Properties

Label 175.10.b.f
Level $175$
Weight $10$
Character orbit 175.b
Analytic conductor $90.131$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,10,Mod(99,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.99");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 175.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(90.1312713287\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2 x^{9} + 2 x^{8} - 2016 x^{7} + 425617 x^{6} - 2170178 x^{5} + 5521250 x^{4} + \cdots + 231472080000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{9}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{9}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{4} q^{2} + (\beta_{2} - 28 \beta_1) q^{3} + ( - \beta_{6} + 4 \beta_{3} - 168) q^{4} + ( - 10 \beta_{7} + 6 \beta_{6} + \cdots - 46) q^{6} + 2401 \beta_1 q^{7} + ( - 2 \beta_{9} + 6 \beta_{8} + \cdots + 2816 \beta_1) q^{8}+ \cdots + (2419650 \beta_{7} - 1892584 \beta_{6} + \cdots - 142690124) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 1664 q^{4} - 288 q^{6} - 135594 q^{9} + 20624 q^{11} - 9604 q^{14} - 1053392 q^{16} - 3310752 q^{19} + 672280 q^{21} - 13009152 q^{24} + 20438120 q^{26} + 6707452 q^{29} + 5356240 q^{31} - 43097224 q^{34}+ \cdots - 1396625336 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{10} - 2 x^{9} + 2 x^{8} - 2016 x^{7} + 425617 x^{6} - 2170178 x^{5} + 5521250 x^{4} + \cdots + 231472080000 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 26\!\cdots\!89 \nu^{9} + \cdots - 13\!\cdots\!00 ) / 13\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 33\!\cdots\!88 \nu^{9} + \cdots - 36\!\cdots\!00 ) / 12\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 43\!\cdots\!67 \nu^{9} + \cdots + 43\!\cdots\!00 ) / 96\!\cdots\!56 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 43\!\cdots\!67 \nu^{9} + \cdots + 43\!\cdots\!00 ) / 96\!\cdots\!56 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 48\!\cdots\!79 \nu^{9} + \cdots - 52\!\cdots\!96 ) / 25\!\cdots\!52 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 52\!\cdots\!91 \nu^{9} + \cdots - 15\!\cdots\!20 ) / 24\!\cdots\!64 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 16\!\cdots\!49 \nu^{9} + \cdots + 86\!\cdots\!44 ) / 25\!\cdots\!52 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 89\!\cdots\!81 \nu^{9} + \cdots + 43\!\cdots\!00 ) / 68\!\cdots\!40 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 52\!\cdots\!83 \nu^{9} + \cdots + 25\!\cdots\!00 ) / 12\!\cdots\!00 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{4} + \beta_{3} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{8} + 4\beta_{4} + 680\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{9} - 3 \beta_{8} + 22 \beta_{7} + 3 \beta_{6} - \beta_{5} - 499 \beta_{4} - 499 \beta_{3} + \cdots + 1408 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -76\beta_{7} - 667\beta_{6} + 52\beta_{5} + 4108\beta_{3} - 338892 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( - 795 \beta_{9} + 3729 \beta_{8} + 18558 \beta_{7} + 3729 \beta_{6} - 795 \beta_{5} + 280069 \beta_{4} + \cdots + 1434684 ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 46164\beta_{9} - 422725\beta_{8} - 3506644\beta_{4} - 108876\beta_{2} - 190186556\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( - 577765 \beta_{9} + 3195135 \beta_{8} - 12541018 \beta_{7} - 3195135 \beta_{6} + 577765 \beta_{5} + \cdots - 1216877884 ) / 2 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( 109929220\beta_{7} + 266138563\beta_{6} - 32627836\beta_{5} - 2735984620\beta_{3} + 113575944372 ) / 2 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( 408695619 \beta_{9} - 2453336073 \beta_{8} - 7980884838 \beta_{7} - 2453336073 \beta_{6} + \cdots - 945309969492 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
99.1
−18.2310 18.2310i
16.2707 16.2707i
11.3831 11.3831i
−10.7631 10.7631i
2.34024 2.34024i
2.34024 + 2.34024i
−10.7631 + 10.7631i
11.3831 + 11.3831i
16.2707 + 16.2707i
−18.2310 + 18.2310i
36.4619i 68.7273i −817.473 0 2505.93 2401.00i 11138.1i 14959.6 0
99.2 32.5415i 234.084i −546.947 0 7617.44 2401.00i 1137.23i −35112.4 0
99.3 22.7661i 239.496i −6.29742 0 −5452.41 2401.00i 11512.9i −37675.5 0
99.4 21.5262i 221.976i 48.6242 0 −4778.29 2401.00i 12068.1i −29590.3 0
99.5 4.68049i 7.83652i 490.093 0 −36.6787 2401.00i 4690.29i 19621.6 0
99.6 4.68049i 7.83652i 490.093 0 −36.6787 2401.00i 4690.29i 19621.6 0
99.7 21.5262i 221.976i 48.6242 0 −4778.29 2401.00i 12068.1i −29590.3 0
99.8 22.7661i 239.496i −6.29742 0 −5452.41 2401.00i 11512.9i −37675.5 0
99.9 32.5415i 234.084i −546.947 0 7617.44 2401.00i 1137.23i −35112.4 0
99.10 36.4619i 68.7273i −817.473 0 2505.93 2401.00i 11138.1i 14959.6 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 99.10
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 175.10.b.f 10
5.b even 2 1 inner 175.10.b.f 10
5.c odd 4 1 35.10.a.d 5
5.c odd 4 1 175.10.a.f 5
15.e even 4 1 315.10.a.j 5
35.f even 4 1 245.10.a.f 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.10.a.d 5 5.c odd 4 1
175.10.a.f 5 5.c odd 4 1
175.10.b.f 10 1.a even 1 1 trivial
175.10.b.f 10 5.b even 2 1 inner
245.10.a.f 5 35.f even 4 1
315.10.a.j 5 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{10} + 3392T_{2}^{8} + 4066484T_{2}^{6} + 2043125392T_{2}^{4} + 380958829056T_{2}^{2} + 7407106560000 \) acting on \(S_{10}^{\mathrm{new}}(175, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{10} + \cdots + 7407106560000 \) Copy content Toggle raw display
$3$ \( T^{10} + \cdots + 44\!\cdots\!96 \) Copy content Toggle raw display
$5$ \( T^{10} \) Copy content Toggle raw display
$7$ \( (T^{2} + 5764801)^{5} \) Copy content Toggle raw display
$11$ \( (T^{5} + \cdots - 27\!\cdots\!08)^{2} \) Copy content Toggle raw display
$13$ \( T^{10} + \cdots + 18\!\cdots\!00 \) Copy content Toggle raw display
$17$ \( T^{10} + \cdots + 59\!\cdots\!56 \) Copy content Toggle raw display
$19$ \( (T^{5} + \cdots - 10\!\cdots\!00)^{2} \) Copy content Toggle raw display
$23$ \( T^{10} + \cdots + 76\!\cdots\!36 \) Copy content Toggle raw display
$29$ \( (T^{5} + \cdots + 10\!\cdots\!50)^{2} \) Copy content Toggle raw display
$31$ \( (T^{5} + \cdots + 97\!\cdots\!00)^{2} \) Copy content Toggle raw display
$37$ \( T^{10} + \cdots + 21\!\cdots\!64 \) Copy content Toggle raw display
$41$ \( (T^{5} + \cdots - 20\!\cdots\!68)^{2} \) Copy content Toggle raw display
$43$ \( T^{10} + \cdots + 52\!\cdots\!00 \) Copy content Toggle raw display
$47$ \( T^{10} + \cdots + 71\!\cdots\!84 \) Copy content Toggle raw display
$53$ \( T^{10} + \cdots + 13\!\cdots\!84 \) Copy content Toggle raw display
$59$ \( (T^{5} + \cdots - 14\!\cdots\!00)^{2} \) Copy content Toggle raw display
$61$ \( (T^{5} + \cdots - 43\!\cdots\!12)^{2} \) Copy content Toggle raw display
$67$ \( T^{10} + \cdots + 10\!\cdots\!96 \) Copy content Toggle raw display
$71$ \( (T^{5} + \cdots + 60\!\cdots\!00)^{2} \) Copy content Toggle raw display
$73$ \( T^{10} + \cdots + 17\!\cdots\!76 \) Copy content Toggle raw display
$79$ \( (T^{5} + \cdots - 61\!\cdots\!00)^{2} \) Copy content Toggle raw display
$83$ \( T^{10} + \cdots + 12\!\cdots\!84 \) Copy content Toggle raw display
$89$ \( (T^{5} + \cdots + 14\!\cdots\!00)^{2} \) Copy content Toggle raw display
$97$ \( T^{10} + \cdots + 28\!\cdots\!36 \) Copy content Toggle raw display
show more
show less