Defining parameters
Level: | \( N \) | \(=\) | \( 175 = 5^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 175.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(40\) | ||
Trace bound: | \(4\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(175, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 26 | 10 | 16 |
Cusp forms | 14 | 10 | 4 |
Eisenstein series | 12 | 0 | 12 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(175, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
175.2.b.a | $2$ | $1.397$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+iq^{3}+2q^{4}-iq^{7}+2q^{9}-3q^{11}+\cdots\) |
175.2.b.b | $4$ | $1.397$ | \(\Q(i, \sqrt{17})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{2}+(\beta _{1}+\beta _{2})q^{3}+(-3+\beta _{3})q^{4}+\cdots\) |
175.2.b.c | $4$ | $1.397$ | \(\Q(i, \sqrt{5})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{2}+(-2\beta _{1}-2\beta _{3})q^{3}+(1+\beta _{2}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(175, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(175, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 2}\)