Properties

Label 175.2.b.b
Level $175$
Weight $2$
Character orbit 175.b
Analytic conductor $1.397$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 175.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.39738203537\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{17})\)
Defining polynomial: \(x^{4} + 9 x^{2} + 16\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{1} q^{2} + ( \beta_{1} + \beta_{2} ) q^{3} + ( -3 + \beta_{3} ) q^{4} -4 q^{6} -\beta_{2} q^{7} + ( -\beta_{1} + 4 \beta_{2} ) q^{8} + ( -1 - \beta_{3} ) q^{9} +O(q^{10})\) \( q + \beta_{1} q^{2} + ( \beta_{1} + \beta_{2} ) q^{3} + ( -3 + \beta_{3} ) q^{4} -4 q^{6} -\beta_{2} q^{7} + ( -\beta_{1} + 4 \beta_{2} ) q^{8} + ( -1 - \beta_{3} ) q^{9} + \beta_{3} q^{11} + ( -2 \beta_{1} + 2 \beta_{2} ) q^{12} + ( -\beta_{1} - 3 \beta_{2} ) q^{13} + ( -1 + \beta_{3} ) q^{14} + ( 3 - 3 \beta_{3} ) q^{16} + ( -\beta_{1} - 3 \beta_{2} ) q^{17} + ( -\beta_{1} - 4 \beta_{2} ) q^{18} + ( 4 - 2 \beta_{3} ) q^{19} + \beta_{3} q^{21} + 4 \beta_{2} q^{22} + ( 2 \beta_{1} + 2 \beta_{2} ) q^{23} + ( 4 - 4 \beta_{3} ) q^{24} + ( 2 + 2 \beta_{3} ) q^{26} + ( \beta_{1} - 3 \beta_{2} ) q^{27} + ( -\beta_{1} + 2 \beta_{2} ) q^{28} + ( -2 + 3 \beta_{3} ) q^{29} + ( \beta_{1} - 4 \beta_{2} ) q^{32} + ( \beta_{1} + 5 \beta_{2} ) q^{33} + ( 2 + 2 \beta_{3} ) q^{34} + ( -1 + \beta_{3} ) q^{36} + 6 \beta_{2} q^{37} + ( 4 \beta_{1} - 8 \beta_{2} ) q^{38} + ( 4 + 3 \beta_{3} ) q^{39} + ( 2 - 2 \beta_{3} ) q^{41} + 4 \beta_{2} q^{42} + ( -2 \beta_{1} - 6 \beta_{2} ) q^{43} + ( 4 - 2 \beta_{3} ) q^{44} -8 q^{46} + ( 3 \beta_{1} - \beta_{2} ) q^{47} -12 \beta_{2} q^{48} - q^{49} + ( 4 + 3 \beta_{3} ) q^{51} + 2 \beta_{2} q^{52} -2 \beta_{1} q^{53} + ( -8 + 4 \beta_{3} ) q^{54} + ( 5 - \beta_{3} ) q^{56} + ( 2 \beta_{1} - 6 \beta_{2} ) q^{57} + ( -2 \beta_{1} + 12 \beta_{2} ) q^{58} + 4 q^{59} + ( 6 - 6 \beta_{3} ) q^{61} + ( \beta_{1} + 2 \beta_{2} ) q^{63} + ( -3 - \beta_{3} ) q^{64} -4 \beta_{3} q^{66} -4 \beta_{1} q^{67} + 2 \beta_{2} q^{68} + ( -8 - 2 \beta_{3} ) q^{69} + 8 q^{71} + ( -3 \beta_{1} - 4 \beta_{2} ) q^{72} + ( -4 \beta_{1} + 2 \beta_{2} ) q^{73} + ( 6 - 6 \beta_{3} ) q^{74} + ( -20 + 8 \beta_{3} ) q^{76} + ( -\beta_{1} - \beta_{2} ) q^{77} + ( 4 \beta_{1} + 12 \beta_{2} ) q^{78} + ( 4 + \beta_{3} ) q^{79} -7 q^{81} + ( 2 \beta_{1} - 8 \beta_{2} ) q^{82} -4 \beta_{2} q^{83} + ( 4 - 2 \beta_{3} ) q^{84} + ( 4 + 4 \beta_{3} ) q^{86} + ( \beta_{1} + 13 \beta_{2} ) q^{87} + 4 \beta_{1} q^{88} + ( -2 - 2 \beta_{3} ) q^{89} + ( -2 - \beta_{3} ) q^{91} + ( -4 \beta_{1} + 4 \beta_{2} ) q^{92} + ( -16 + 4 \beta_{3} ) q^{94} + ( -4 + 4 \beta_{3} ) q^{96} + ( -5 \beta_{1} - 7 \beta_{2} ) q^{97} -\beta_{1} q^{98} + ( -4 - 2 \beta_{3} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 10q^{4} - 16q^{6} - 6q^{9} + O(q^{10}) \) \( 4q - 10q^{4} - 16q^{6} - 6q^{9} + 2q^{11} - 2q^{14} + 6q^{16} + 12q^{19} + 2q^{21} + 8q^{24} + 12q^{26} - 2q^{29} + 12q^{34} - 2q^{36} + 22q^{39} + 4q^{41} + 12q^{44} - 32q^{46} - 4q^{49} + 22q^{51} - 24q^{54} + 18q^{56} + 16q^{59} + 12q^{61} - 14q^{64} - 8q^{66} - 36q^{69} + 32q^{71} + 12q^{74} - 64q^{76} + 18q^{79} - 28q^{81} + 12q^{84} + 24q^{86} - 12q^{89} - 10q^{91} - 56q^{94} - 8q^{96} - 20q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} + 9 x^{2} + 16\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\((\)\( \nu^{3} + 5 \nu \)\()/4\)
\(\beta_{3}\)\(=\)\( \nu^{2} + 5 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{3} - 5\)
\(\nu^{3}\)\(=\)\(4 \beta_{2} - 5 \beta_{1}\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
99.1
2.56155i
1.56155i
1.56155i
2.56155i
2.56155i 1.56155i −4.56155 0 −4.00000 1.00000i 6.56155i 0.561553 0
99.2 1.56155i 2.56155i −0.438447 0 −4.00000 1.00000i 2.43845i −3.56155 0
99.3 1.56155i 2.56155i −0.438447 0 −4.00000 1.00000i 2.43845i −3.56155 0
99.4 2.56155i 1.56155i −4.56155 0 −4.00000 1.00000i 6.56155i 0.561553 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 175.2.b.b 4
3.b odd 2 1 1575.2.d.e 4
4.b odd 2 1 2800.2.g.t 4
5.b even 2 1 inner 175.2.b.b 4
5.c odd 4 1 35.2.a.b 2
5.c odd 4 1 175.2.a.f 2
7.b odd 2 1 1225.2.b.f 4
15.d odd 2 1 1575.2.d.e 4
15.e even 4 1 315.2.a.e 2
15.e even 4 1 1575.2.a.p 2
20.d odd 2 1 2800.2.g.t 4
20.e even 4 1 560.2.a.i 2
20.e even 4 1 2800.2.a.bi 2
35.c odd 2 1 1225.2.b.f 4
35.f even 4 1 245.2.a.d 2
35.f even 4 1 1225.2.a.s 2
35.k even 12 2 245.2.e.h 4
35.l odd 12 2 245.2.e.i 4
40.i odd 4 1 2240.2.a.bh 2
40.k even 4 1 2240.2.a.bd 2
55.e even 4 1 4235.2.a.m 2
60.l odd 4 1 5040.2.a.bt 2
65.h odd 4 1 5915.2.a.l 2
105.k odd 4 1 2205.2.a.x 2
140.j odd 4 1 3920.2.a.bs 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.2.a.b 2 5.c odd 4 1
175.2.a.f 2 5.c odd 4 1
175.2.b.b 4 1.a even 1 1 trivial
175.2.b.b 4 5.b even 2 1 inner
245.2.a.d 2 35.f even 4 1
245.2.e.h 4 35.k even 12 2
245.2.e.i 4 35.l odd 12 2
315.2.a.e 2 15.e even 4 1
560.2.a.i 2 20.e even 4 1
1225.2.a.s 2 35.f even 4 1
1225.2.b.f 4 7.b odd 2 1
1225.2.b.f 4 35.c odd 2 1
1575.2.a.p 2 15.e even 4 1
1575.2.d.e 4 3.b odd 2 1
1575.2.d.e 4 15.d odd 2 1
2205.2.a.x 2 105.k odd 4 1
2240.2.a.bd 2 40.k even 4 1
2240.2.a.bh 2 40.i odd 4 1
2800.2.a.bi 2 20.e even 4 1
2800.2.g.t 4 4.b odd 2 1
2800.2.g.t 4 20.d odd 2 1
3920.2.a.bs 2 140.j odd 4 1
4235.2.a.m 2 55.e even 4 1
5040.2.a.bt 2 60.l odd 4 1
5915.2.a.l 2 65.h odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 9 T_{2}^{2} + 16 \) acting on \(S_{2}^{\mathrm{new}}(175, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 16 + 9 T^{2} + T^{4} \)
$3$ \( 16 + 9 T^{2} + T^{4} \)
$5$ \( T^{4} \)
$7$ \( ( 1 + T^{2} )^{2} \)
$11$ \( ( -4 - T + T^{2} )^{2} \)
$13$ \( 4 + 21 T^{2} + T^{4} \)
$17$ \( 4 + 21 T^{2} + T^{4} \)
$19$ \( ( -8 - 6 T + T^{2} )^{2} \)
$23$ \( 256 + 36 T^{2} + T^{4} \)
$29$ \( ( -38 + T + T^{2} )^{2} \)
$31$ \( T^{4} \)
$37$ \( ( 36 + T^{2} )^{2} \)
$41$ \( ( -16 - 2 T + T^{2} )^{2} \)
$43$ \( 64 + 84 T^{2} + T^{4} \)
$47$ \( 1024 + 89 T^{2} + T^{4} \)
$53$ \( 256 + 36 T^{2} + T^{4} \)
$59$ \( ( -4 + T )^{4} \)
$61$ \( ( -144 - 6 T + T^{2} )^{2} \)
$67$ \( 4096 + 144 T^{2} + T^{4} \)
$71$ \( ( -8 + T )^{4} \)
$73$ \( 2704 + 168 T^{2} + T^{4} \)
$79$ \( ( 16 - 9 T + T^{2} )^{2} \)
$83$ \( ( 16 + T^{2} )^{2} \)
$89$ \( ( -8 + 6 T + T^{2} )^{2} \)
$97$ \( 7396 + 253 T^{2} + T^{4} \)
show more
show less