Newspace parameters
Level: | \( N \) | \(=\) | \( 175 = 5^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 175.k (of order \(6\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(1.39738203537\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{6})\) |
Coefficient field: | \(\Q(\zeta_{24})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{8} - x^{4} + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{4}]\) |
Coefficient ring index: | \( 2^{6} \) |
Twist minimal: | no (minimal twist has level 35) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring
\(\beta_{1}\) | \(=\) |
\( \zeta_{24}^{4} \)
|
\(\beta_{2}\) | \(=\) |
\( -\zeta_{24}^{7} + \zeta_{24}^{5} + \zeta_{24}^{3} - \zeta_{24}^{2} \)
|
\(\beta_{3}\) | \(=\) |
\( -\zeta_{24}^{7} + \zeta_{24}^{6} - \zeta_{24}^{2} + \zeta_{24} \)
|
\(\beta_{4}\) | \(=\) |
\( -\zeta_{24}^{7} + \zeta_{24}^{5} + \zeta_{24}^{3} + \zeta_{24}^{2} \)
|
\(\beta_{5}\) | \(=\) |
\( 2\zeta_{24}^{7} + 2\zeta_{24} \)
|
\(\beta_{6}\) | \(=\) |
\( -2\zeta_{24}^{7} - 2\zeta_{24}^{5} + 2\zeta_{24}^{3} \)
|
\(\beta_{7}\) | \(=\) |
\( -\zeta_{24}^{7} - \zeta_{24}^{6} + \zeta_{24}^{2} + \zeta_{24} \)
|
\(\zeta_{24}\) | \(=\) |
\( ( \beta_{7} + \beta_{5} + \beta_{3} ) / 4 \)
|
\(\zeta_{24}^{2}\) | \(=\) |
\( ( \beta_{4} - \beta_{2} ) / 2 \)
|
\(\zeta_{24}^{3}\) | \(=\) |
\( ( -\beta_{7} + \beta_{6} + \beta_{5} + \beta_{4} - \beta_{3} + \beta_{2} ) / 4 \)
|
\(\zeta_{24}^{4}\) | \(=\) |
\( \beta_1 \)
|
\(\zeta_{24}^{5}\) | \(=\) |
\( ( -\beta_{6} + \beta_{4} + \beta_{2} ) / 4 \)
|
\(\zeta_{24}^{6}\) | \(=\) |
\( ( -\beta_{7} + \beta_{4} + \beta_{3} - \beta_{2} ) / 2 \)
|
\(\zeta_{24}^{7}\) | \(=\) |
\( ( -\beta_{7} + \beta_{5} - \beta_{3} ) / 4 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).
\(n\) | \(101\) | \(127\) |
\(\chi(n)\) | \(-\beta_{1}\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
74.1 |
|
−2.09077 | + | 1.20711i | 0.358719 | + | 0.207107i | 1.91421 | − | 3.31552i | 0 | −1.00000 | 0.358719 | − | 2.62132i | 4.41421i | −1.41421 | − | 2.44949i | 0 | ||||||||||||||||||||||||||||||||
74.2 | −0.358719 | + | 0.207107i | 2.09077 | + | 1.20711i | −0.914214 | + | 1.58346i | 0 | −1.00000 | 2.09077 | − | 1.62132i | − | 1.58579i | 1.41421 | + | 2.44949i | 0 | ||||||||||||||||||||||||||||||||
74.3 | 0.358719 | − | 0.207107i | −2.09077 | − | 1.20711i | −0.914214 | + | 1.58346i | 0 | −1.00000 | −2.09077 | + | 1.62132i | 1.58579i | 1.41421 | + | 2.44949i | 0 | |||||||||||||||||||||||||||||||||
74.4 | 2.09077 | − | 1.20711i | −0.358719 | − | 0.207107i | 1.91421 | − | 3.31552i | 0 | −1.00000 | −0.358719 | + | 2.62132i | − | 4.41421i | −1.41421 | − | 2.44949i | 0 | ||||||||||||||||||||||||||||||||
149.1 | −2.09077 | − | 1.20711i | 0.358719 | − | 0.207107i | 1.91421 | + | 3.31552i | 0 | −1.00000 | 0.358719 | + | 2.62132i | − | 4.41421i | −1.41421 | + | 2.44949i | 0 | ||||||||||||||||||||||||||||||||
149.2 | −0.358719 | − | 0.207107i | 2.09077 | − | 1.20711i | −0.914214 | − | 1.58346i | 0 | −1.00000 | 2.09077 | + | 1.62132i | 1.58579i | 1.41421 | − | 2.44949i | 0 | |||||||||||||||||||||||||||||||||
149.3 | 0.358719 | + | 0.207107i | −2.09077 | + | 1.20711i | −0.914214 | − | 1.58346i | 0 | −1.00000 | −2.09077 | − | 1.62132i | − | 1.58579i | 1.41421 | − | 2.44949i | 0 | ||||||||||||||||||||||||||||||||
149.4 | 2.09077 | + | 1.20711i | −0.358719 | + | 0.207107i | 1.91421 | + | 3.31552i | 0 | −1.00000 | −0.358719 | − | 2.62132i | 4.41421i | −1.41421 | + | 2.44949i | 0 | |||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
7.c | even | 3 | 1 | inner |
35.j | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 175.2.k.a | 8 | |
5.b | even | 2 | 1 | inner | 175.2.k.a | 8 | |
5.c | odd | 4 | 1 | 35.2.e.a | ✓ | 4 | |
5.c | odd | 4 | 1 | 175.2.e.c | 4 | ||
7.c | even | 3 | 1 | inner | 175.2.k.a | 8 | |
7.c | even | 3 | 1 | 1225.2.b.g | 4 | ||
7.d | odd | 6 | 1 | 1225.2.b.h | 4 | ||
15.e | even | 4 | 1 | 315.2.j.e | 4 | ||
20.e | even | 4 | 1 | 560.2.q.k | 4 | ||
35.f | even | 4 | 1 | 245.2.e.e | 4 | ||
35.i | odd | 6 | 1 | 1225.2.b.h | 4 | ||
35.j | even | 6 | 1 | inner | 175.2.k.a | 8 | |
35.j | even | 6 | 1 | 1225.2.b.g | 4 | ||
35.k | even | 12 | 1 | 245.2.a.g | 2 | ||
35.k | even | 12 | 1 | 245.2.e.e | 4 | ||
35.k | even | 12 | 1 | 1225.2.a.m | 2 | ||
35.l | odd | 12 | 1 | 35.2.e.a | ✓ | 4 | |
35.l | odd | 12 | 1 | 175.2.e.c | 4 | ||
35.l | odd | 12 | 1 | 245.2.a.h | 2 | ||
35.l | odd | 12 | 1 | 1225.2.a.k | 2 | ||
105.w | odd | 12 | 1 | 2205.2.a.q | 2 | ||
105.x | even | 12 | 1 | 315.2.j.e | 4 | ||
105.x | even | 12 | 1 | 2205.2.a.n | 2 | ||
140.w | even | 12 | 1 | 560.2.q.k | 4 | ||
140.w | even | 12 | 1 | 3920.2.a.bq | 2 | ||
140.x | odd | 12 | 1 | 3920.2.a.bv | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
35.2.e.a | ✓ | 4 | 5.c | odd | 4 | 1 | |
35.2.e.a | ✓ | 4 | 35.l | odd | 12 | 1 | |
175.2.e.c | 4 | 5.c | odd | 4 | 1 | ||
175.2.e.c | 4 | 35.l | odd | 12 | 1 | ||
175.2.k.a | 8 | 1.a | even | 1 | 1 | trivial | |
175.2.k.a | 8 | 5.b | even | 2 | 1 | inner | |
175.2.k.a | 8 | 7.c | even | 3 | 1 | inner | |
175.2.k.a | 8 | 35.j | even | 6 | 1 | inner | |
245.2.a.g | 2 | 35.k | even | 12 | 1 | ||
245.2.a.h | 2 | 35.l | odd | 12 | 1 | ||
245.2.e.e | 4 | 35.f | even | 4 | 1 | ||
245.2.e.e | 4 | 35.k | even | 12 | 1 | ||
315.2.j.e | 4 | 15.e | even | 4 | 1 | ||
315.2.j.e | 4 | 105.x | even | 12 | 1 | ||
560.2.q.k | 4 | 20.e | even | 4 | 1 | ||
560.2.q.k | 4 | 140.w | even | 12 | 1 | ||
1225.2.a.k | 2 | 35.l | odd | 12 | 1 | ||
1225.2.a.m | 2 | 35.k | even | 12 | 1 | ||
1225.2.b.g | 4 | 7.c | even | 3 | 1 | ||
1225.2.b.g | 4 | 35.j | even | 6 | 1 | ||
1225.2.b.h | 4 | 7.d | odd | 6 | 1 | ||
1225.2.b.h | 4 | 35.i | odd | 6 | 1 | ||
2205.2.a.n | 2 | 105.x | even | 12 | 1 | ||
2205.2.a.q | 2 | 105.w | odd | 12 | 1 | ||
3920.2.a.bq | 2 | 140.w | even | 12 | 1 | ||
3920.2.a.bv | 2 | 140.x | odd | 12 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{8} - 6T_{2}^{6} + 35T_{2}^{4} - 6T_{2}^{2} + 1 \)
acting on \(S_{2}^{\mathrm{new}}(175, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{8} - 6 T^{6} + 35 T^{4} - 6 T^{2} + \cdots + 1 \)
$3$
\( T^{8} - 6 T^{6} + 35 T^{4} - 6 T^{2} + \cdots + 1 \)
$5$
\( T^{8} \)
$7$
\( T^{8} + 10 T^{6} + 51 T^{4} + \cdots + 2401 \)
$11$
\( (T^{4} + 4 T^{3} + 20 T^{2} - 16 T + 16)^{2} \)
$13$
\( (T^{4} + 24 T^{2} + 16)^{2} \)
$17$
\( T^{8} - 24 T^{6} + 560 T^{4} + \cdots + 256 \)
$19$
\( (T^{4} + 8 T^{2} + 64)^{2} \)
$23$
\( T^{8} - 6 T^{6} + 35 T^{4} - 6 T^{2} + \cdots + 1 \)
$29$
\( (T - 1)^{8} \)
$31$
\( (T^{2} - 6 T + 36)^{4} \)
$37$
\( T^{8} \)
$41$
\( (T^{2} + 10 T + 17)^{4} \)
$43$
\( (T^{4} + 54 T^{2} + 529)^{2} \)
$47$
\( (T^{4} - 4 T^{2} + 16)^{2} \)
$53$
\( T^{8} - 48 T^{6} + 2240 T^{4} + \cdots + 4096 \)
$59$
\( (T^{4} + 8 T^{3} + 120 T^{2} - 448 T + 3136)^{2} \)
$61$
\( (T^{4} - 6 T^{3} + 99 T^{2} + 378 T + 3969)^{2} \)
$67$
\( T^{8} - 246 T^{6} + \cdots + 200533921 \)
$71$
\( (T^{2} + 8 T - 56)^{4} \)
$73$
\( T^{8} - 24 T^{6} + 560 T^{4} + \cdots + 256 \)
$79$
\( (T^{4} - 24 T^{3} + 440 T^{2} + \cdots + 18496)^{2} \)
$83$
\( (T^{4} + 326 T^{2} + 25921)^{2} \)
$89$
\( (T^{4} + 6 T^{3} + 59 T^{2} - 138 T + 529)^{2} \)
$97$
\( (T^{4} + 136 T^{2} + 16)^{2} \)
show more
show less