Properties

Label 175.2.b.c
Level $175$
Weight $2$
Character orbit 175.b
Analytic conductor $1.397$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 175.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.39738203537\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
Defining polynomial: \(x^{4} + 3 x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{1} q^{2} + ( -2 \beta_{1} - 2 \beta_{3} ) q^{3} + ( 1 + \beta_{2} ) q^{4} + 2 q^{6} -\beta_{3} q^{7} + ( 2 \beta_{1} + \beta_{3} ) q^{8} + ( -5 - 4 \beta_{2} ) q^{9} +O(q^{10})\) \( q + \beta_{1} q^{2} + ( -2 \beta_{1} - 2 \beta_{3} ) q^{3} + ( 1 + \beta_{2} ) q^{4} + 2 q^{6} -\beta_{3} q^{7} + ( 2 \beta_{1} + \beta_{3} ) q^{8} + ( -5 - 4 \beta_{2} ) q^{9} + ( 1 - 2 \beta_{2} ) q^{11} + ( -2 \beta_{1} - 4 \beta_{3} ) q^{12} + 2 \beta_{1} q^{13} + \beta_{2} q^{14} + 3 \beta_{2} q^{16} -4 \beta_{1} q^{17} + ( -\beta_{1} - 4 \beta_{3} ) q^{18} + ( 2 + 4 \beta_{2} ) q^{19} + ( -2 - 2 \beta_{2} ) q^{21} + ( 3 \beta_{1} - 2 \beta_{3} ) q^{22} + ( 2 \beta_{1} + 5 \beta_{3} ) q^{23} + ( 6 + 2 \beta_{2} ) q^{24} + ( -2 + 2 \beta_{2} ) q^{26} + ( 4 \beta_{1} + 12 \beta_{3} ) q^{27} + ( -\beta_{1} - \beta_{3} ) q^{28} -5 q^{29} + 6 \beta_{2} q^{31} + ( \beta_{1} + 5 \beta_{3} ) q^{32} + ( -2 \beta_{1} + 2 \beta_{3} ) q^{33} + ( 4 - 4 \beta_{2} ) q^{34} + ( -9 - 5 \beta_{2} ) q^{36} -3 \beta_{3} q^{37} + ( -2 \beta_{1} + 4 \beta_{3} ) q^{38} + 4 q^{39} + ( 6 - 2 \beta_{2} ) q^{41} -2 \beta_{3} q^{42} + ( -2 \beta_{1} + 3 \beta_{3} ) q^{43} + ( -1 + \beta_{2} ) q^{44} + ( -2 - 3 \beta_{2} ) q^{46} + 2 \beta_{3} q^{47} -6 \beta_{3} q^{48} - q^{49} -8 q^{51} + 2 \beta_{3} q^{52} + ( 4 \beta_{1} + 6 \beta_{3} ) q^{53} + ( -4 - 8 \beta_{2} ) q^{54} + ( 1 + 2 \beta_{2} ) q^{56} + ( -4 \beta_{1} - 12 \beta_{3} ) q^{57} -5 \beta_{1} q^{58} + ( -8 - 6 \beta_{2} ) q^{59} + ( -6 - 6 \beta_{2} ) q^{61} + ( -6 \beta_{1} + 6 \beta_{3} ) q^{62} + ( 4 \beta_{1} + 5 \beta_{3} ) q^{63} + ( -1 + 2 \beta_{2} ) q^{64} + ( 2 - 4 \beta_{2} ) q^{66} + ( 2 \beta_{1} + 3 \beta_{3} ) q^{67} -4 \beta_{3} q^{68} + ( 14 + 10 \beta_{2} ) q^{69} + ( 5 + 6 \beta_{2} ) q^{71} + ( -6 \beta_{1} - 13 \beta_{3} ) q^{72} + ( 2 \beta_{1} - 10 \beta_{3} ) q^{73} + 3 \beta_{2} q^{74} + ( 6 + 2 \beta_{2} ) q^{76} + ( 2 \beta_{1} - \beta_{3} ) q^{77} + 4 \beta_{1} q^{78} + ( 5 + 10 \beta_{2} ) q^{79} + ( 17 + 12 \beta_{2} ) q^{81} + ( 8 \beta_{1} - 2 \beta_{3} ) q^{82} + ( -6 \beta_{1} - 4 \beta_{3} ) q^{83} + ( -4 - 2 \beta_{2} ) q^{84} + ( 2 - 5 \beta_{2} ) q^{86} + ( 10 \beta_{1} + 10 \beta_{3} ) q^{87} + ( 4 \beta_{1} - 3 \beta_{3} ) q^{88} + ( -16 - 2 \beta_{2} ) q^{89} + 2 \beta_{2} q^{91} + ( 5 \beta_{1} + 7 \beta_{3} ) q^{92} -12 \beta_{3} q^{93} -2 \beta_{2} q^{94} + ( 12 + 10 \beta_{2} ) q^{96} + ( -2 \beta_{1} - 4 \beta_{3} ) q^{97} -\beta_{1} q^{98} + ( 3 - 2 \beta_{2} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} + 8 q^{6} - 12 q^{9} + O(q^{10}) \) \( 4 q + 2 q^{4} + 8 q^{6} - 12 q^{9} + 8 q^{11} - 2 q^{14} - 6 q^{16} - 4 q^{21} + 20 q^{24} - 12 q^{26} - 20 q^{29} - 12 q^{31} + 24 q^{34} - 26 q^{36} + 16 q^{39} + 28 q^{41} - 6 q^{44} - 2 q^{46} - 4 q^{49} - 32 q^{51} - 20 q^{59} - 12 q^{61} - 8 q^{64} + 16 q^{66} + 36 q^{69} + 8 q^{71} - 6 q^{74} + 20 q^{76} + 44 q^{81} - 12 q^{84} + 18 q^{86} - 60 q^{89} - 4 q^{91} + 4 q^{94} + 28 q^{96} + 16 q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} + 3 x^{2} + 1\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{2} + 1 \)
\(\beta_{3}\)\(=\)\( \nu^{3} + 2 \nu \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{2} - 1\)
\(\nu^{3}\)\(=\)\(\beta_{3} - 2 \beta_{1}\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
99.1
1.61803i
0.618034i
0.618034i
1.61803i
1.61803i 1.23607i −0.618034 0 2.00000 1.00000i 2.23607i 1.47214 0
99.2 0.618034i 3.23607i 1.61803 0 2.00000 1.00000i 2.23607i −7.47214 0
99.3 0.618034i 3.23607i 1.61803 0 2.00000 1.00000i 2.23607i −7.47214 0
99.4 1.61803i 1.23607i −0.618034 0 2.00000 1.00000i 2.23607i 1.47214 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 175.2.b.c 4
3.b odd 2 1 1575.2.d.k 4
4.b odd 2 1 2800.2.g.s 4
5.b even 2 1 inner 175.2.b.c 4
5.c odd 4 1 175.2.a.d 2
5.c odd 4 1 175.2.a.e yes 2
7.b odd 2 1 1225.2.b.k 4
15.d odd 2 1 1575.2.d.k 4
15.e even 4 1 1575.2.a.n 2
15.e even 4 1 1575.2.a.s 2
20.d odd 2 1 2800.2.g.s 4
20.e even 4 1 2800.2.a.bh 2
20.e even 4 1 2800.2.a.bp 2
35.c odd 2 1 1225.2.b.k 4
35.f even 4 1 1225.2.a.n 2
35.f even 4 1 1225.2.a.u 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
175.2.a.d 2 5.c odd 4 1
175.2.a.e yes 2 5.c odd 4 1
175.2.b.c 4 1.a even 1 1 trivial
175.2.b.c 4 5.b even 2 1 inner
1225.2.a.n 2 35.f even 4 1
1225.2.a.u 2 35.f even 4 1
1225.2.b.k 4 7.b odd 2 1
1225.2.b.k 4 35.c odd 2 1
1575.2.a.n 2 15.e even 4 1
1575.2.a.s 2 15.e even 4 1
1575.2.d.k 4 3.b odd 2 1
1575.2.d.k 4 15.d odd 2 1
2800.2.a.bh 2 20.e even 4 1
2800.2.a.bp 2 20.e even 4 1
2800.2.g.s 4 4.b odd 2 1
2800.2.g.s 4 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 3 T_{2}^{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(175, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + 3 T^{2} + T^{4} \)
$3$ \( 16 + 12 T^{2} + T^{4} \)
$5$ \( T^{4} \)
$7$ \( ( 1 + T^{2} )^{2} \)
$11$ \( ( -1 - 4 T + T^{2} )^{2} \)
$13$ \( 16 + 12 T^{2} + T^{4} \)
$17$ \( 256 + 48 T^{2} + T^{4} \)
$19$ \( ( -20 + T^{2} )^{2} \)
$23$ \( 121 + 42 T^{2} + T^{4} \)
$29$ \( ( 5 + T )^{4} \)
$31$ \( ( -36 + 6 T + T^{2} )^{2} \)
$37$ \( ( 9 + T^{2} )^{2} \)
$41$ \( ( 44 - 14 T + T^{2} )^{2} \)
$43$ \( 121 + 42 T^{2} + T^{4} \)
$47$ \( ( 4 + T^{2} )^{2} \)
$53$ \( 16 + 72 T^{2} + T^{4} \)
$59$ \( ( -20 + 10 T + T^{2} )^{2} \)
$61$ \( ( -36 + 6 T + T^{2} )^{2} \)
$67$ \( 1 + 18 T^{2} + T^{4} \)
$71$ \( ( -41 - 4 T + T^{2} )^{2} \)
$73$ \( 13456 + 252 T^{2} + T^{4} \)
$79$ \( ( -125 + T^{2} )^{2} \)
$83$ \( 1936 + 92 T^{2} + T^{4} \)
$89$ \( ( 220 + 30 T + T^{2} )^{2} \)
$97$ \( 16 + 28 T^{2} + T^{4} \)
show more
show less