Properties

Label 175.2.a.f.1.1
Level $175$
Weight $2$
Character 175.1
Self dual yes
Analytic conductor $1.397$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,2,Mod(1,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.39738203537\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.56155\) of defining polynomial
Character \(\chi\) \(=\) 175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.56155 q^{2} +2.56155 q^{3} +0.438447 q^{4} -4.00000 q^{6} +1.00000 q^{7} +2.43845 q^{8} +3.56155 q^{9} +O(q^{10})\) \(q-1.56155 q^{2} +2.56155 q^{3} +0.438447 q^{4} -4.00000 q^{6} +1.00000 q^{7} +2.43845 q^{8} +3.56155 q^{9} +2.56155 q^{11} +1.12311 q^{12} -4.56155 q^{13} -1.56155 q^{14} -4.68466 q^{16} +4.56155 q^{17} -5.56155 q^{18} +1.12311 q^{19} +2.56155 q^{21} -4.00000 q^{22} +5.12311 q^{23} +6.24621 q^{24} +7.12311 q^{26} +1.43845 q^{27} +0.438447 q^{28} -5.68466 q^{29} +2.43845 q^{32} +6.56155 q^{33} -7.12311 q^{34} +1.56155 q^{36} -6.00000 q^{37} -1.75379 q^{38} -11.6847 q^{39} -3.12311 q^{41} -4.00000 q^{42} -9.12311 q^{43} +1.12311 q^{44} -8.00000 q^{46} -3.68466 q^{47} -12.0000 q^{48} +1.00000 q^{49} +11.6847 q^{51} -2.00000 q^{52} -3.12311 q^{53} -2.24621 q^{54} +2.43845 q^{56} +2.87689 q^{57} +8.87689 q^{58} -4.00000 q^{59} -9.36932 q^{61} +3.56155 q^{63} +5.56155 q^{64} -10.2462 q^{66} +6.24621 q^{67} +2.00000 q^{68} +13.1231 q^{69} +8.00000 q^{71} +8.68466 q^{72} -4.24621 q^{73} +9.36932 q^{74} +0.492423 q^{76} +2.56155 q^{77} +18.2462 q^{78} -6.56155 q^{79} -7.00000 q^{81} +4.87689 q^{82} -4.00000 q^{83} +1.12311 q^{84} +14.2462 q^{86} -14.5616 q^{87} +6.24621 q^{88} +7.12311 q^{89} -4.56155 q^{91} +2.24621 q^{92} +5.75379 q^{94} +6.24621 q^{96} +14.8078 q^{97} -1.56155 q^{98} +9.12311 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} + q^{3} + 5 q^{4} - 8 q^{6} + 2 q^{7} + 9 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + q^{2} + q^{3} + 5 q^{4} - 8 q^{6} + 2 q^{7} + 9 q^{8} + 3 q^{9} + q^{11} - 6 q^{12} - 5 q^{13} + q^{14} + 3 q^{16} + 5 q^{17} - 7 q^{18} - 6 q^{19} + q^{21} - 8 q^{22} + 2 q^{23} - 4 q^{24} + 6 q^{26} + 7 q^{27} + 5 q^{28} + q^{29} + 9 q^{32} + 9 q^{33} - 6 q^{34} - q^{36} - 12 q^{37} - 20 q^{38} - 11 q^{39} + 2 q^{41} - 8 q^{42} - 10 q^{43} - 6 q^{44} - 16 q^{46} + 5 q^{47} - 24 q^{48} + 2 q^{49} + 11 q^{51} - 4 q^{52} + 2 q^{53} + 12 q^{54} + 9 q^{56} + 14 q^{57} + 26 q^{58} - 8 q^{59} + 6 q^{61} + 3 q^{63} + 7 q^{64} - 4 q^{66} - 4 q^{67} + 4 q^{68} + 18 q^{69} + 16 q^{71} + 5 q^{72} + 8 q^{73} - 6 q^{74} - 32 q^{76} + q^{77} + 20 q^{78} - 9 q^{79} - 14 q^{81} + 18 q^{82} - 8 q^{83} - 6 q^{84} + 12 q^{86} - 25 q^{87} - 4 q^{88} + 6 q^{89} - 5 q^{91} - 12 q^{92} + 28 q^{94} - 4 q^{96} + 9 q^{97} + q^{98} + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.56155 −1.10418 −0.552092 0.833783i \(-0.686170\pi\)
−0.552092 + 0.833783i \(0.686170\pi\)
\(3\) 2.56155 1.47891 0.739457 0.673204i \(-0.235083\pi\)
0.739457 + 0.673204i \(0.235083\pi\)
\(4\) 0.438447 0.219224
\(5\) 0 0
\(6\) −4.00000 −1.63299
\(7\) 1.00000 0.377964
\(8\) 2.43845 0.862121
\(9\) 3.56155 1.18718
\(10\) 0 0
\(11\) 2.56155 0.772337 0.386169 0.922428i \(-0.373798\pi\)
0.386169 + 0.922428i \(0.373798\pi\)
\(12\) 1.12311 0.324213
\(13\) −4.56155 −1.26515 −0.632574 0.774500i \(-0.718001\pi\)
−0.632574 + 0.774500i \(0.718001\pi\)
\(14\) −1.56155 −0.417343
\(15\) 0 0
\(16\) −4.68466 −1.17116
\(17\) 4.56155 1.10634 0.553170 0.833069i \(-0.313418\pi\)
0.553170 + 0.833069i \(0.313418\pi\)
\(18\) −5.56155 −1.31087
\(19\) 1.12311 0.257658 0.128829 0.991667i \(-0.458878\pi\)
0.128829 + 0.991667i \(0.458878\pi\)
\(20\) 0 0
\(21\) 2.56155 0.558977
\(22\) −4.00000 −0.852803
\(23\) 5.12311 1.06824 0.534121 0.845408i \(-0.320643\pi\)
0.534121 + 0.845408i \(0.320643\pi\)
\(24\) 6.24621 1.27500
\(25\) 0 0
\(26\) 7.12311 1.39696
\(27\) 1.43845 0.276829
\(28\) 0.438447 0.0828587
\(29\) −5.68466 −1.05561 −0.527807 0.849364i \(-0.676986\pi\)
−0.527807 + 0.849364i \(0.676986\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 2.43845 0.431061
\(33\) 6.56155 1.14222
\(34\) −7.12311 −1.22160
\(35\) 0 0
\(36\) 1.56155 0.260259
\(37\) −6.00000 −0.986394 −0.493197 0.869918i \(-0.664172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) −1.75379 −0.284502
\(39\) −11.6847 −1.87104
\(40\) 0 0
\(41\) −3.12311 −0.487747 −0.243874 0.969807i \(-0.578418\pi\)
−0.243874 + 0.969807i \(0.578418\pi\)
\(42\) −4.00000 −0.617213
\(43\) −9.12311 −1.39126 −0.695630 0.718400i \(-0.744875\pi\)
−0.695630 + 0.718400i \(0.744875\pi\)
\(44\) 1.12311 0.169315
\(45\) 0 0
\(46\) −8.00000 −1.17954
\(47\) −3.68466 −0.537463 −0.268731 0.963215i \(-0.586604\pi\)
−0.268731 + 0.963215i \(0.586604\pi\)
\(48\) −12.0000 −1.73205
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 11.6847 1.63618
\(52\) −2.00000 −0.277350
\(53\) −3.12311 −0.428992 −0.214496 0.976725i \(-0.568811\pi\)
−0.214496 + 0.976725i \(0.568811\pi\)
\(54\) −2.24621 −0.305671
\(55\) 0 0
\(56\) 2.43845 0.325851
\(57\) 2.87689 0.381054
\(58\) 8.87689 1.16559
\(59\) −4.00000 −0.520756 −0.260378 0.965507i \(-0.583847\pi\)
−0.260378 + 0.965507i \(0.583847\pi\)
\(60\) 0 0
\(61\) −9.36932 −1.19962 −0.599809 0.800143i \(-0.704757\pi\)
−0.599809 + 0.800143i \(0.704757\pi\)
\(62\) 0 0
\(63\) 3.56155 0.448713
\(64\) 5.56155 0.695194
\(65\) 0 0
\(66\) −10.2462 −1.26122
\(67\) 6.24621 0.763096 0.381548 0.924349i \(-0.375391\pi\)
0.381548 + 0.924349i \(0.375391\pi\)
\(68\) 2.00000 0.242536
\(69\) 13.1231 1.57984
\(70\) 0 0
\(71\) 8.00000 0.949425 0.474713 0.880141i \(-0.342552\pi\)
0.474713 + 0.880141i \(0.342552\pi\)
\(72\) 8.68466 1.02350
\(73\) −4.24621 −0.496981 −0.248491 0.968634i \(-0.579935\pi\)
−0.248491 + 0.968634i \(0.579935\pi\)
\(74\) 9.36932 1.08916
\(75\) 0 0
\(76\) 0.492423 0.0564847
\(77\) 2.56155 0.291916
\(78\) 18.2462 2.06598
\(79\) −6.56155 −0.738232 −0.369116 0.929383i \(-0.620340\pi\)
−0.369116 + 0.929383i \(0.620340\pi\)
\(80\) 0 0
\(81\) −7.00000 −0.777778
\(82\) 4.87689 0.538563
\(83\) −4.00000 −0.439057 −0.219529 0.975606i \(-0.570452\pi\)
−0.219529 + 0.975606i \(0.570452\pi\)
\(84\) 1.12311 0.122541
\(85\) 0 0
\(86\) 14.2462 1.53621
\(87\) −14.5616 −1.56116
\(88\) 6.24621 0.665848
\(89\) 7.12311 0.755048 0.377524 0.926000i \(-0.376776\pi\)
0.377524 + 0.926000i \(0.376776\pi\)
\(90\) 0 0
\(91\) −4.56155 −0.478181
\(92\) 2.24621 0.234184
\(93\) 0 0
\(94\) 5.75379 0.593458
\(95\) 0 0
\(96\) 6.24621 0.637501
\(97\) 14.8078 1.50350 0.751750 0.659448i \(-0.229210\pi\)
0.751750 + 0.659448i \(0.229210\pi\)
\(98\) −1.56155 −0.157741
\(99\) 9.12311 0.916907
\(100\) 0 0
\(101\) 0.246211 0.0244989 0.0122495 0.999925i \(-0.496101\pi\)
0.0122495 + 0.999925i \(0.496101\pi\)
\(102\) −18.2462 −1.80664
\(103\) −1.43845 −0.141734 −0.0708672 0.997486i \(-0.522577\pi\)
−0.0708672 + 0.997486i \(0.522577\pi\)
\(104\) −11.1231 −1.09071
\(105\) 0 0
\(106\) 4.87689 0.473686
\(107\) 11.3693 1.09911 0.549557 0.835456i \(-0.314797\pi\)
0.549557 + 0.835456i \(0.314797\pi\)
\(108\) 0.630683 0.0606875
\(109\) 17.6847 1.69388 0.846942 0.531686i \(-0.178441\pi\)
0.846942 + 0.531686i \(0.178441\pi\)
\(110\) 0 0
\(111\) −15.3693 −1.45879
\(112\) −4.68466 −0.442659
\(113\) 14.0000 1.31701 0.658505 0.752577i \(-0.271189\pi\)
0.658505 + 0.752577i \(0.271189\pi\)
\(114\) −4.49242 −0.420754
\(115\) 0 0
\(116\) −2.49242 −0.231416
\(117\) −16.2462 −1.50196
\(118\) 6.24621 0.575010
\(119\) 4.56155 0.418157
\(120\) 0 0
\(121\) −4.43845 −0.403495
\(122\) 14.6307 1.32460
\(123\) −8.00000 −0.721336
\(124\) 0 0
\(125\) 0 0
\(126\) −5.56155 −0.495463
\(127\) −10.2462 −0.909204 −0.454602 0.890695i \(-0.650219\pi\)
−0.454602 + 0.890695i \(0.650219\pi\)
\(128\) −13.5616 −1.19868
\(129\) −23.3693 −2.05755
\(130\) 0 0
\(131\) −9.12311 −0.797089 −0.398545 0.917149i \(-0.630485\pi\)
−0.398545 + 0.917149i \(0.630485\pi\)
\(132\) 2.87689 0.250402
\(133\) 1.12311 0.0973856
\(134\) −9.75379 −0.842599
\(135\) 0 0
\(136\) 11.1231 0.953798
\(137\) 8.87689 0.758404 0.379202 0.925314i \(-0.376199\pi\)
0.379202 + 0.925314i \(0.376199\pi\)
\(138\) −20.4924 −1.74443
\(139\) −6.87689 −0.583291 −0.291645 0.956527i \(-0.594203\pi\)
−0.291645 + 0.956527i \(0.594203\pi\)
\(140\) 0 0
\(141\) −9.43845 −0.794861
\(142\) −12.4924 −1.04834
\(143\) −11.6847 −0.977120
\(144\) −16.6847 −1.39039
\(145\) 0 0
\(146\) 6.63068 0.548759
\(147\) 2.56155 0.211273
\(148\) −2.63068 −0.216241
\(149\) −4.24621 −0.347863 −0.173932 0.984758i \(-0.555647\pi\)
−0.173932 + 0.984758i \(0.555647\pi\)
\(150\) 0 0
\(151\) 21.9309 1.78471 0.892354 0.451335i \(-0.149052\pi\)
0.892354 + 0.451335i \(0.149052\pi\)
\(152\) 2.73863 0.222133
\(153\) 16.2462 1.31343
\(154\) −4.00000 −0.322329
\(155\) 0 0
\(156\) −5.12311 −0.410177
\(157\) −3.75379 −0.299585 −0.149792 0.988717i \(-0.547861\pi\)
−0.149792 + 0.988717i \(0.547861\pi\)
\(158\) 10.2462 0.815145
\(159\) −8.00000 −0.634441
\(160\) 0 0
\(161\) 5.12311 0.403757
\(162\) 10.9309 0.858810
\(163\) −1.12311 −0.0879684 −0.0439842 0.999032i \(-0.514005\pi\)
−0.0439842 + 0.999032i \(0.514005\pi\)
\(164\) −1.36932 −0.106926
\(165\) 0 0
\(166\) 6.24621 0.484800
\(167\) −21.9309 −1.69706 −0.848531 0.529146i \(-0.822512\pi\)
−0.848531 + 0.529146i \(0.822512\pi\)
\(168\) 6.24621 0.481906
\(169\) 7.80776 0.600597
\(170\) 0 0
\(171\) 4.00000 0.305888
\(172\) −4.00000 −0.304997
\(173\) 8.56155 0.650923 0.325461 0.945555i \(-0.394480\pi\)
0.325461 + 0.945555i \(0.394480\pi\)
\(174\) 22.7386 1.72381
\(175\) 0 0
\(176\) −12.0000 −0.904534
\(177\) −10.2462 −0.770152
\(178\) −11.1231 −0.833712
\(179\) 20.0000 1.49487 0.747435 0.664335i \(-0.231285\pi\)
0.747435 + 0.664335i \(0.231285\pi\)
\(180\) 0 0
\(181\) 23.6155 1.75533 0.877664 0.479276i \(-0.159101\pi\)
0.877664 + 0.479276i \(0.159101\pi\)
\(182\) 7.12311 0.528000
\(183\) −24.0000 −1.77413
\(184\) 12.4924 0.920954
\(185\) 0 0
\(186\) 0 0
\(187\) 11.6847 0.854467
\(188\) −1.61553 −0.117824
\(189\) 1.43845 0.104632
\(190\) 0 0
\(191\) −9.43845 −0.682942 −0.341471 0.939892i \(-0.610925\pi\)
−0.341471 + 0.939892i \(0.610925\pi\)
\(192\) 14.2462 1.02813
\(193\) 5.36932 0.386492 0.193246 0.981150i \(-0.438098\pi\)
0.193246 + 0.981150i \(0.438098\pi\)
\(194\) −23.1231 −1.66014
\(195\) 0 0
\(196\) 0.438447 0.0313177
\(197\) 7.12311 0.507500 0.253750 0.967270i \(-0.418336\pi\)
0.253750 + 0.967270i \(0.418336\pi\)
\(198\) −14.2462 −1.01243
\(199\) −18.2462 −1.29344 −0.646720 0.762728i \(-0.723860\pi\)
−0.646720 + 0.762728i \(0.723860\pi\)
\(200\) 0 0
\(201\) 16.0000 1.12855
\(202\) −0.384472 −0.0270513
\(203\) −5.68466 −0.398985
\(204\) 5.12311 0.358689
\(205\) 0 0
\(206\) 2.24621 0.156501
\(207\) 18.2462 1.26820
\(208\) 21.3693 1.48170
\(209\) 2.87689 0.198999
\(210\) 0 0
\(211\) −23.0540 −1.58710 −0.793551 0.608504i \(-0.791770\pi\)
−0.793551 + 0.608504i \(0.791770\pi\)
\(212\) −1.36932 −0.0940451
\(213\) 20.4924 1.40412
\(214\) −17.7538 −1.21362
\(215\) 0 0
\(216\) 3.50758 0.238660
\(217\) 0 0
\(218\) −27.6155 −1.87036
\(219\) −10.8769 −0.734992
\(220\) 0 0
\(221\) −20.8078 −1.39968
\(222\) 24.0000 1.61077
\(223\) 6.56155 0.439394 0.219697 0.975568i \(-0.429493\pi\)
0.219697 + 0.975568i \(0.429493\pi\)
\(224\) 2.43845 0.162926
\(225\) 0 0
\(226\) −21.8617 −1.45422
\(227\) −23.6847 −1.57201 −0.786003 0.618223i \(-0.787853\pi\)
−0.786003 + 0.618223i \(0.787853\pi\)
\(228\) 1.26137 0.0835360
\(229\) 19.1231 1.26369 0.631845 0.775095i \(-0.282298\pi\)
0.631845 + 0.775095i \(0.282298\pi\)
\(230\) 0 0
\(231\) 6.56155 0.431718
\(232\) −13.8617 −0.910068
\(233\) 3.12311 0.204601 0.102301 0.994754i \(-0.467380\pi\)
0.102301 + 0.994754i \(0.467380\pi\)
\(234\) 25.3693 1.65844
\(235\) 0 0
\(236\) −1.75379 −0.114162
\(237\) −16.8078 −1.09178
\(238\) −7.12311 −0.461722
\(239\) −0.807764 −0.0522499 −0.0261250 0.999659i \(-0.508317\pi\)
−0.0261250 + 0.999659i \(0.508317\pi\)
\(240\) 0 0
\(241\) 12.2462 0.788848 0.394424 0.918929i \(-0.370944\pi\)
0.394424 + 0.918929i \(0.370944\pi\)
\(242\) 6.93087 0.445533
\(243\) −22.2462 −1.42710
\(244\) −4.10795 −0.262985
\(245\) 0 0
\(246\) 12.4924 0.796488
\(247\) −5.12311 −0.325975
\(248\) 0 0
\(249\) −10.2462 −0.649327
\(250\) 0 0
\(251\) −17.1231 −1.08080 −0.540400 0.841408i \(-0.681727\pi\)
−0.540400 + 0.841408i \(0.681727\pi\)
\(252\) 1.56155 0.0983686
\(253\) 13.1231 0.825043
\(254\) 16.0000 1.00393
\(255\) 0 0
\(256\) 10.0540 0.628373
\(257\) −22.4924 −1.40304 −0.701519 0.712650i \(-0.747495\pi\)
−0.701519 + 0.712650i \(0.747495\pi\)
\(258\) 36.4924 2.27192
\(259\) −6.00000 −0.372822
\(260\) 0 0
\(261\) −20.2462 −1.25321
\(262\) 14.2462 0.880134
\(263\) 21.1231 1.30251 0.651253 0.758860i \(-0.274244\pi\)
0.651253 + 0.758860i \(0.274244\pi\)
\(264\) 16.0000 0.984732
\(265\) 0 0
\(266\) −1.75379 −0.107532
\(267\) 18.2462 1.11665
\(268\) 2.73863 0.167289
\(269\) 28.7386 1.75223 0.876113 0.482106i \(-0.160128\pi\)
0.876113 + 0.482106i \(0.160128\pi\)
\(270\) 0 0
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) −21.3693 −1.29571
\(273\) −11.6847 −0.707188
\(274\) −13.8617 −0.837418
\(275\) 0 0
\(276\) 5.75379 0.346337
\(277\) −16.2462 −0.976140 −0.488070 0.872804i \(-0.662299\pi\)
−0.488070 + 0.872804i \(0.662299\pi\)
\(278\) 10.7386 0.644060
\(279\) 0 0
\(280\) 0 0
\(281\) 16.5616 0.987979 0.493990 0.869468i \(-0.335538\pi\)
0.493990 + 0.869468i \(0.335538\pi\)
\(282\) 14.7386 0.877673
\(283\) 23.6847 1.40791 0.703953 0.710246i \(-0.251416\pi\)
0.703953 + 0.710246i \(0.251416\pi\)
\(284\) 3.50758 0.208136
\(285\) 0 0
\(286\) 18.2462 1.07892
\(287\) −3.12311 −0.184351
\(288\) 8.68466 0.511748
\(289\) 3.80776 0.223986
\(290\) 0 0
\(291\) 37.9309 2.22355
\(292\) −1.86174 −0.108950
\(293\) −9.68466 −0.565784 −0.282892 0.959152i \(-0.591294\pi\)
−0.282892 + 0.959152i \(0.591294\pi\)
\(294\) −4.00000 −0.233285
\(295\) 0 0
\(296\) −14.6307 −0.850391
\(297\) 3.68466 0.213806
\(298\) 6.63068 0.384105
\(299\) −23.3693 −1.35148
\(300\) 0 0
\(301\) −9.12311 −0.525847
\(302\) −34.2462 −1.97065
\(303\) 0.630683 0.0362318
\(304\) −5.26137 −0.301760
\(305\) 0 0
\(306\) −25.3693 −1.45027
\(307\) 31.6847 1.80834 0.904169 0.427174i \(-0.140491\pi\)
0.904169 + 0.427174i \(0.140491\pi\)
\(308\) 1.12311 0.0639949
\(309\) −3.68466 −0.209613
\(310\) 0 0
\(311\) −9.61553 −0.545247 −0.272623 0.962121i \(-0.587891\pi\)
−0.272623 + 0.962121i \(0.587891\pi\)
\(312\) −28.4924 −1.61307
\(313\) −31.3002 −1.76919 −0.884596 0.466359i \(-0.845566\pi\)
−0.884596 + 0.466359i \(0.845566\pi\)
\(314\) 5.86174 0.330797
\(315\) 0 0
\(316\) −2.87689 −0.161838
\(317\) 22.4924 1.26330 0.631650 0.775254i \(-0.282378\pi\)
0.631650 + 0.775254i \(0.282378\pi\)
\(318\) 12.4924 0.700540
\(319\) −14.5616 −0.815290
\(320\) 0 0
\(321\) 29.1231 1.62549
\(322\) −8.00000 −0.445823
\(323\) 5.12311 0.285057
\(324\) −3.06913 −0.170507
\(325\) 0 0
\(326\) 1.75379 0.0971334
\(327\) 45.3002 2.50511
\(328\) −7.61553 −0.420497
\(329\) −3.68466 −0.203142
\(330\) 0 0
\(331\) 12.0000 0.659580 0.329790 0.944054i \(-0.393022\pi\)
0.329790 + 0.944054i \(0.393022\pi\)
\(332\) −1.75379 −0.0962517
\(333\) −21.3693 −1.17103
\(334\) 34.2462 1.87387
\(335\) 0 0
\(336\) −12.0000 −0.654654
\(337\) 34.4924 1.87892 0.939461 0.342656i \(-0.111326\pi\)
0.939461 + 0.342656i \(0.111326\pi\)
\(338\) −12.1922 −0.663170
\(339\) 35.8617 1.94774
\(340\) 0 0
\(341\) 0 0
\(342\) −6.24621 −0.337756
\(343\) 1.00000 0.0539949
\(344\) −22.2462 −1.19944
\(345\) 0 0
\(346\) −13.3693 −0.718739
\(347\) 1.12311 0.0602915 0.0301457 0.999546i \(-0.490403\pi\)
0.0301457 + 0.999546i \(0.490403\pi\)
\(348\) −6.38447 −0.342244
\(349\) −22.4924 −1.20399 −0.601996 0.798499i \(-0.705628\pi\)
−0.601996 + 0.798499i \(0.705628\pi\)
\(350\) 0 0
\(351\) −6.56155 −0.350230
\(352\) 6.24621 0.332924
\(353\) 14.8078 0.788138 0.394069 0.919081i \(-0.371067\pi\)
0.394069 + 0.919081i \(0.371067\pi\)
\(354\) 16.0000 0.850390
\(355\) 0 0
\(356\) 3.12311 0.165524
\(357\) 11.6847 0.618418
\(358\) −31.2311 −1.65061
\(359\) 8.00000 0.422224 0.211112 0.977462i \(-0.432292\pi\)
0.211112 + 0.977462i \(0.432292\pi\)
\(360\) 0 0
\(361\) −17.7386 −0.933612
\(362\) −36.8769 −1.93821
\(363\) −11.3693 −0.596734
\(364\) −2.00000 −0.104828
\(365\) 0 0
\(366\) 37.4773 1.95897
\(367\) −3.68466 −0.192338 −0.0961688 0.995365i \(-0.530659\pi\)
−0.0961688 + 0.995365i \(0.530659\pi\)
\(368\) −24.0000 −1.25109
\(369\) −11.1231 −0.579046
\(370\) 0 0
\(371\) −3.12311 −0.162144
\(372\) 0 0
\(373\) −29.3693 −1.52069 −0.760343 0.649522i \(-0.774969\pi\)
−0.760343 + 0.649522i \(0.774969\pi\)
\(374\) −18.2462 −0.943489
\(375\) 0 0
\(376\) −8.98485 −0.463358
\(377\) 25.9309 1.33551
\(378\) −2.24621 −0.115533
\(379\) 16.4924 0.847159 0.423579 0.905859i \(-0.360773\pi\)
0.423579 + 0.905859i \(0.360773\pi\)
\(380\) 0 0
\(381\) −26.2462 −1.34463
\(382\) 14.7386 0.754094
\(383\) 10.2462 0.523557 0.261778 0.965128i \(-0.415691\pi\)
0.261778 + 0.965128i \(0.415691\pi\)
\(384\) −34.7386 −1.77275
\(385\) 0 0
\(386\) −8.38447 −0.426758
\(387\) −32.4924 −1.65168
\(388\) 6.49242 0.329603
\(389\) 3.93087 0.199303 0.0996515 0.995022i \(-0.468227\pi\)
0.0996515 + 0.995022i \(0.468227\pi\)
\(390\) 0 0
\(391\) 23.3693 1.18184
\(392\) 2.43845 0.123160
\(393\) −23.3693 −1.17883
\(394\) −11.1231 −0.560374
\(395\) 0 0
\(396\) 4.00000 0.201008
\(397\) −23.4384 −1.17634 −0.588171 0.808737i \(-0.700152\pi\)
−0.588171 + 0.808737i \(0.700152\pi\)
\(398\) 28.4924 1.42820
\(399\) 2.87689 0.144025
\(400\) 0 0
\(401\) 27.4384 1.37021 0.685105 0.728444i \(-0.259756\pi\)
0.685105 + 0.728444i \(0.259756\pi\)
\(402\) −24.9848 −1.24613
\(403\) 0 0
\(404\) 0.107951 0.00537074
\(405\) 0 0
\(406\) 8.87689 0.440553
\(407\) −15.3693 −0.761829
\(408\) 28.4924 1.41059
\(409\) −26.4924 −1.30997 −0.654983 0.755644i \(-0.727324\pi\)
−0.654983 + 0.755644i \(0.727324\pi\)
\(410\) 0 0
\(411\) 22.7386 1.12161
\(412\) −0.630683 −0.0310715
\(413\) −4.00000 −0.196827
\(414\) −28.4924 −1.40033
\(415\) 0 0
\(416\) −11.1231 −0.545355
\(417\) −17.6155 −0.862636
\(418\) −4.49242 −0.219732
\(419\) 9.75379 0.476504 0.238252 0.971203i \(-0.423426\pi\)
0.238252 + 0.971203i \(0.423426\pi\)
\(420\) 0 0
\(421\) 9.68466 0.472001 0.236001 0.971753i \(-0.424163\pi\)
0.236001 + 0.971753i \(0.424163\pi\)
\(422\) 36.0000 1.75245
\(423\) −13.1231 −0.638067
\(424\) −7.61553 −0.369843
\(425\) 0 0
\(426\) −32.0000 −1.55041
\(427\) −9.36932 −0.453413
\(428\) 4.98485 0.240952
\(429\) −29.9309 −1.44508
\(430\) 0 0
\(431\) 0.807764 0.0389086 0.0194543 0.999811i \(-0.493807\pi\)
0.0194543 + 0.999811i \(0.493807\pi\)
\(432\) −6.73863 −0.324213
\(433\) 8.24621 0.396288 0.198144 0.980173i \(-0.436509\pi\)
0.198144 + 0.980173i \(0.436509\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 7.75379 0.371339
\(437\) 5.75379 0.275241
\(438\) 16.9848 0.811567
\(439\) −15.3693 −0.733537 −0.366769 0.930312i \(-0.619536\pi\)
−0.366769 + 0.930312i \(0.619536\pi\)
\(440\) 0 0
\(441\) 3.56155 0.169598
\(442\) 32.4924 1.54551
\(443\) 27.3693 1.30036 0.650178 0.759782i \(-0.274694\pi\)
0.650178 + 0.759782i \(0.274694\pi\)
\(444\) −6.73863 −0.319801
\(445\) 0 0
\(446\) −10.2462 −0.485172
\(447\) −10.8769 −0.514459
\(448\) 5.56155 0.262759
\(449\) 18.8078 0.887593 0.443797 0.896128i \(-0.353631\pi\)
0.443797 + 0.896128i \(0.353631\pi\)
\(450\) 0 0
\(451\) −8.00000 −0.376705
\(452\) 6.13826 0.288719
\(453\) 56.1771 2.63943
\(454\) 36.9848 1.73578
\(455\) 0 0
\(456\) 7.01515 0.328515
\(457\) 8.87689 0.415244 0.207622 0.978209i \(-0.433428\pi\)
0.207622 + 0.978209i \(0.433428\pi\)
\(458\) −29.8617 −1.39535
\(459\) 6.56155 0.306267
\(460\) 0 0
\(461\) −4.87689 −0.227140 −0.113570 0.993530i \(-0.536229\pi\)
−0.113570 + 0.993530i \(0.536229\pi\)
\(462\) −10.2462 −0.476697
\(463\) 20.4924 0.952364 0.476182 0.879347i \(-0.342020\pi\)
0.476182 + 0.879347i \(0.342020\pi\)
\(464\) 26.6307 1.23630
\(465\) 0 0
\(466\) −4.87689 −0.225918
\(467\) −26.5616 −1.22912 −0.614561 0.788869i \(-0.710667\pi\)
−0.614561 + 0.788869i \(0.710667\pi\)
\(468\) −7.12311 −0.329266
\(469\) 6.24621 0.288423
\(470\) 0 0
\(471\) −9.61553 −0.443060
\(472\) −9.75379 −0.448955
\(473\) −23.3693 −1.07452
\(474\) 26.2462 1.20553
\(475\) 0 0
\(476\) 2.00000 0.0916698
\(477\) −11.1231 −0.509292
\(478\) 1.26137 0.0576935
\(479\) 13.1231 0.599610 0.299805 0.954001i \(-0.403078\pi\)
0.299805 + 0.954001i \(0.403078\pi\)
\(480\) 0 0
\(481\) 27.3693 1.24793
\(482\) −19.1231 −0.871034
\(483\) 13.1231 0.597122
\(484\) −1.94602 −0.0884557
\(485\) 0 0
\(486\) 34.7386 1.57578
\(487\) −5.12311 −0.232150 −0.116075 0.993240i \(-0.537031\pi\)
−0.116075 + 0.993240i \(0.537031\pi\)
\(488\) −22.8466 −1.03422
\(489\) −2.87689 −0.130098
\(490\) 0 0
\(491\) 4.17708 0.188509 0.0942545 0.995548i \(-0.469953\pi\)
0.0942545 + 0.995548i \(0.469953\pi\)
\(492\) −3.50758 −0.158134
\(493\) −25.9309 −1.16787
\(494\) 8.00000 0.359937
\(495\) 0 0
\(496\) 0 0
\(497\) 8.00000 0.358849
\(498\) 16.0000 0.716977
\(499\) −4.17708 −0.186992 −0.0934959 0.995620i \(-0.529804\pi\)
−0.0934959 + 0.995620i \(0.529804\pi\)
\(500\) 0 0
\(501\) −56.1771 −2.50981
\(502\) 26.7386 1.19340
\(503\) −10.0691 −0.448960 −0.224480 0.974479i \(-0.572068\pi\)
−0.224480 + 0.974479i \(0.572068\pi\)
\(504\) 8.68466 0.386845
\(505\) 0 0
\(506\) −20.4924 −0.910999
\(507\) 20.0000 0.888231
\(508\) −4.49242 −0.199319
\(509\) −28.2462 −1.25199 −0.625996 0.779827i \(-0.715307\pi\)
−0.625996 + 0.779827i \(0.715307\pi\)
\(510\) 0 0
\(511\) −4.24621 −0.187841
\(512\) 11.4233 0.504843
\(513\) 1.61553 0.0713273
\(514\) 35.1231 1.54921
\(515\) 0 0
\(516\) −10.2462 −0.451064
\(517\) −9.43845 −0.415102
\(518\) 9.36932 0.411664
\(519\) 21.9309 0.962658
\(520\) 0 0
\(521\) 10.0000 0.438108 0.219054 0.975713i \(-0.429703\pi\)
0.219054 + 0.975713i \(0.429703\pi\)
\(522\) 31.6155 1.38377
\(523\) −7.50758 −0.328283 −0.164142 0.986437i \(-0.552485\pi\)
−0.164142 + 0.986437i \(0.552485\pi\)
\(524\) −4.00000 −0.174741
\(525\) 0 0
\(526\) −32.9848 −1.43821
\(527\) 0 0
\(528\) −30.7386 −1.33773
\(529\) 3.24621 0.141140
\(530\) 0 0
\(531\) −14.2462 −0.618233
\(532\) 0.492423 0.0213492
\(533\) 14.2462 0.617072
\(534\) −28.4924 −1.23299
\(535\) 0 0
\(536\) 15.2311 0.657881
\(537\) 51.2311 2.21078
\(538\) −44.8769 −1.93478
\(539\) 2.56155 0.110334
\(540\) 0 0
\(541\) −17.1922 −0.739152 −0.369576 0.929201i \(-0.620497\pi\)
−0.369576 + 0.929201i \(0.620497\pi\)
\(542\) 24.9848 1.07319
\(543\) 60.4924 2.59598
\(544\) 11.1231 0.476899
\(545\) 0 0
\(546\) 18.2462 0.780866
\(547\) −14.2462 −0.609124 −0.304562 0.952493i \(-0.598510\pi\)
−0.304562 + 0.952493i \(0.598510\pi\)
\(548\) 3.89205 0.166260
\(549\) −33.3693 −1.42417
\(550\) 0 0
\(551\) −6.38447 −0.271988
\(552\) 32.0000 1.36201
\(553\) −6.56155 −0.279026
\(554\) 25.3693 1.07784
\(555\) 0 0
\(556\) −3.01515 −0.127871
\(557\) 4.87689 0.206641 0.103320 0.994648i \(-0.467053\pi\)
0.103320 + 0.994648i \(0.467053\pi\)
\(558\) 0 0
\(559\) 41.6155 1.76015
\(560\) 0 0
\(561\) 29.9309 1.26368
\(562\) −25.8617 −1.09091
\(563\) 28.0000 1.18006 0.590030 0.807382i \(-0.299116\pi\)
0.590030 + 0.807382i \(0.299116\pi\)
\(564\) −4.13826 −0.174252
\(565\) 0 0
\(566\) −36.9848 −1.55459
\(567\) −7.00000 −0.293972
\(568\) 19.5076 0.818520
\(569\) 34.9848 1.46664 0.733320 0.679883i \(-0.237969\pi\)
0.733320 + 0.679883i \(0.237969\pi\)
\(570\) 0 0
\(571\) 7.50758 0.314182 0.157091 0.987584i \(-0.449788\pi\)
0.157091 + 0.987584i \(0.449788\pi\)
\(572\) −5.12311 −0.214208
\(573\) −24.1771 −1.01001
\(574\) 4.87689 0.203558
\(575\) 0 0
\(576\) 19.8078 0.825324
\(577\) −13.0540 −0.543444 −0.271722 0.962376i \(-0.587593\pi\)
−0.271722 + 0.962376i \(0.587593\pi\)
\(578\) −5.94602 −0.247322
\(579\) 13.7538 0.571588
\(580\) 0 0
\(581\) −4.00000 −0.165948
\(582\) −59.2311 −2.45521
\(583\) −8.00000 −0.331326
\(584\) −10.3542 −0.428458
\(585\) 0 0
\(586\) 15.1231 0.624730
\(587\) 9.75379 0.402582 0.201291 0.979531i \(-0.435486\pi\)
0.201291 + 0.979531i \(0.435486\pi\)
\(588\) 1.12311 0.0463161
\(589\) 0 0
\(590\) 0 0
\(591\) 18.2462 0.750549
\(592\) 28.1080 1.15523
\(593\) 23.4384 0.962502 0.481251 0.876583i \(-0.340183\pi\)
0.481251 + 0.876583i \(0.340183\pi\)
\(594\) −5.75379 −0.236081
\(595\) 0 0
\(596\) −1.86174 −0.0762598
\(597\) −46.7386 −1.91288
\(598\) 36.4924 1.49229
\(599\) 8.80776 0.359875 0.179938 0.983678i \(-0.442410\pi\)
0.179938 + 0.983678i \(0.442410\pi\)
\(600\) 0 0
\(601\) −26.4924 −1.08065 −0.540324 0.841457i \(-0.681698\pi\)
−0.540324 + 0.841457i \(0.681698\pi\)
\(602\) 14.2462 0.580632
\(603\) 22.2462 0.905936
\(604\) 9.61553 0.391250
\(605\) 0 0
\(606\) −0.984845 −0.0400066
\(607\) 4.94602 0.200753 0.100376 0.994950i \(-0.467995\pi\)
0.100376 + 0.994950i \(0.467995\pi\)
\(608\) 2.73863 0.111066
\(609\) −14.5616 −0.590064
\(610\) 0 0
\(611\) 16.8078 0.679969
\(612\) 7.12311 0.287934
\(613\) 8.73863 0.352950 0.176475 0.984305i \(-0.443531\pi\)
0.176475 + 0.984305i \(0.443531\pi\)
\(614\) −49.4773 −1.99674
\(615\) 0 0
\(616\) 6.24621 0.251667
\(617\) −15.7538 −0.634224 −0.317112 0.948388i \(-0.602713\pi\)
−0.317112 + 0.948388i \(0.602713\pi\)
\(618\) 5.75379 0.231451
\(619\) −42.1080 −1.69246 −0.846231 0.532817i \(-0.821134\pi\)
−0.846231 + 0.532817i \(0.821134\pi\)
\(620\) 0 0
\(621\) 7.36932 0.295720
\(622\) 15.0152 0.602053
\(623\) 7.12311 0.285381
\(624\) 54.7386 2.19130
\(625\) 0 0
\(626\) 48.8769 1.95351
\(627\) 7.36932 0.294302
\(628\) −1.64584 −0.0656761
\(629\) −27.3693 −1.09129
\(630\) 0 0
\(631\) 8.80776 0.350632 0.175316 0.984512i \(-0.443905\pi\)
0.175316 + 0.984512i \(0.443905\pi\)
\(632\) −16.0000 −0.636446
\(633\) −59.0540 −2.34718
\(634\) −35.1231 −1.39492
\(635\) 0 0
\(636\) −3.50758 −0.139084
\(637\) −4.56155 −0.180735
\(638\) 22.7386 0.900231
\(639\) 28.4924 1.12714
\(640\) 0 0
\(641\) 2.00000 0.0789953 0.0394976 0.999220i \(-0.487424\pi\)
0.0394976 + 0.999220i \(0.487424\pi\)
\(642\) −45.4773 −1.79484
\(643\) 2.56155 0.101018 0.0505089 0.998724i \(-0.483916\pi\)
0.0505089 + 0.998724i \(0.483916\pi\)
\(644\) 2.24621 0.0885131
\(645\) 0 0
\(646\) −8.00000 −0.314756
\(647\) −3.50758 −0.137897 −0.0689486 0.997620i \(-0.521964\pi\)
−0.0689486 + 0.997620i \(0.521964\pi\)
\(648\) −17.0691 −0.670539
\(649\) −10.2462 −0.402199
\(650\) 0 0
\(651\) 0 0
\(652\) −0.492423 −0.0192848
\(653\) −49.2311 −1.92656 −0.963280 0.268499i \(-0.913473\pi\)
−0.963280 + 0.268499i \(0.913473\pi\)
\(654\) −70.7386 −2.76610
\(655\) 0 0
\(656\) 14.6307 0.571232
\(657\) −15.1231 −0.590009
\(658\) 5.75379 0.224306
\(659\) −36.1771 −1.40926 −0.704629 0.709575i \(-0.748887\pi\)
−0.704629 + 0.709575i \(0.748887\pi\)
\(660\) 0 0
\(661\) 3.12311 0.121475 0.0607374 0.998154i \(-0.480655\pi\)
0.0607374 + 0.998154i \(0.480655\pi\)
\(662\) −18.7386 −0.728298
\(663\) −53.3002 −2.07001
\(664\) −9.75379 −0.378520
\(665\) 0 0
\(666\) 33.3693 1.29303
\(667\) −29.1231 −1.12765
\(668\) −9.61553 −0.372036
\(669\) 16.8078 0.649826
\(670\) 0 0
\(671\) −24.0000 −0.926510
\(672\) 6.24621 0.240953
\(673\) 25.8617 0.996897 0.498448 0.866919i \(-0.333903\pi\)
0.498448 + 0.866919i \(0.333903\pi\)
\(674\) −53.8617 −2.07468
\(675\) 0 0
\(676\) 3.42329 0.131665
\(677\) 23.9309 0.919738 0.459869 0.887987i \(-0.347896\pi\)
0.459869 + 0.887987i \(0.347896\pi\)
\(678\) −56.0000 −2.15067
\(679\) 14.8078 0.568270
\(680\) 0 0
\(681\) −60.6695 −2.32486
\(682\) 0 0
\(683\) −42.7386 −1.63535 −0.817674 0.575681i \(-0.804737\pi\)
−0.817674 + 0.575681i \(0.804737\pi\)
\(684\) 1.75379 0.0670578
\(685\) 0 0
\(686\) −1.56155 −0.0596204
\(687\) 48.9848 1.86889
\(688\) 42.7386 1.62940
\(689\) 14.2462 0.542737
\(690\) 0 0
\(691\) 8.49242 0.323067 0.161533 0.986867i \(-0.448356\pi\)
0.161533 + 0.986867i \(0.448356\pi\)
\(692\) 3.75379 0.142698
\(693\) 9.12311 0.346558
\(694\) −1.75379 −0.0665729
\(695\) 0 0
\(696\) −35.5076 −1.34591
\(697\) −14.2462 −0.539614
\(698\) 35.1231 1.32943
\(699\) 8.00000 0.302588
\(700\) 0 0
\(701\) 0.0691303 0.00261102 0.00130551 0.999999i \(-0.499584\pi\)
0.00130551 + 0.999999i \(0.499584\pi\)
\(702\) 10.2462 0.386718
\(703\) −6.73863 −0.254152
\(704\) 14.2462 0.536924
\(705\) 0 0
\(706\) −23.1231 −0.870250
\(707\) 0.246211 0.00925973
\(708\) −4.49242 −0.168836
\(709\) −18.1771 −0.682655 −0.341327 0.939945i \(-0.610876\pi\)
−0.341327 + 0.939945i \(0.610876\pi\)
\(710\) 0 0
\(711\) −23.3693 −0.876418
\(712\) 17.3693 0.650943
\(713\) 0 0
\(714\) −18.2462 −0.682847
\(715\) 0 0
\(716\) 8.76894 0.327711
\(717\) −2.06913 −0.0772731
\(718\) −12.4924 −0.466213
\(719\) 49.6155 1.85035 0.925173 0.379544i \(-0.123919\pi\)
0.925173 + 0.379544i \(0.123919\pi\)
\(720\) 0 0
\(721\) −1.43845 −0.0535706
\(722\) 27.6998 1.03088
\(723\) 31.3693 1.16664
\(724\) 10.3542 0.384809
\(725\) 0 0
\(726\) 17.7538 0.658905
\(727\) −19.5076 −0.723496 −0.361748 0.932276i \(-0.617820\pi\)
−0.361748 + 0.932276i \(0.617820\pi\)
\(728\) −11.1231 −0.412250
\(729\) −35.9848 −1.33277
\(730\) 0 0
\(731\) −41.6155 −1.53921
\(732\) −10.5227 −0.388931
\(733\) 5.68466 0.209968 0.104984 0.994474i \(-0.466521\pi\)
0.104984 + 0.994474i \(0.466521\pi\)
\(734\) 5.75379 0.212376
\(735\) 0 0
\(736\) 12.4924 0.460477
\(737\) 16.0000 0.589368
\(738\) 17.3693 0.639373
\(739\) 6.06913 0.223257 0.111628 0.993750i \(-0.464393\pi\)
0.111628 + 0.993750i \(0.464393\pi\)
\(740\) 0 0
\(741\) −13.1231 −0.482089
\(742\) 4.87689 0.179036
\(743\) −32.9848 −1.21010 −0.605048 0.796189i \(-0.706846\pi\)
−0.605048 + 0.796189i \(0.706846\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 45.8617 1.67912
\(747\) −14.2462 −0.521242
\(748\) 5.12311 0.187319
\(749\) 11.3693 0.415426
\(750\) 0 0
\(751\) 45.9309 1.67604 0.838021 0.545639i \(-0.183713\pi\)
0.838021 + 0.545639i \(0.183713\pi\)
\(752\) 17.2614 0.629457
\(753\) −43.8617 −1.59841
\(754\) −40.4924 −1.47465
\(755\) 0 0
\(756\) 0.630683 0.0229377
\(757\) −14.6307 −0.531761 −0.265881 0.964006i \(-0.585663\pi\)
−0.265881 + 0.964006i \(0.585663\pi\)
\(758\) −25.7538 −0.935420
\(759\) 33.6155 1.22017
\(760\) 0 0
\(761\) 31.7538 1.15107 0.575537 0.817776i \(-0.304793\pi\)
0.575537 + 0.817776i \(0.304793\pi\)
\(762\) 40.9848 1.48472
\(763\) 17.6847 0.640228
\(764\) −4.13826 −0.149717
\(765\) 0 0
\(766\) −16.0000 −0.578103
\(767\) 18.2462 0.658833
\(768\) 25.7538 0.929310
\(769\) −9.50758 −0.342852 −0.171426 0.985197i \(-0.554837\pi\)
−0.171426 + 0.985197i \(0.554837\pi\)
\(770\) 0 0
\(771\) −57.6155 −2.07497
\(772\) 2.35416 0.0847281
\(773\) −8.06913 −0.290226 −0.145113 0.989415i \(-0.546355\pi\)
−0.145113 + 0.989415i \(0.546355\pi\)
\(774\) 50.7386 1.82376
\(775\) 0 0
\(776\) 36.1080 1.29620
\(777\) −15.3693 −0.551371
\(778\) −6.13826 −0.220067
\(779\) −3.50758 −0.125672
\(780\) 0 0
\(781\) 20.4924 0.733277
\(782\) −36.4924 −1.30497
\(783\) −8.17708 −0.292225
\(784\) −4.68466 −0.167309
\(785\) 0 0
\(786\) 36.4924 1.30164
\(787\) 3.82292 0.136272 0.0681362 0.997676i \(-0.478295\pi\)
0.0681362 + 0.997676i \(0.478295\pi\)
\(788\) 3.12311 0.111256
\(789\) 54.1080 1.92629
\(790\) 0 0
\(791\) 14.0000 0.497783
\(792\) 22.2462 0.790485
\(793\) 42.7386 1.51769
\(794\) 36.6004 1.29890
\(795\) 0 0
\(796\) −8.00000 −0.283552
\(797\) 13.0540 0.462396 0.231198 0.972907i \(-0.425736\pi\)
0.231198 + 0.972907i \(0.425736\pi\)
\(798\) −4.49242 −0.159030
\(799\) −16.8078 −0.594616
\(800\) 0 0
\(801\) 25.3693 0.896381
\(802\) −42.8466 −1.51297
\(803\) −10.8769 −0.383837
\(804\) 7.01515 0.247405
\(805\) 0 0
\(806\) 0 0
\(807\) 73.6155 2.59139
\(808\) 0.600373 0.0211211
\(809\) −53.5464 −1.88259 −0.941296 0.337584i \(-0.890390\pi\)
−0.941296 + 0.337584i \(0.890390\pi\)
\(810\) 0 0
\(811\) −21.6155 −0.759024 −0.379512 0.925187i \(-0.623908\pi\)
−0.379512 + 0.925187i \(0.623908\pi\)
\(812\) −2.49242 −0.0874669
\(813\) −40.9848 −1.43740
\(814\) 24.0000 0.841200
\(815\) 0 0
\(816\) −54.7386 −1.91624
\(817\) −10.2462 −0.358470
\(818\) 41.3693 1.44644
\(819\) −16.2462 −0.567689
\(820\) 0 0
\(821\) 40.4233 1.41078 0.705391 0.708818i \(-0.250771\pi\)
0.705391 + 0.708818i \(0.250771\pi\)
\(822\) −35.5076 −1.23847
\(823\) 3.50758 0.122266 0.0611332 0.998130i \(-0.480529\pi\)
0.0611332 + 0.998130i \(0.480529\pi\)
\(824\) −3.50758 −0.122192
\(825\) 0 0
\(826\) 6.24621 0.217333
\(827\) −19.3693 −0.673537 −0.336769 0.941587i \(-0.609334\pi\)
−0.336769 + 0.941587i \(0.609334\pi\)
\(828\) 8.00000 0.278019
\(829\) 43.1231 1.49773 0.748864 0.662724i \(-0.230600\pi\)
0.748864 + 0.662724i \(0.230600\pi\)
\(830\) 0 0
\(831\) −41.6155 −1.44363
\(832\) −25.3693 −0.879523
\(833\) 4.56155 0.158048
\(834\) 27.5076 0.952510
\(835\) 0 0
\(836\) 1.26137 0.0436253
\(837\) 0 0
\(838\) −15.2311 −0.526148
\(839\) −37.1231 −1.28163 −0.640816 0.767695i \(-0.721404\pi\)
−0.640816 + 0.767695i \(0.721404\pi\)
\(840\) 0 0
\(841\) 3.31534 0.114322
\(842\) −15.1231 −0.521177
\(843\) 42.4233 1.46114
\(844\) −10.1080 −0.347930
\(845\) 0 0
\(846\) 20.4924 0.704544
\(847\) −4.43845 −0.152507
\(848\) 14.6307 0.502420
\(849\) 60.6695 2.08217
\(850\) 0 0
\(851\) −30.7386 −1.05371
\(852\) 8.98485 0.307816
\(853\) 56.7386 1.94269 0.971347 0.237666i \(-0.0763824\pi\)
0.971347 + 0.237666i \(0.0763824\pi\)
\(854\) 14.6307 0.500652
\(855\) 0 0
\(856\) 27.7235 0.947569
\(857\) 32.2462 1.10151 0.550755 0.834667i \(-0.314340\pi\)
0.550755 + 0.834667i \(0.314340\pi\)
\(858\) 46.7386 1.59563
\(859\) 16.4924 0.562714 0.281357 0.959603i \(-0.409215\pi\)
0.281357 + 0.959603i \(0.409215\pi\)
\(860\) 0 0
\(861\) −8.00000 −0.272639
\(862\) −1.26137 −0.0429623
\(863\) 42.2462 1.43808 0.719039 0.694970i \(-0.244582\pi\)
0.719039 + 0.694970i \(0.244582\pi\)
\(864\) 3.50758 0.119330
\(865\) 0 0
\(866\) −12.8769 −0.437575
\(867\) 9.75379 0.331256
\(868\) 0 0
\(869\) −16.8078 −0.570164
\(870\) 0 0
\(871\) −28.4924 −0.965429
\(872\) 43.1231 1.46033
\(873\) 52.7386 1.78493
\(874\) −8.98485 −0.303917
\(875\) 0 0
\(876\) −4.76894 −0.161128
\(877\) 23.7538 0.802108 0.401054 0.916054i \(-0.368644\pi\)
0.401054 + 0.916054i \(0.368644\pi\)
\(878\) 24.0000 0.809961
\(879\) −24.8078 −0.836745
\(880\) 0 0
\(881\) 45.8617 1.54512 0.772561 0.634941i \(-0.218976\pi\)
0.772561 + 0.634941i \(0.218976\pi\)
\(882\) −5.56155 −0.187267
\(883\) −24.4924 −0.824236 −0.412118 0.911131i \(-0.635211\pi\)
−0.412118 + 0.911131i \(0.635211\pi\)
\(884\) −9.12311 −0.306843
\(885\) 0 0
\(886\) −42.7386 −1.43583
\(887\) 12.4924 0.419454 0.209727 0.977760i \(-0.432742\pi\)
0.209727 + 0.977760i \(0.432742\pi\)
\(888\) −37.4773 −1.25765
\(889\) −10.2462 −0.343647
\(890\) 0 0
\(891\) −17.9309 −0.600707
\(892\) 2.87689 0.0963255
\(893\) −4.13826 −0.138482
\(894\) 16.9848 0.568058
\(895\) 0 0
\(896\) −13.5616 −0.453060
\(897\) −59.8617 −1.99873
\(898\) −29.3693 −0.980067
\(899\) 0 0
\(900\) 0 0
\(901\) −14.2462 −0.474610
\(902\) 12.4924 0.415952
\(903\) −23.3693 −0.777682
\(904\) 34.1383 1.13542
\(905\) 0 0
\(906\) −87.7235 −2.91442
\(907\) −50.1080 −1.66381 −0.831904 0.554920i \(-0.812749\pi\)
−0.831904 + 0.554920i \(0.812749\pi\)
\(908\) −10.3845 −0.344621
\(909\) 0.876894 0.0290848
\(910\) 0 0
\(911\) 4.49242 0.148841 0.0744203 0.997227i \(-0.476289\pi\)
0.0744203 + 0.997227i \(0.476289\pi\)
\(912\) −13.4773 −0.446277
\(913\) −10.2462 −0.339100
\(914\) −13.8617 −0.458506
\(915\) 0 0
\(916\) 8.38447 0.277031
\(917\) −9.12311 −0.301271
\(918\) −10.2462 −0.338175
\(919\) −13.3002 −0.438733 −0.219366 0.975643i \(-0.570399\pi\)
−0.219366 + 0.975643i \(0.570399\pi\)
\(920\) 0 0
\(921\) 81.1619 2.67438
\(922\) 7.61553 0.250804
\(923\) −36.4924 −1.20116
\(924\) 2.87689 0.0946429
\(925\) 0 0
\(926\) −32.0000 −1.05159
\(927\) −5.12311 −0.168265
\(928\) −13.8617 −0.455034
\(929\) −52.1080 −1.70961 −0.854803 0.518952i \(-0.826322\pi\)
−0.854803 + 0.518952i \(0.826322\pi\)
\(930\) 0 0
\(931\) 1.12311 0.0368083
\(932\) 1.36932 0.0448535
\(933\) −24.6307 −0.806372
\(934\) 41.4773 1.35718
\(935\) 0 0
\(936\) −39.6155 −1.29487
\(937\) −22.6695 −0.740580 −0.370290 0.928916i \(-0.620742\pi\)
−0.370290 + 0.928916i \(0.620742\pi\)
\(938\) −9.75379 −0.318472
\(939\) −80.1771 −2.61648
\(940\) 0 0
\(941\) −13.8617 −0.451880 −0.225940 0.974141i \(-0.572545\pi\)
−0.225940 + 0.974141i \(0.572545\pi\)
\(942\) 15.0152 0.489220
\(943\) −16.0000 −0.521032
\(944\) 18.7386 0.609891
\(945\) 0 0
\(946\) 36.4924 1.18647
\(947\) −4.00000 −0.129983 −0.0649913 0.997886i \(-0.520702\pi\)
−0.0649913 + 0.997886i \(0.520702\pi\)
\(948\) −7.36932 −0.239344
\(949\) 19.3693 0.628755
\(950\) 0 0
\(951\) 57.6155 1.86831
\(952\) 11.1231 0.360502
\(953\) 24.8769 0.805842 0.402921 0.915235i \(-0.367995\pi\)
0.402921 + 0.915235i \(0.367995\pi\)
\(954\) 17.3693 0.562352
\(955\) 0 0
\(956\) −0.354162 −0.0114544
\(957\) −37.3002 −1.20574
\(958\) −20.4924 −0.662080
\(959\) 8.87689 0.286650
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) −42.7386 −1.37795
\(963\) 40.4924 1.30485
\(964\) 5.36932 0.172934
\(965\) 0 0
\(966\) −20.4924 −0.659333
\(967\) 26.8769 0.864303 0.432151 0.901801i \(-0.357755\pi\)
0.432151 + 0.901801i \(0.357755\pi\)
\(968\) −10.8229 −0.347862
\(969\) 13.1231 0.421575
\(970\) 0 0
\(971\) −49.4773 −1.58780 −0.793901 0.608048i \(-0.791953\pi\)
−0.793901 + 0.608048i \(0.791953\pi\)
\(972\) −9.75379 −0.312853
\(973\) −6.87689 −0.220463
\(974\) 8.00000 0.256337
\(975\) 0 0
\(976\) 43.8920 1.40495
\(977\) 49.2311 1.57504 0.787521 0.616288i \(-0.211364\pi\)
0.787521 + 0.616288i \(0.211364\pi\)
\(978\) 4.49242 0.143652
\(979\) 18.2462 0.583151
\(980\) 0 0
\(981\) 62.9848 2.01095
\(982\) −6.52273 −0.208149
\(983\) 10.4233 0.332451 0.166226 0.986088i \(-0.446842\pi\)
0.166226 + 0.986088i \(0.446842\pi\)
\(984\) −19.5076 −0.621879
\(985\) 0 0
\(986\) 40.4924 1.28954
\(987\) −9.43845 −0.300429
\(988\) −2.24621 −0.0714615
\(989\) −46.7386 −1.48620
\(990\) 0 0
\(991\) −20.4924 −0.650963 −0.325482 0.945548i \(-0.605526\pi\)
−0.325482 + 0.945548i \(0.605526\pi\)
\(992\) 0 0
\(993\) 30.7386 0.975461
\(994\) −12.4924 −0.396236
\(995\) 0 0
\(996\) −4.49242 −0.142348
\(997\) −9.68466 −0.306716 −0.153358 0.988171i \(-0.549009\pi\)
−0.153358 + 0.988171i \(0.549009\pi\)
\(998\) 6.52273 0.206473
\(999\) −8.63068 −0.273063
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.2.a.f.1.1 2
3.2 odd 2 1575.2.a.p.1.2 2
4.3 odd 2 2800.2.a.bi.1.1 2
5.2 odd 4 175.2.b.b.99.2 4
5.3 odd 4 175.2.b.b.99.3 4
5.4 even 2 35.2.a.b.1.2 2
7.6 odd 2 1225.2.a.s.1.1 2
15.2 even 4 1575.2.d.e.1324.3 4
15.8 even 4 1575.2.d.e.1324.2 4
15.14 odd 2 315.2.a.e.1.1 2
20.3 even 4 2800.2.g.t.449.1 4
20.7 even 4 2800.2.g.t.449.4 4
20.19 odd 2 560.2.a.i.1.2 2
35.4 even 6 245.2.e.i.226.1 4
35.9 even 6 245.2.e.i.116.1 4
35.13 even 4 1225.2.b.f.99.3 4
35.19 odd 6 245.2.e.h.116.1 4
35.24 odd 6 245.2.e.h.226.1 4
35.27 even 4 1225.2.b.f.99.2 4
35.34 odd 2 245.2.a.d.1.2 2
40.19 odd 2 2240.2.a.bd.1.1 2
40.29 even 2 2240.2.a.bh.1.2 2
55.54 odd 2 4235.2.a.m.1.1 2
60.59 even 2 5040.2.a.bt.1.2 2
65.64 even 2 5915.2.a.l.1.1 2
105.104 even 2 2205.2.a.x.1.1 2
140.139 even 2 3920.2.a.bs.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.2.a.b.1.2 2 5.4 even 2
175.2.a.f.1.1 2 1.1 even 1 trivial
175.2.b.b.99.2 4 5.2 odd 4
175.2.b.b.99.3 4 5.3 odd 4
245.2.a.d.1.2 2 35.34 odd 2
245.2.e.h.116.1 4 35.19 odd 6
245.2.e.h.226.1 4 35.24 odd 6
245.2.e.i.116.1 4 35.9 even 6
245.2.e.i.226.1 4 35.4 even 6
315.2.a.e.1.1 2 15.14 odd 2
560.2.a.i.1.2 2 20.19 odd 2
1225.2.a.s.1.1 2 7.6 odd 2
1225.2.b.f.99.2 4 35.27 even 4
1225.2.b.f.99.3 4 35.13 even 4
1575.2.a.p.1.2 2 3.2 odd 2
1575.2.d.e.1324.2 4 15.8 even 4
1575.2.d.e.1324.3 4 15.2 even 4
2205.2.a.x.1.1 2 105.104 even 2
2240.2.a.bd.1.1 2 40.19 odd 2
2240.2.a.bh.1.2 2 40.29 even 2
2800.2.a.bi.1.1 2 4.3 odd 2
2800.2.g.t.449.1 4 20.3 even 4
2800.2.g.t.449.4 4 20.7 even 4
3920.2.a.bs.1.1 2 140.139 even 2
4235.2.a.m.1.1 2 55.54 odd 2
5040.2.a.bt.1.2 2 60.59 even 2
5915.2.a.l.1.1 2 65.64 even 2