22q^{49} - 4q^{51} - 12q^{52} - 10q^{53} - 10q^{54} + 8q^{56} - 8q^{57} + 12q^{58} - 6q^{59} - 12q^{61} + 4q^{62} + 12q^{63} - 6q^{66} - 8q^{67} + 12q^{68} - 28q^{69} + 12q^{71} + 10q^{72} + 12q^{74} + 2q^{77} - 16q^{78} - 6q^{79} - 4q^{81} - 2q^{83} - 18q^{84} + 18q^{86} - 6q^{87} + 10q^{88} + 16q^{89} + 20q^{91} + 18q^{92} + 4q^{93} + 6q^{94} + 30q^{96} - 4q^{97} + 4q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(\zeta_{12}^{2}\) \(\zeta_{12}^{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
68.1
0.866025 0.500000i
−0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
−0.500000 1.86603i 1.86603 + 0.500000i −1.50000 + 0.866025i 0 3.73205i 2.50000 + 0.866025i −0.366025 0.366025i 0.633975 + 0.366025i 0
82.1 −0.500000 + 0.133975i 0.133975 0.500000i −1.50000 + 0.866025i 0 0.267949i 2.50000 + 0.866025i 1.36603 1.36603i 2.36603 + 1.36603i 0
143.1 −0.500000 0.133975i 0.133975 + 0.500000i −1.50000 0.866025i 0 0.267949i 2.50000 0.866025i 1.36603 + 1.36603i 2.36603 1.36603i 0
157.1 −0.500000 + 1.86603i 1.86603 0.500000i −1.50000 0.866025i 0 3.73205i 2.50000 0.866025i −0.366025 + 0.366025i 0.633975 0.366025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
35.k even 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 175.2.o.a 4
5.b even 2 1 35.2.k.b yes 4
5.c odd 4 1 35.2.k.a 4
5.c odd 4 1 175.2.o.b 4
7.d odd 6 1 175.2.o.b 4
15.d odd 2 1 315.2.bz.a 4
15.e even 4 1 315.2.bz.b 4
20.d odd 2 1 560.2.ci.b 4
20.e even 4 1 560.2.ci.a 4
35.c odd 2 1 245.2.l.b 4
35.f even 4 1 245.2.l.a 4
35.i odd 6 1 35.2.k.a 4
35.i odd 6 1 245.2.f.a 4
35.j even 6 1 245.2.f.b 4
35.j even 6 1 245.2.l.a 4
35.k even 12 1 35.2.k.b yes 4
35.k even 12 1 inner 175.2.o.a 4
35.k even 12 1 245.2.f.b 4
35.l odd 12 1 245.2.f.a 4
35.l odd 12 1 245.2.l.b 4
105.p even 6 1 315.2.bz.b 4
105.w odd 12 1 315.2.bz.a 4
140.s even 6 1 560.2.ci.a 4
140.x odd 12 1 560.2.ci.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.2.k.a 4 5.c odd 4 1
35.2.k.a 4 35.i odd 6 1
35.2.k.b yes 4 5.b even 2 1
35.2.k.b yes 4 35.k even 12 1
175.2.o.a 4 1.a even 1 1 trivial
175.2.o.a 4 35.k even 12 1 inner
175.2.o.b 4 5.c odd 4 1
175.2.o.b 4 7.d odd 6 1
245.2.f.a 4 35.i odd 6 1
245.2.f.a 4 35.l odd 12 1
245.2.f.b 4 35.j even 6 1
245.2.f.b 4 35.k even 12 1
245.2.l.a 4 35.f even 4 1
245.2.l.a 4 35.j even 6 1
245.2.l.b 4 35.c odd 2 1
245.2.l.b 4 35.l odd 12 1
315.2.bz.a 4 15.d odd 2 1
315.2.bz.a 4 105.w odd 12 1
315.2.bz.b 4 15.e even 4 1
315.2.bz.b 4 105.p even 6 1
560.2.ci.a 4 20.e even 4 1
560.2.ci.a 4 140.s even 6 1
560.2.ci.b 4 20.d odd 2 1
560.2.ci.b 4 140.x odd 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 2 T_{2}^{3} + 5 T_{2}^{2} + 4 T_{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(175, [\chi])\).

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( 1 + 2 T + 5 T^{2} + 8 T^{3} + 13 T^{4} + 16 T^{5} + 20 T^{6} + 16 T^{7} + 16 T^{8} \)
$3$ \( 1 - 4 T + 5 T^{2} + 4 T^{3} - 20 T^{4} + 12 T^{5} + 45 T^{6} - 108 T^{7} + 81 T^{8} \)
$5$ 1
$7$ \( ( 1 - 5 T + 7 T^{2} )^{2} \)
$11$ \( 1 - 2 T - 16 T^{2} + 4 T^{3} + 235 T^{4} + 44 T^{5} - 1936 T^{6} - 2662 T^{7} + 14641 T^{8} \)
$13$ \( ( 1 - 4 T + 8 T^{2} - 52 T^{3} + 169 T^{4} )^{2} \)
$17$ \( 1 + 8 T + 20 T^{2} - 52 T^{3} - 545 T^{4} - 884 T^{5} + 5780 T^{6} + 39304 T^{7} + 83521 T^{8} \)
$19$ \( 1 + 2 T - 32 T^{2} - 4 T^{3} + 859 T^{4} - 76 T^{5} - 11552 T^{6} + 13718 T^{7} + 130321 T^{8} \)
$23$ \( 1 + 14 T + 53 T^{2} - 226 T^{3} - 2552 T^{4} - 5198 T^{5} + 28037 T^{6} + 170338 T^{7} + 279841 T^{8} \)
$29$ \( ( 1 - 49 T^{2} + 841 T^{4} )^{2} \)
$31$ \( 1 + 12 T + 106 T^{2} + 696 T^{3} + 3891 T^{4} + 21576 T^{5} + 101866 T^{6} + 357492 T^{7} + 923521 T^{8} \)
$37$ \( 1 - 12 T + 72 T^{2} - 288 T^{3} + 983 T^{4} - 10656 T^{5} + 98568 T^{6} - 607836 T^{7} + 1874161 T^{8} \)
$41$ \( 1 - 122 T^{2} + 6651 T^{4} - 205082 T^{6} + 2825761 T^{8} \)
$43$ \( 1 - 6 T + 18 T^{2} - 60 T^{3} - 889 T^{4} - 2580 T^{5} + 33282 T^{6} - 477042 T^{7} + 3418801 T^{8} \)
$47$ \( 1 + 6 T + 90 T^{2} + 672 T^{3} + 5159 T^{4} + 31584 T^{5} + 198810 T^{6} + 622938 T^{7} + 4879681 T^{8} \)
$53$ \( ( 1 - 4 T - 37 T^{2} - 212 T^{3} + 2809 T^{4} )( 1 + 14 T + 143 T^{2} + 742 T^{3} + 2809 T^{4} ) \)
$59$ \( 1 + 6 T - 64 T^{2} - 108 T^{3} + 4395 T^{4} - 6372 T^{5} - 222784 T^{6} + 1232274 T^{7} + 12117361 T^{8} \)
$61$ \( 1 + 12 T + 157 T^{2} + 1308 T^{3} + 11088 T^{4} + 79788 T^{5} + 584197 T^{6} + 2723772 T^{7} + 13845841 T^{8} \)
$67$ \( 1 + 8 T + 137 T^{2} + 1224 T^{3} + 11492 T^{4} + 82008 T^{5} + 614993 T^{6} + 2406104 T^{7} + 20151121 T^{8} \)
$71$ \( ( 1 - 6 T + 148 T^{2} - 426 T^{3} + 5041 T^{4} )^{2} \)
$73$ \( 1 + 144 T^{2} - 600 T^{3} + 10991 T^{4} - 43800 T^{5} + 767376 T^{6} + 28398241 T^{8} \)
$79$ \( 1 + 6 T + 148 T^{2} + 816 T^{3} + 13203 T^{4} + 64464 T^{5} + 923668 T^{6} + 2958234 T^{7} + 38950081 T^{8} \)
$83$ \( 1 + 2 T + 2 T^{2} + 140 T^{3} + 9631 T^{4} + 11620 T^{5} + 13778 T^{6} + 1143574 T^{7} + 47458321 T^{8} \)
$89$ \( ( 1 - 16 T + 89 T^{2} )^{2}( 1 + 16 T + 167 T^{2} + 1424 T^{3} + 7921 T^{4} ) \)
$97$ \( 1 + 4 T + 8 T^{2} + 12 T^{3} - 8818 T^{4} + 1164 T^{5} + 75272 T^{6} + 3650692 T^{7} + 88529281 T^{8} \)
show more
show less