Properties

Label 175.10.b.e.99.5
Level $175$
Weight $10$
Character 175.99
Analytic conductor $90.131$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [175,10,Mod(99,175)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("175.99"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(175, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 175.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-3458] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(90.1312713287\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1297x^{6} + 417140x^{4} + 37202308x^{2} + 69022864 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{4}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 99.5
Root \(-29.3917i\) of defining polynomial
Character \(\chi\) \(=\) 175.99
Dual form 175.10.b.e.99.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+15.4436i q^{2} -137.736i q^{3} +273.496 q^{4} +2127.13 q^{6} -2401.00i q^{7} +12130.9i q^{8} +711.820 q^{9} -8060.89 q^{11} -37670.3i q^{12} +137129. i q^{13} +37080.0 q^{14} -47313.7 q^{16} -23676.1i q^{17} +10993.0i q^{18} -572389. q^{19} -330704. q^{21} -124489. i q^{22} +997700. i q^{23} +1.67086e6 q^{24} -2.11777e6 q^{26} -2.80910e6i q^{27} -656664. i q^{28} -1.97927e6 q^{29} -8.47740e6 q^{31} +5.48031e6i q^{32} +1.11027e6i q^{33} +365643. q^{34} +194680. q^{36} -4.33062e6i q^{37} -8.83972e6i q^{38} +1.88876e7 q^{39} -1.48554e7 q^{41} -5.10725e6i q^{42} -3.14842e7i q^{43} -2.20462e6 q^{44} -1.54081e7 q^{46} +2.31045e7i q^{47} +6.51680e6i q^{48} -5.76480e6 q^{49} -3.26104e6 q^{51} +3.75044e7i q^{52} +6.79444e6i q^{53} +4.33825e7 q^{54} +2.91262e7 q^{56} +7.88385e7i q^{57} -3.05671e7i q^{58} -8.85117e7 q^{59} +1.24823e8 q^{61} -1.30921e8i q^{62} -1.70908e6i q^{63} -1.08860e8 q^{64} -1.71466e7 q^{66} +9.58712e7i q^{67} -6.47531e6i q^{68} +1.37419e8 q^{69} -2.16795e8 q^{71} +8.63500e6i q^{72} +1.50701e8i q^{73} +6.68803e7 q^{74} -1.56546e8 q^{76} +1.93542e7i q^{77} +2.91693e8i q^{78} +3.89487e8 q^{79} -3.72903e8 q^{81} -2.29420e8i q^{82} +7.43467e8i q^{83} -9.04463e7 q^{84} +4.86228e8 q^{86} +2.72617e8i q^{87} -9.77855e7i q^{88} -2.64429e8 q^{89} +3.29248e8 q^{91} +2.72867e8i q^{92} +1.16764e9i q^{93} -3.56816e8 q^{94} +7.54835e8 q^{96} +1.39343e9i q^{97} -8.90291e7i q^{98} -5.73790e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 3458 q^{4} - 288 q^{6} - 10764 q^{9} + 164876 q^{11} - 91238 q^{14} + 128514 q^{16} - 601464 q^{19} + 86436 q^{21} + 15272640 q^{24} + 2611332 q^{26} + 2744044 q^{29} - 9181776 q^{31} + 14398956 q^{34}+ \cdots - 2444739048 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 15.4436i 0.682516i 0.939970 + 0.341258i \(0.110853\pi\)
−0.939970 + 0.341258i \(0.889147\pi\)
\(3\) − 137.736i − 0.981751i −0.871230 0.490876i \(-0.836677\pi\)
0.871230 0.490876i \(-0.163323\pi\)
\(4\) 273.496 0.534172
\(5\) 0 0
\(6\) 2127.13 0.670061
\(7\) − 2401.00i − 0.377964i
\(8\) 12130.9i 1.04710i
\(9\) 711.820 0.0361642
\(10\) 0 0
\(11\) −8060.89 −0.166003 −0.0830015 0.996549i \(-0.526451\pi\)
−0.0830015 + 0.996549i \(0.526451\pi\)
\(12\) − 37670.3i − 0.524424i
\(13\) 137129.i 1.33164i 0.746114 + 0.665818i \(0.231917\pi\)
−0.746114 + 0.665818i \(0.768083\pi\)
\(14\) 37080.0 0.257967
\(15\) 0 0
\(16\) −47313.7 −0.180488
\(17\) − 23676.1i − 0.0687526i −0.999409 0.0343763i \(-0.989056\pi\)
0.999409 0.0343763i \(-0.0109445\pi\)
\(18\) 10993.0i 0.0246826i
\(19\) −572389. −1.00763 −0.503814 0.863812i \(-0.668070\pi\)
−0.503814 + 0.863812i \(0.668070\pi\)
\(20\) 0 0
\(21\) −330704. −0.371067
\(22\) − 124489.i − 0.113300i
\(23\) 997700.i 0.743404i 0.928352 + 0.371702i \(0.121226\pi\)
−0.928352 + 0.371702i \(0.878774\pi\)
\(24\) 1.67086e6 1.02799
\(25\) 0 0
\(26\) −2.11777e6 −0.908862
\(27\) − 2.80910e6i − 1.01726i
\(28\) − 656664.i − 0.201898i
\(29\) −1.97927e6 −0.519655 −0.259827 0.965655i \(-0.583666\pi\)
−0.259827 + 0.965655i \(0.583666\pi\)
\(30\) 0 0
\(31\) −8.47740e6 −1.64867 −0.824337 0.566099i \(-0.808452\pi\)
−0.824337 + 0.566099i \(0.808452\pi\)
\(32\) 5.48031e6i 0.923911i
\(33\) 1.11027e6i 0.162974i
\(34\) 365643. 0.0469247
\(35\) 0 0
\(36\) 194680. 0.0193179
\(37\) − 4.33062e6i − 0.379877i −0.981796 0.189938i \(-0.939171\pi\)
0.981796 0.189938i \(-0.0608288\pi\)
\(38\) − 8.83972e6i − 0.687721i
\(39\) 1.88876e7 1.30734
\(40\) 0 0
\(41\) −1.48554e7 −0.821024 −0.410512 0.911855i \(-0.634650\pi\)
−0.410512 + 0.911855i \(0.634650\pi\)
\(42\) − 5.10725e6i − 0.253259i
\(43\) − 3.14842e7i − 1.40438i −0.711991 0.702189i \(-0.752206\pi\)
0.711991 0.702189i \(-0.247794\pi\)
\(44\) −2.20462e6 −0.0886742
\(45\) 0 0
\(46\) −1.54081e7 −0.507385
\(47\) 2.31045e7i 0.690647i 0.938484 + 0.345324i \(0.112231\pi\)
−0.938484 + 0.345324i \(0.887769\pi\)
\(48\) 6.51680e6i 0.177194i
\(49\) −5.76480e6 −0.142857
\(50\) 0 0
\(51\) −3.26104e6 −0.0674980
\(52\) 3.75044e7i 0.711323i
\(53\) 6.79444e6i 0.118280i 0.998250 + 0.0591401i \(0.0188359\pi\)
−0.998250 + 0.0591401i \(0.981164\pi\)
\(54\) 4.33825e7 0.694293
\(55\) 0 0
\(56\) 2.91262e7 0.395765
\(57\) 7.88385e7i 0.989239i
\(58\) − 3.05671e7i − 0.354673i
\(59\) −8.85117e7 −0.950969 −0.475485 0.879724i \(-0.657727\pi\)
−0.475485 + 0.879724i \(0.657727\pi\)
\(60\) 0 0
\(61\) 1.24823e8 1.15428 0.577138 0.816647i \(-0.304169\pi\)
0.577138 + 0.816647i \(0.304169\pi\)
\(62\) − 1.30921e8i − 1.12525i
\(63\) − 1.70908e6i − 0.0136688i
\(64\) −1.08860e8 −0.811071
\(65\) 0 0
\(66\) −1.71466e7 −0.111232
\(67\) 9.58712e7i 0.581235i 0.956839 + 0.290617i \(0.0938606\pi\)
−0.956839 + 0.290617i \(0.906139\pi\)
\(68\) − 6.47531e6i − 0.0367257i
\(69\) 1.37419e8 0.729838
\(70\) 0 0
\(71\) −2.16795e8 −1.01248 −0.506241 0.862392i \(-0.668965\pi\)
−0.506241 + 0.862392i \(0.668965\pi\)
\(72\) 8.63500e6i 0.0378674i
\(73\) 1.50701e8i 0.621101i 0.950557 + 0.310551i \(0.100513\pi\)
−0.950557 + 0.310551i \(0.899487\pi\)
\(74\) 6.68803e7 0.259272
\(75\) 0 0
\(76\) −1.56546e8 −0.538247
\(77\) 1.93542e7i 0.0627432i
\(78\) 2.91693e8i 0.892277i
\(79\) 3.89487e8 1.12505 0.562523 0.826781i \(-0.309831\pi\)
0.562523 + 0.826781i \(0.309831\pi\)
\(80\) 0 0
\(81\) −3.72903e8 −0.962528
\(82\) − 2.29420e8i − 0.560362i
\(83\) 7.43467e8i 1.71953i 0.510688 + 0.859766i \(0.329391\pi\)
−0.510688 + 0.859766i \(0.670609\pi\)
\(84\) −9.04463e7 −0.198214
\(85\) 0 0
\(86\) 4.86228e8 0.958510
\(87\) 2.72617e8i 0.510172i
\(88\) − 9.77855e7i − 0.173821i
\(89\) −2.64429e8 −0.446739 −0.223369 0.974734i \(-0.571706\pi\)
−0.223369 + 0.974734i \(0.571706\pi\)
\(90\) 0 0
\(91\) 3.29248e8 0.503311
\(92\) 2.72867e8i 0.397106i
\(93\) 1.16764e9i 1.61859i
\(94\) −3.56816e8 −0.471378
\(95\) 0 0
\(96\) 7.54835e8 0.907051
\(97\) 1.39343e9i 1.59813i 0.601248 + 0.799063i \(0.294671\pi\)
−0.601248 + 0.799063i \(0.705329\pi\)
\(98\) − 8.90291e7i − 0.0975022i
\(99\) −5.73790e6 −0.00600337
\(100\) 0 0
\(101\) −6.43863e8 −0.615669 −0.307834 0.951440i \(-0.599604\pi\)
−0.307834 + 0.951440i \(0.599604\pi\)
\(102\) − 5.03621e7i − 0.0460684i
\(103\) 9.64216e8i 0.844125i 0.906567 + 0.422063i \(0.138694\pi\)
−0.906567 + 0.422063i \(0.861306\pi\)
\(104\) −1.66350e9 −1.39435
\(105\) 0 0
\(106\) −1.04930e8 −0.0807281
\(107\) − 1.97477e9i − 1.45643i −0.685348 0.728215i \(-0.740350\pi\)
0.685348 0.728215i \(-0.259650\pi\)
\(108\) − 7.68278e8i − 0.543390i
\(109\) −1.03957e9 −0.705401 −0.352701 0.935736i \(-0.614737\pi\)
−0.352701 + 0.935736i \(0.614737\pi\)
\(110\) 0 0
\(111\) −5.96482e8 −0.372944
\(112\) 1.13600e8i 0.0682179i
\(113\) − 5.48265e8i − 0.316328i −0.987413 0.158164i \(-0.949443\pi\)
0.987413 0.158164i \(-0.0505574\pi\)
\(114\) −1.21755e9 −0.675171
\(115\) 0 0
\(116\) −5.41324e8 −0.277585
\(117\) 9.76115e7i 0.0481576i
\(118\) − 1.36694e9i − 0.649052i
\(119\) −5.68462e7 −0.0259860
\(120\) 0 0
\(121\) −2.29297e9 −0.972443
\(122\) 1.92771e9i 0.787811i
\(123\) 2.04612e9i 0.806042i
\(124\) −2.31854e9 −0.880676
\(125\) 0 0
\(126\) 2.63943e7 0.00932916
\(127\) − 5.40565e9i − 1.84387i −0.387341 0.921936i \(-0.626606\pi\)
0.387341 0.921936i \(-0.373394\pi\)
\(128\) 1.12473e9i 0.370342i
\(129\) −4.33650e9 −1.37875
\(130\) 0 0
\(131\) −1.81287e9 −0.537832 −0.268916 0.963164i \(-0.586665\pi\)
−0.268916 + 0.963164i \(0.586665\pi\)
\(132\) 3.03656e8i 0.0870560i
\(133\) 1.37431e9i 0.380847i
\(134\) −1.48059e9 −0.396702
\(135\) 0 0
\(136\) 2.87211e8 0.0719906
\(137\) − 7.50191e8i − 0.181940i −0.995854 0.0909702i \(-0.971003\pi\)
0.995854 0.0909702i \(-0.0289968\pi\)
\(138\) 2.12224e9i 0.498126i
\(139\) −6.59090e9 −1.49754 −0.748769 0.662831i \(-0.769355\pi\)
−0.748769 + 0.662831i \(0.769355\pi\)
\(140\) 0 0
\(141\) 3.18232e9 0.678044
\(142\) − 3.34809e9i − 0.691035i
\(143\) − 1.10538e9i − 0.221055i
\(144\) −3.36789e7 −0.00652719
\(145\) 0 0
\(146\) −2.32736e9 −0.423911
\(147\) 7.94020e8i 0.140250i
\(148\) − 1.18441e9i − 0.202920i
\(149\) 3.29437e9 0.547564 0.273782 0.961792i \(-0.411725\pi\)
0.273782 + 0.961792i \(0.411725\pi\)
\(150\) 0 0
\(151\) −1.04401e10 −1.63421 −0.817103 0.576492i \(-0.804421\pi\)
−0.817103 + 0.576492i \(0.804421\pi\)
\(152\) − 6.94357e9i − 1.05508i
\(153\) − 1.68531e7i − 0.00248638i
\(154\) −2.98898e8 −0.0428232
\(155\) 0 0
\(156\) 5.16570e9 0.698342
\(157\) − 4.88247e9i − 0.641344i −0.947190 0.320672i \(-0.896091\pi\)
0.947190 0.320672i \(-0.103909\pi\)
\(158\) 6.01506e9i 0.767862i
\(159\) 9.35838e8 0.116122
\(160\) 0 0
\(161\) 2.39548e9 0.280980
\(162\) − 5.75895e9i − 0.656940i
\(163\) 1.00685e10i 1.11717i 0.829448 + 0.558584i \(0.188655\pi\)
−0.829448 + 0.558584i \(0.811345\pi\)
\(164\) −4.06289e9 −0.438568
\(165\) 0 0
\(166\) −1.14818e10 −1.17361
\(167\) 1.11826e10i 1.11255i 0.831000 + 0.556273i \(0.187769\pi\)
−0.831000 + 0.556273i \(0.812231\pi\)
\(168\) − 4.01172e9i − 0.388543i
\(169\) −8.19997e9 −0.773254
\(170\) 0 0
\(171\) −4.07438e8 −0.0364400
\(172\) − 8.61080e9i − 0.750180i
\(173\) 1.55595e10i 1.32065i 0.750980 + 0.660325i \(0.229582\pi\)
−0.750980 + 0.660325i \(0.770418\pi\)
\(174\) −4.21018e9 −0.348200
\(175\) 0 0
\(176\) 3.81391e8 0.0299615
\(177\) 1.21912e10i 0.933616i
\(178\) − 4.08372e9i − 0.304906i
\(179\) 1.14811e10 0.835884 0.417942 0.908474i \(-0.362752\pi\)
0.417942 + 0.908474i \(0.362752\pi\)
\(180\) 0 0
\(181\) 1.64859e10 1.14172 0.570860 0.821047i \(-0.306610\pi\)
0.570860 + 0.821047i \(0.306610\pi\)
\(182\) 5.08476e9i 0.343518i
\(183\) − 1.71926e10i − 1.13321i
\(184\) −1.21030e10 −0.778416
\(185\) 0 0
\(186\) −1.80326e10 −1.10471
\(187\) 1.90850e8i 0.0114131i
\(188\) 6.31900e9i 0.368925i
\(189\) −6.74465e9 −0.384486
\(190\) 0 0
\(191\) 1.75186e10 0.952466 0.476233 0.879319i \(-0.342002\pi\)
0.476233 + 0.879319i \(0.342002\pi\)
\(192\) 1.49940e10i 0.796270i
\(193\) 2.51278e10i 1.30361i 0.758387 + 0.651805i \(0.225988\pi\)
−0.758387 + 0.651805i \(0.774012\pi\)
\(194\) −2.15195e10 −1.09075
\(195\) 0 0
\(196\) −1.57665e9 −0.0763103
\(197\) 3.28481e10i 1.55386i 0.629587 + 0.776930i \(0.283224\pi\)
−0.629587 + 0.776930i \(0.716776\pi\)
\(198\) − 8.86137e7i − 0.00409739i
\(199\) 3.56924e9 0.161338 0.0806691 0.996741i \(-0.474294\pi\)
0.0806691 + 0.996741i \(0.474294\pi\)
\(200\) 0 0
\(201\) 1.32049e10 0.570628
\(202\) − 9.94354e9i − 0.420204i
\(203\) 4.75224e9i 0.196411i
\(204\) −8.91883e8 −0.0360556
\(205\) 0 0
\(206\) −1.48909e10 −0.576129
\(207\) 7.10183e8i 0.0268846i
\(208\) − 6.48810e9i − 0.240344i
\(209\) 4.61396e9 0.167269
\(210\) 0 0
\(211\) −8.88255e9 −0.308508 −0.154254 0.988031i \(-0.549297\pi\)
−0.154254 + 0.988031i \(0.549297\pi\)
\(212\) 1.85825e9i 0.0631820i
\(213\) 2.98605e10i 0.994006i
\(214\) 3.04975e10 0.994037
\(215\) 0 0
\(216\) 3.40768e10 1.06517
\(217\) 2.03542e10i 0.623140i
\(218\) − 1.60547e10i − 0.481447i
\(219\) 2.07569e10 0.609767
\(220\) 0 0
\(221\) 3.24668e9 0.0915534
\(222\) − 9.21182e9i − 0.254540i
\(223\) − 1.85138e10i − 0.501330i −0.968074 0.250665i \(-0.919351\pi\)
0.968074 0.250665i \(-0.0806493\pi\)
\(224\) 1.31582e10 0.349206
\(225\) 0 0
\(226\) 8.46716e9 0.215899
\(227\) 6.91501e10i 1.72853i 0.503037 + 0.864265i \(0.332216\pi\)
−0.503037 + 0.864265i \(0.667784\pi\)
\(228\) 2.15620e10i 0.528424i
\(229\) 4.14990e10 0.997190 0.498595 0.866835i \(-0.333850\pi\)
0.498595 + 0.866835i \(0.333850\pi\)
\(230\) 0 0
\(231\) 2.66577e9 0.0615982
\(232\) − 2.40103e10i − 0.544129i
\(233\) − 1.06684e10i − 0.237136i −0.992946 0.118568i \(-0.962170\pi\)
0.992946 0.118568i \(-0.0378304\pi\)
\(234\) −1.50747e9 −0.0328683
\(235\) 0 0
\(236\) −2.42076e10 −0.507982
\(237\) − 5.36463e10i − 1.10452i
\(238\) − 8.77908e8i − 0.0177359i
\(239\) −6.89311e9 −0.136655 −0.0683274 0.997663i \(-0.521766\pi\)
−0.0683274 + 0.997663i \(0.521766\pi\)
\(240\) 0 0
\(241\) −2.72593e10 −0.520520 −0.260260 0.965539i \(-0.583808\pi\)
−0.260260 + 0.965539i \(0.583808\pi\)
\(242\) − 3.54116e10i − 0.663708i
\(243\) − 3.92936e9i − 0.0722925i
\(244\) 3.41386e10 0.616582
\(245\) 0 0
\(246\) −3.15993e10 −0.550136
\(247\) − 7.84913e10i − 1.34179i
\(248\) − 1.02838e11i − 1.72632i
\(249\) 1.02402e11 1.68815
\(250\) 0 0
\(251\) 1.11185e11 1.76812 0.884062 0.467370i \(-0.154798\pi\)
0.884062 + 0.467370i \(0.154798\pi\)
\(252\) − 4.67427e8i − 0.00730149i
\(253\) − 8.04235e9i − 0.123407i
\(254\) 8.34825e10 1.25847
\(255\) 0 0
\(256\) −7.31062e10 −1.06384
\(257\) − 3.84555e10i − 0.549869i −0.961463 0.274935i \(-0.911344\pi\)
0.961463 0.274935i \(-0.0886562\pi\)
\(258\) − 6.69710e10i − 0.941018i
\(259\) −1.03978e10 −0.143580
\(260\) 0 0
\(261\) −1.40889e9 −0.0187929
\(262\) − 2.79972e10i − 0.367079i
\(263\) − 1.50225e11i − 1.93616i −0.250634 0.968082i \(-0.580639\pi\)
0.250634 0.968082i \(-0.419361\pi\)
\(264\) −1.34686e10 −0.170649
\(265\) 0 0
\(266\) −2.12242e10 −0.259934
\(267\) 3.64213e10i 0.438587i
\(268\) 2.62204e10i 0.310479i
\(269\) −9.22583e10 −1.07429 −0.537143 0.843491i \(-0.680497\pi\)
−0.537143 + 0.843491i \(0.680497\pi\)
\(270\) 0 0
\(271\) −1.10392e11 −1.24330 −0.621649 0.783296i \(-0.713537\pi\)
−0.621649 + 0.783296i \(0.713537\pi\)
\(272\) 1.12020e9i 0.0124090i
\(273\) − 4.53492e10i − 0.494126i
\(274\) 1.15856e10 0.124177
\(275\) 0 0
\(276\) 3.75836e10 0.389859
\(277\) 1.06151e11i 1.08334i 0.840590 + 0.541672i \(0.182208\pi\)
−0.840590 + 0.541672i \(0.817792\pi\)
\(278\) − 1.01787e11i − 1.02209i
\(279\) −6.03438e9 −0.0596230
\(280\) 0 0
\(281\) 1.69943e11 1.62602 0.813008 0.582252i \(-0.197828\pi\)
0.813008 + 0.582252i \(0.197828\pi\)
\(282\) 4.91464e10i 0.462776i
\(283\) 6.63477e10i 0.614875i 0.951568 + 0.307438i \(0.0994716\pi\)
−0.951568 + 0.307438i \(0.900528\pi\)
\(284\) −5.92927e10 −0.540840
\(285\) 0 0
\(286\) 1.70711e10 0.150874
\(287\) 3.56677e10i 0.310318i
\(288\) 3.90100e9i 0.0334125i
\(289\) 1.18027e11 0.995273
\(290\) 0 0
\(291\) 1.91925e11 1.56896
\(292\) 4.12161e10i 0.331775i
\(293\) − 7.54377e9i − 0.0597976i −0.999553 0.0298988i \(-0.990481\pi\)
0.999553 0.0298988i \(-0.00951850\pi\)
\(294\) −1.22625e10 −0.0957230
\(295\) 0 0
\(296\) 5.25342e10 0.397768
\(297\) 2.26438e10i 0.168867i
\(298\) 5.08769e10i 0.373721i
\(299\) −1.36814e11 −0.989943
\(300\) 0 0
\(301\) −7.55935e10 −0.530805
\(302\) − 1.61232e11i − 1.11537i
\(303\) 8.86830e10i 0.604434i
\(304\) 2.70818e10 0.181864
\(305\) 0 0
\(306\) 2.60272e8 0.00169700
\(307\) − 9.90848e10i − 0.636626i −0.947986 0.318313i \(-0.896884\pi\)
0.947986 0.318313i \(-0.103116\pi\)
\(308\) 5.29330e9i 0.0335157i
\(309\) 1.32807e11 0.828721
\(310\) 0 0
\(311\) −2.78000e10 −0.168509 −0.0842545 0.996444i \(-0.526851\pi\)
−0.0842545 + 0.996444i \(0.526851\pi\)
\(312\) 2.29123e11i 1.36891i
\(313\) − 7.09223e10i − 0.417670i −0.977951 0.208835i \(-0.933033\pi\)
0.977951 0.208835i \(-0.0669672\pi\)
\(314\) 7.54027e10 0.437727
\(315\) 0 0
\(316\) 1.06523e11 0.600969
\(317\) − 3.11422e11i − 1.73214i −0.499926 0.866068i \(-0.666640\pi\)
0.499926 0.866068i \(-0.333360\pi\)
\(318\) 1.44527e10i 0.0792550i
\(319\) 1.59547e10 0.0862643
\(320\) 0 0
\(321\) −2.71997e11 −1.42985
\(322\) 3.69947e10i 0.191773i
\(323\) 1.35519e10i 0.0692770i
\(324\) −1.01988e11 −0.514156
\(325\) 0 0
\(326\) −1.55493e11 −0.762485
\(327\) 1.43187e11i 0.692529i
\(328\) − 1.80208e11i − 0.859692i
\(329\) 5.54739e10 0.261040
\(330\) 0 0
\(331\) 2.94782e11 1.34982 0.674908 0.737902i \(-0.264183\pi\)
0.674908 + 0.737902i \(0.264183\pi\)
\(332\) 2.03336e11i 0.918527i
\(333\) − 3.08263e9i − 0.0137379i
\(334\) −1.72699e11 −0.759330
\(335\) 0 0
\(336\) 1.56468e10 0.0669730
\(337\) − 2.02609e11i − 0.855705i −0.903849 0.427852i \(-0.859270\pi\)
0.903849 0.427852i \(-0.140730\pi\)
\(338\) − 1.26637e11i − 0.527758i
\(339\) −7.55158e10 −0.310555
\(340\) 0 0
\(341\) 6.83353e10 0.273685
\(342\) − 6.29229e9i − 0.0248709i
\(343\) 1.38413e10i 0.0539949i
\(344\) 3.81930e11 1.47052
\(345\) 0 0
\(346\) −2.40294e11 −0.901365
\(347\) − 1.52000e11i − 0.562810i −0.959589 0.281405i \(-0.909200\pi\)
0.959589 0.281405i \(-0.0908004\pi\)
\(348\) 7.45598e10i 0.272520i
\(349\) 2.82049e11 1.01768 0.508840 0.860861i \(-0.330075\pi\)
0.508840 + 0.860861i \(0.330075\pi\)
\(350\) 0 0
\(351\) 3.85210e11 1.35461
\(352\) − 4.41762e10i − 0.153372i
\(353\) 4.32937e11i 1.48402i 0.670391 + 0.742008i \(0.266126\pi\)
−0.670391 + 0.742008i \(0.733874\pi\)
\(354\) −1.88276e11 −0.637207
\(355\) 0 0
\(356\) −7.23203e10 −0.238636
\(357\) 7.82976e9i 0.0255118i
\(358\) 1.77310e11i 0.570504i
\(359\) −1.35500e10 −0.0430542 −0.0215271 0.999768i \(-0.506853\pi\)
−0.0215271 + 0.999768i \(0.506853\pi\)
\(360\) 0 0
\(361\) 4.94112e9 0.0153124
\(362\) 2.54601e11i 0.779242i
\(363\) 3.15824e11i 0.954697i
\(364\) 9.00480e10 0.268855
\(365\) 0 0
\(366\) 2.65515e11 0.773435
\(367\) − 1.26149e11i − 0.362984i −0.983392 0.181492i \(-0.941907\pi\)
0.983392 0.181492i \(-0.0580927\pi\)
\(368\) − 4.72049e10i − 0.134175i
\(369\) −1.05744e10 −0.0296917
\(370\) 0 0
\(371\) 1.63135e10 0.0447057
\(372\) 3.19346e11i 0.864605i
\(373\) 2.45212e11i 0.655923i 0.944691 + 0.327961i \(0.106362\pi\)
−0.944691 + 0.327961i \(0.893638\pi\)
\(374\) −2.94741e9 −0.00778964
\(375\) 0 0
\(376\) −2.80278e11 −0.723175
\(377\) − 2.71417e11i − 0.691991i
\(378\) − 1.04161e11i − 0.262418i
\(379\) −3.62591e11 −0.902694 −0.451347 0.892348i \(-0.649056\pi\)
−0.451347 + 0.892348i \(0.649056\pi\)
\(380\) 0 0
\(381\) −7.44552e11 −1.81022
\(382\) 2.70550e11i 0.650073i
\(383\) − 7.23039e10i − 0.171699i −0.996308 0.0858494i \(-0.972640\pi\)
0.996308 0.0858494i \(-0.0273604\pi\)
\(384\) 1.54916e11 0.363584
\(385\) 0 0
\(386\) −3.88064e11 −0.889734
\(387\) − 2.24111e10i − 0.0507882i
\(388\) 3.81097e11i 0.853674i
\(389\) −3.00609e11 −0.665624 −0.332812 0.942993i \(-0.607998\pi\)
−0.332812 + 0.942993i \(0.607998\pi\)
\(390\) 0 0
\(391\) 2.36216e10 0.0511110
\(392\) − 6.99320e10i − 0.149585i
\(393\) 2.49698e11i 0.528017i
\(394\) −5.07291e11 −1.06053
\(395\) 0 0
\(396\) −1.56930e9 −0.00320683
\(397\) − 2.86335e11i − 0.578518i −0.957251 0.289259i \(-0.906591\pi\)
0.957251 0.289259i \(-0.0934089\pi\)
\(398\) 5.51219e10i 0.110116i
\(399\) 1.89291e11 0.373897
\(400\) 0 0
\(401\) 8.19964e11 1.58360 0.791800 0.610781i \(-0.209144\pi\)
0.791800 + 0.610781i \(0.209144\pi\)
\(402\) 2.03931e11i 0.389462i
\(403\) − 1.16250e12i − 2.19543i
\(404\) −1.76094e11 −0.328873
\(405\) 0 0
\(406\) −7.33915e10 −0.134054
\(407\) 3.49087e10i 0.0630607i
\(408\) − 3.95593e10i − 0.0706769i
\(409\) −9.67528e11 −1.70966 −0.854828 0.518911i \(-0.826337\pi\)
−0.854828 + 0.518911i \(0.826337\pi\)
\(410\) 0 0
\(411\) −1.03328e11 −0.178620
\(412\) 2.63710e11i 0.450908i
\(413\) 2.12517e11i 0.359433i
\(414\) −1.09678e10 −0.0183492
\(415\) 0 0
\(416\) −7.51511e11 −1.23031
\(417\) 9.07803e11i 1.47021i
\(418\) 7.12560e10i 0.114164i
\(419\) 8.51357e10 0.134942 0.0674712 0.997721i \(-0.478507\pi\)
0.0674712 + 0.997721i \(0.478507\pi\)
\(420\) 0 0
\(421\) 5.61043e10 0.0870415 0.0435207 0.999053i \(-0.486143\pi\)
0.0435207 + 0.999053i \(0.486143\pi\)
\(422\) − 1.37178e11i − 0.210562i
\(423\) 1.64463e10i 0.0249767i
\(424\) −8.24224e10 −0.123851
\(425\) 0 0
\(426\) −4.61153e11 −0.678425
\(427\) − 2.99700e11i − 0.436275i
\(428\) − 5.40093e11i − 0.777985i
\(429\) −1.52251e11 −0.217022
\(430\) 0 0
\(431\) −1.36440e11 −0.190456 −0.0952278 0.995456i \(-0.530358\pi\)
−0.0952278 + 0.995456i \(0.530358\pi\)
\(432\) 1.32909e11i 0.183602i
\(433\) − 3.25710e11i − 0.445282i −0.974900 0.222641i \(-0.928532\pi\)
0.974900 0.222641i \(-0.0714678\pi\)
\(434\) −3.14342e11 −0.425303
\(435\) 0 0
\(436\) −2.84320e11 −0.376806
\(437\) − 5.71072e11i − 0.749074i
\(438\) 3.20560e11i 0.416175i
\(439\) −1.44336e11 −0.185474 −0.0927372 0.995691i \(-0.529562\pi\)
−0.0927372 + 0.995691i \(0.529562\pi\)
\(440\) 0 0
\(441\) −4.10350e9 −0.00516632
\(442\) 5.01404e10i 0.0624867i
\(443\) 9.59823e11i 1.18406i 0.805915 + 0.592031i \(0.201674\pi\)
−0.805915 + 0.592031i \(0.798326\pi\)
\(444\) −1.63136e11 −0.199217
\(445\) 0 0
\(446\) 2.85919e11 0.342166
\(447\) − 4.53754e11i − 0.537572i
\(448\) 2.61373e11i 0.306556i
\(449\) 1.02004e12 1.18443 0.592215 0.805780i \(-0.298253\pi\)
0.592215 + 0.805780i \(0.298253\pi\)
\(450\) 0 0
\(451\) 1.19747e11 0.136292
\(452\) − 1.49948e11i − 0.168974i
\(453\) 1.43797e12i 1.60438i
\(454\) −1.06792e12 −1.17975
\(455\) 0 0
\(456\) −9.56379e11 −1.03583
\(457\) − 6.45199e11i − 0.691944i −0.938245 0.345972i \(-0.887549\pi\)
0.938245 0.345972i \(-0.112451\pi\)
\(458\) 6.40892e11i 0.680598i
\(459\) −6.65084e10 −0.0699390
\(460\) 0 0
\(461\) 1.04575e12 1.07838 0.539192 0.842183i \(-0.318730\pi\)
0.539192 + 0.842183i \(0.318730\pi\)
\(462\) 4.11690e10i 0.0420418i
\(463\) − 6.01465e11i − 0.608269i −0.952629 0.304134i \(-0.901633\pi\)
0.952629 0.304134i \(-0.0983672\pi\)
\(464\) 9.36469e10 0.0937913
\(465\) 0 0
\(466\) 1.64758e11 0.161849
\(467\) 9.53000e11i 0.927186i 0.886048 + 0.463593i \(0.153440\pi\)
−0.886048 + 0.463593i \(0.846560\pi\)
\(468\) 2.66964e10i 0.0257244i
\(469\) 2.30187e11 0.219686
\(470\) 0 0
\(471\) −6.72491e11 −0.629640
\(472\) − 1.07372e12i − 0.995757i
\(473\) 2.53790e11i 0.233131i
\(474\) 8.28490e11 0.753850
\(475\) 0 0
\(476\) −1.55472e10 −0.0138810
\(477\) 4.83642e9i 0.00427751i
\(478\) − 1.06454e11i − 0.0932690i
\(479\) −1.99157e12 −1.72857 −0.864283 0.503005i \(-0.832228\pi\)
−0.864283 + 0.503005i \(0.832228\pi\)
\(480\) 0 0
\(481\) 5.93856e11 0.505857
\(482\) − 4.20981e11i − 0.355263i
\(483\) − 3.29943e11i − 0.275853i
\(484\) −6.27119e11 −0.519452
\(485\) 0 0
\(486\) 6.06833e10 0.0493408
\(487\) − 2.40847e12i − 1.94027i −0.242570 0.970134i \(-0.577990\pi\)
0.242570 0.970134i \(-0.422010\pi\)
\(488\) 1.51421e12i 1.20864i
\(489\) 1.38679e12 1.09678
\(490\) 0 0
\(491\) 2.85374e11 0.221589 0.110794 0.993843i \(-0.464661\pi\)
0.110794 + 0.993843i \(0.464661\pi\)
\(492\) 5.59605e11i 0.430565i
\(493\) 4.68614e10i 0.0357276i
\(494\) 1.21219e12 0.915794
\(495\) 0 0
\(496\) 4.01097e11 0.297565
\(497\) 5.20526e11i 0.382682i
\(498\) 1.58145e12i 1.15219i
\(499\) −2.11594e12 −1.52775 −0.763873 0.645367i \(-0.776704\pi\)
−0.763873 + 0.645367i \(0.776704\pi\)
\(500\) 0 0
\(501\) 1.54024e12 1.09224
\(502\) 1.71709e12i 1.20677i
\(503\) − 7.41865e11i − 0.516736i −0.966047 0.258368i \(-0.916815\pi\)
0.966047 0.258368i \(-0.0831847\pi\)
\(504\) 2.07326e10 0.0143125
\(505\) 0 0
\(506\) 1.24203e11 0.0842274
\(507\) 1.12943e12i 0.759143i
\(508\) − 1.47842e12i − 0.984946i
\(509\) −1.62377e12 −1.07225 −0.536124 0.844140i \(-0.680112\pi\)
−0.536124 + 0.844140i \(0.680112\pi\)
\(510\) 0 0
\(511\) 3.61832e11 0.234754
\(512\) − 5.53160e11i − 0.355742i
\(513\) 1.60790e12i 1.02501i
\(514\) 5.93890e11 0.375294
\(515\) 0 0
\(516\) −1.18602e12 −0.736490
\(517\) − 1.86243e11i − 0.114649i
\(518\) − 1.60580e11i − 0.0979955i
\(519\) 2.14310e12 1.29655
\(520\) 0 0
\(521\) 1.48817e12 0.884877 0.442439 0.896799i \(-0.354113\pi\)
0.442439 + 0.896799i \(0.354113\pi\)
\(522\) − 2.17583e10i − 0.0128265i
\(523\) − 2.41360e12i − 1.41061i −0.708903 0.705306i \(-0.750810\pi\)
0.708903 0.705306i \(-0.249190\pi\)
\(524\) −4.95814e11 −0.287295
\(525\) 0 0
\(526\) 2.32001e12 1.32146
\(527\) 2.00711e11i 0.113351i
\(528\) − 5.25312e10i − 0.0294147i
\(529\) 8.05747e11 0.447351
\(530\) 0 0
\(531\) −6.30044e10 −0.0343911
\(532\) 3.75867e11i 0.203438i
\(533\) − 2.03711e12i − 1.09331i
\(534\) −5.62475e11 −0.299342
\(535\) 0 0
\(536\) −1.16300e12 −0.608609
\(537\) − 1.58136e12i − 0.820630i
\(538\) − 1.42480e12i − 0.733218i
\(539\) 4.64694e10 0.0237147
\(540\) 0 0
\(541\) −2.14334e12 −1.07573 −0.537864 0.843032i \(-0.680769\pi\)
−0.537864 + 0.843032i \(0.680769\pi\)
\(542\) − 1.70484e12i − 0.848570i
\(543\) − 2.27070e12i − 1.12089i
\(544\) 1.29752e11 0.0635213
\(545\) 0 0
\(546\) 7.00354e11 0.337249
\(547\) 1.02462e12i 0.489349i 0.969605 + 0.244675i \(0.0786811\pi\)
−0.969605 + 0.244675i \(0.921319\pi\)
\(548\) − 2.05174e11i − 0.0971875i
\(549\) 8.88514e10 0.0417435
\(550\) 0 0
\(551\) 1.13291e12 0.523618
\(552\) 1.66701e12i 0.764211i
\(553\) − 9.35157e11i − 0.425228i
\(554\) −1.63935e12 −0.739399
\(555\) 0 0
\(556\) −1.80259e12 −0.799944
\(557\) − 3.18977e12i − 1.40414i −0.712108 0.702070i \(-0.752259\pi\)
0.712108 0.702070i \(-0.247741\pi\)
\(558\) − 9.31924e10i − 0.0406936i
\(559\) 4.31740e12 1.87012
\(560\) 0 0
\(561\) 2.62869e10 0.0112049
\(562\) 2.62453e12i 1.10978i
\(563\) − 1.08826e12i − 0.456503i −0.973602 0.228252i \(-0.926699\pi\)
0.973602 0.228252i \(-0.0733009\pi\)
\(564\) 8.70353e11 0.362192
\(565\) 0 0
\(566\) −1.02465e12 −0.419662
\(567\) 8.95340e11i 0.363801i
\(568\) − 2.62992e12i − 1.06017i
\(569\) 3.28834e12 1.31514 0.657569 0.753394i \(-0.271585\pi\)
0.657569 + 0.753394i \(0.271585\pi\)
\(570\) 0 0
\(571\) −1.88806e12 −0.743283 −0.371641 0.928376i \(-0.621205\pi\)
−0.371641 + 0.928376i \(0.621205\pi\)
\(572\) − 3.02319e11i − 0.118082i
\(573\) − 2.41294e12i − 0.935084i
\(574\) −5.50837e11 −0.211797
\(575\) 0 0
\(576\) −7.74889e10 −0.0293318
\(577\) 1.12881e12i 0.423963i 0.977274 + 0.211982i \(0.0679917\pi\)
−0.977274 + 0.211982i \(0.932008\pi\)
\(578\) 1.82276e12i 0.679289i
\(579\) 3.46101e12 1.27982
\(580\) 0 0
\(581\) 1.78506e12 0.649922
\(582\) 2.96400e12i 1.07084i
\(583\) − 5.47692e10i − 0.0196349i
\(584\) −1.82813e12 −0.650353
\(585\) 0 0
\(586\) 1.16503e11 0.0408128
\(587\) 6.31776e11i 0.219630i 0.993952 + 0.109815i \(0.0350258\pi\)
−0.993952 + 0.109815i \(0.964974\pi\)
\(588\) 2.17162e11i 0.0749178i
\(589\) 4.85237e12 1.66125
\(590\) 0 0
\(591\) 4.52436e12 1.52550
\(592\) 2.04898e11i 0.0685630i
\(593\) 4.97504e12i 1.65215i 0.563557 + 0.826077i \(0.309432\pi\)
−0.563557 + 0.826077i \(0.690568\pi\)
\(594\) −3.49702e11 −0.115255
\(595\) 0 0
\(596\) 9.00999e11 0.292493
\(597\) − 4.91613e11i − 0.158394i
\(598\) − 2.11290e12i − 0.675652i
\(599\) 4.55686e12 1.44626 0.723128 0.690714i \(-0.242704\pi\)
0.723128 + 0.690714i \(0.242704\pi\)
\(600\) 0 0
\(601\) −5.78188e12 −1.80773 −0.903866 0.427815i \(-0.859283\pi\)
−0.903866 + 0.427815i \(0.859283\pi\)
\(602\) − 1.16743e12i − 0.362283i
\(603\) 6.82431e10i 0.0210199i
\(604\) −2.85532e12 −0.872948
\(605\) 0 0
\(606\) −1.36958e12 −0.412536
\(607\) − 7.37332e11i − 0.220452i −0.993907 0.110226i \(-0.964843\pi\)
0.993907 0.110226i \(-0.0351575\pi\)
\(608\) − 3.13687e12i − 0.930958i
\(609\) 6.54554e11 0.192827
\(610\) 0 0
\(611\) −3.16831e12 −0.919691
\(612\) − 4.60926e9i − 0.00132816i
\(613\) 3.50587e12i 1.00282i 0.865210 + 0.501410i \(0.167185\pi\)
−0.865210 + 0.501410i \(0.832815\pi\)
\(614\) 1.53022e12 0.434507
\(615\) 0 0
\(616\) −2.34783e11 −0.0656982
\(617\) 2.47222e12i 0.686759i 0.939197 + 0.343380i \(0.111572\pi\)
−0.939197 + 0.343380i \(0.888428\pi\)
\(618\) 2.05102e12i 0.565615i
\(619\) 1.57589e12 0.431436 0.215718 0.976456i \(-0.430791\pi\)
0.215718 + 0.976456i \(0.430791\pi\)
\(620\) 0 0
\(621\) 2.80264e12 0.756232
\(622\) − 4.29331e11i − 0.115010i
\(623\) 6.34894e11i 0.168851i
\(624\) −8.93645e11 −0.235958
\(625\) 0 0
\(626\) 1.09529e12 0.285066
\(627\) − 6.35508e11i − 0.164217i
\(628\) − 1.33534e12i − 0.342588i
\(629\) −1.02532e11 −0.0261175
\(630\) 0 0
\(631\) 4.95895e11 0.124525 0.0622627 0.998060i \(-0.480168\pi\)
0.0622627 + 0.998060i \(0.480168\pi\)
\(632\) 4.72481e12i 1.17803i
\(633\) 1.22345e12i 0.302878i
\(634\) 4.80946e12 1.18221
\(635\) 0 0
\(636\) 2.55948e11 0.0620291
\(637\) − 7.90524e11i − 0.190234i
\(638\) 2.46398e11i 0.0588767i
\(639\) −1.54319e11 −0.0366156
\(640\) 0 0
\(641\) 1.72054e12 0.402535 0.201268 0.979536i \(-0.435494\pi\)
0.201268 + 0.979536i \(0.435494\pi\)
\(642\) − 4.20060e12i − 0.975897i
\(643\) − 8.19457e12i − 1.89050i −0.326346 0.945250i \(-0.605818\pi\)
0.326346 0.945250i \(-0.394182\pi\)
\(644\) 6.55154e11 0.150092
\(645\) 0 0
\(646\) −2.09290e11 −0.0472826
\(647\) − 2.56336e12i − 0.575097i −0.957766 0.287549i \(-0.907160\pi\)
0.957766 0.287549i \(-0.0928403\pi\)
\(648\) − 4.52364e12i − 1.00786i
\(649\) 7.13483e11 0.157864
\(650\) 0 0
\(651\) 2.80351e12 0.611769
\(652\) 2.75368e12i 0.596760i
\(653\) 2.23256e12i 0.480499i 0.970711 + 0.240250i \(0.0772293\pi\)
−0.970711 + 0.240250i \(0.922771\pi\)
\(654\) −2.21131e12 −0.472662
\(655\) 0 0
\(656\) 7.02863e11 0.148185
\(657\) 1.07272e11i 0.0224616i
\(658\) 8.56715e11i 0.178164i
\(659\) −6.47077e12 −1.33651 −0.668254 0.743933i \(-0.732958\pi\)
−0.668254 + 0.743933i \(0.732958\pi\)
\(660\) 0 0
\(661\) −2.35514e12 −0.479856 −0.239928 0.970791i \(-0.577124\pi\)
−0.239928 + 0.970791i \(0.577124\pi\)
\(662\) 4.55248e12i 0.921270i
\(663\) − 4.47185e11i − 0.0898827i
\(664\) −9.01890e12 −1.80052
\(665\) 0 0
\(666\) 4.76067e10 0.00937636
\(667\) − 1.97472e12i − 0.386314i
\(668\) 3.05839e12i 0.594291i
\(669\) −2.55002e12 −0.492182
\(670\) 0 0
\(671\) −1.00618e12 −0.191613
\(672\) − 1.81236e12i − 0.342833i
\(673\) 1.00068e13i 1.88030i 0.340764 + 0.940149i \(0.389314\pi\)
−0.340764 + 0.940149i \(0.610686\pi\)
\(674\) 3.12900e12 0.584032
\(675\) 0 0
\(676\) −2.24266e12 −0.413051
\(677\) − 4.75925e12i − 0.870742i −0.900251 0.435371i \(-0.856617\pi\)
0.900251 0.435371i \(-0.143383\pi\)
\(678\) − 1.16623e12i − 0.211959i
\(679\) 3.34561e12 0.604035
\(680\) 0 0
\(681\) 9.52446e12 1.69699
\(682\) 1.05534e12i 0.186794i
\(683\) − 5.44016e11i − 0.0956575i −0.998856 0.0478287i \(-0.984770\pi\)
0.998856 0.0478287i \(-0.0152302\pi\)
\(684\) −1.11433e11 −0.0194653
\(685\) 0 0
\(686\) −2.13759e11 −0.0368524
\(687\) − 5.71590e12i − 0.978992i
\(688\) 1.48963e12i 0.253473i
\(689\) −9.31717e11 −0.157506
\(690\) 0 0
\(691\) 8.57339e12 1.43054 0.715272 0.698846i \(-0.246303\pi\)
0.715272 + 0.698846i \(0.246303\pi\)
\(692\) 4.25546e12i 0.705455i
\(693\) 1.37767e10i 0.00226906i
\(694\) 2.34743e12 0.384127
\(695\) 0 0
\(696\) −3.30708e12 −0.534199
\(697\) 3.51716e11i 0.0564476i
\(698\) 4.35585e12i 0.694582i
\(699\) −1.46942e12 −0.232809
\(700\) 0 0
\(701\) 1.25396e13 1.96133 0.980666 0.195687i \(-0.0626935\pi\)
0.980666 + 0.195687i \(0.0626935\pi\)
\(702\) 5.94902e12i 0.924545i
\(703\) 2.47880e12i 0.382774i
\(704\) 8.77510e11 0.134640
\(705\) 0 0
\(706\) −6.68609e12 −1.01286
\(707\) 1.54591e12i 0.232701i
\(708\) 3.33426e12i 0.498712i
\(709\) −4.37869e12 −0.650782 −0.325391 0.945580i \(-0.605496\pi\)
−0.325391 + 0.945580i \(0.605496\pi\)
\(710\) 0 0
\(711\) 2.77244e11 0.0406864
\(712\) − 3.20775e12i − 0.467779i
\(713\) − 8.45790e12i − 1.22563i
\(714\) −1.20919e11 −0.0174122
\(715\) 0 0
\(716\) 3.14004e12 0.446506
\(717\) 9.49429e11i 0.134161i
\(718\) − 2.09261e11i − 0.0293852i
\(719\) −7.76448e12 −1.08351 −0.541754 0.840537i \(-0.682240\pi\)
−0.541754 + 0.840537i \(0.682240\pi\)
\(720\) 0 0
\(721\) 2.31508e12 0.319049
\(722\) 7.63086e10i 0.0104510i
\(723\) 3.75458e12i 0.511022i
\(724\) 4.50884e12 0.609875
\(725\) 0 0
\(726\) −4.87745e12 −0.651596
\(727\) 7.08318e11i 0.0940423i 0.998894 + 0.0470211i \(0.0149728\pi\)
−0.998894 + 0.0470211i \(0.985027\pi\)
\(728\) 3.99406e12i 0.527015i
\(729\) −7.88106e12 −1.03350
\(730\) 0 0
\(731\) −7.45421e11 −0.0965547
\(732\) − 4.70211e12i − 0.605331i
\(733\) − 6.81304e12i − 0.871712i −0.900017 0.435856i \(-0.856446\pi\)
0.900017 0.435856i \(-0.143554\pi\)
\(734\) 1.94820e12 0.247743
\(735\) 0 0
\(736\) −5.46771e12 −0.686839
\(737\) − 7.72807e11i − 0.0964866i
\(738\) − 1.63306e11i − 0.0202651i
\(739\) −9.20369e12 −1.13517 −0.567586 0.823314i \(-0.692123\pi\)
−0.567586 + 0.823314i \(0.692123\pi\)
\(740\) 0 0
\(741\) −1.08111e13 −1.31731
\(742\) 2.51938e11i 0.0305124i
\(743\) 8.72196e12i 1.04994i 0.851121 + 0.524970i \(0.175923\pi\)
−0.851121 + 0.524970i \(0.824077\pi\)
\(744\) −1.41645e13 −1.69482
\(745\) 0 0
\(746\) −3.78695e12 −0.447678
\(747\) 5.29215e11i 0.0621856i
\(748\) 5.21968e10i 0.00609658i
\(749\) −4.74143e12 −0.550479
\(750\) 0 0
\(751\) −1.63201e13 −1.87216 −0.936078 0.351793i \(-0.885572\pi\)
−0.936078 + 0.351793i \(0.885572\pi\)
\(752\) − 1.09316e12i − 0.124653i
\(753\) − 1.53141e13i − 1.73586i
\(754\) 4.19164e12 0.472295
\(755\) 0 0
\(756\) −1.84464e12 −0.205382
\(757\) − 3.23287e12i − 0.357813i −0.983866 0.178907i \(-0.942744\pi\)
0.983866 0.178907i \(-0.0572560\pi\)
\(758\) − 5.59970e12i − 0.616103i
\(759\) −1.10772e12 −0.121155
\(760\) 0 0
\(761\) −6.46766e11 −0.0699063 −0.0349531 0.999389i \(-0.511128\pi\)
−0.0349531 + 0.999389i \(0.511128\pi\)
\(762\) − 1.14985e13i − 1.23551i
\(763\) 2.49602e12i 0.266617i
\(764\) 4.79127e12 0.508781
\(765\) 0 0
\(766\) 1.11663e12 0.117187
\(767\) − 1.21376e13i − 1.26634i
\(768\) 1.00694e13i 1.04442i
\(769\) 2.42101e12 0.249648 0.124824 0.992179i \(-0.460163\pi\)
0.124824 + 0.992179i \(0.460163\pi\)
\(770\) 0 0
\(771\) −5.29670e12 −0.539835
\(772\) 6.87237e12i 0.696352i
\(773\) 4.43910e12i 0.447185i 0.974683 + 0.223592i \(0.0717784\pi\)
−0.974683 + 0.223592i \(0.928222\pi\)
\(774\) 3.46107e11 0.0346638
\(775\) 0 0
\(776\) −1.69035e13 −1.67339
\(777\) 1.43215e12i 0.140960i
\(778\) − 4.64248e12i − 0.454299i
\(779\) 8.50304e12 0.827286
\(780\) 0 0
\(781\) 1.74756e12 0.168075
\(782\) 3.64802e11i 0.0348840i
\(783\) 5.55998e12i 0.528622i
\(784\) 2.72754e11 0.0257839
\(785\) 0 0
\(786\) −3.85622e12 −0.360380
\(787\) − 1.72989e13i − 1.60744i −0.595011 0.803718i \(-0.702852\pi\)
0.595011 0.803718i \(-0.297148\pi\)
\(788\) 8.98382e12i 0.830029i
\(789\) −2.06914e13 −1.90083
\(790\) 0 0
\(791\) −1.31638e12 −0.119561
\(792\) − 6.96057e10i − 0.00628611i
\(793\) 1.71169e13i 1.53708i
\(794\) 4.42203e12 0.394848
\(795\) 0 0
\(796\) 9.76175e11 0.0861825
\(797\) − 1.37776e13i − 1.20951i −0.796410 0.604756i \(-0.793270\pi\)
0.796410 0.604756i \(-0.206730\pi\)
\(798\) 2.92333e12i 0.255191i
\(799\) 5.47024e11 0.0474838
\(800\) 0 0
\(801\) −1.88226e11 −0.0161560
\(802\) 1.26632e13i 1.08083i
\(803\) − 1.21478e12i − 0.103105i
\(804\) 3.61149e12 0.304814
\(805\) 0 0
\(806\) 1.79531e13 1.49842
\(807\) 1.27073e13i 1.05468i
\(808\) − 7.81061e12i − 0.644665i
\(809\) −1.38369e13 −1.13572 −0.567860 0.823125i \(-0.692228\pi\)
−0.567860 + 0.823125i \(0.692228\pi\)
\(810\) 0 0
\(811\) −1.96078e13 −1.59161 −0.795804 0.605555i \(-0.792951\pi\)
−0.795804 + 0.605555i \(0.792951\pi\)
\(812\) 1.29972e12i 0.104917i
\(813\) 1.52049e13i 1.22061i
\(814\) −5.39114e11 −0.0430399
\(815\) 0 0
\(816\) 1.54292e11 0.0121825
\(817\) 1.80212e13i 1.41509i
\(818\) − 1.49421e13i − 1.16687i
\(819\) 2.34365e11 0.0182019
\(820\) 0 0
\(821\) 2.41017e13 1.85142 0.925708 0.378239i \(-0.123470\pi\)
0.925708 + 0.378239i \(0.123470\pi\)
\(822\) − 1.59576e12i − 0.121911i
\(823\) − 8.20762e12i − 0.623617i −0.950145 0.311809i \(-0.899065\pi\)
0.950145 0.311809i \(-0.100935\pi\)
\(824\) −1.16968e13 −0.883881
\(825\) 0 0
\(826\) −3.28201e12 −0.245318
\(827\) 2.84612e12i 0.211582i 0.994388 + 0.105791i \(0.0337374\pi\)
−0.994388 + 0.105791i \(0.966263\pi\)
\(828\) 1.94233e11i 0.0143610i
\(829\) 5.88562e12 0.432809 0.216405 0.976304i \(-0.430567\pi\)
0.216405 + 0.976304i \(0.430567\pi\)
\(830\) 0 0
\(831\) 1.46208e13 1.06357
\(832\) − 1.49279e13i − 1.08005i
\(833\) 1.36488e11i 0.00982180i
\(834\) −1.40197e13 −1.00344
\(835\) 0 0
\(836\) 1.26190e12 0.0893505
\(837\) 2.38138e13i 1.67712i
\(838\) 1.31480e12i 0.0921003i
\(839\) 8.44799e12 0.588606 0.294303 0.955712i \(-0.404913\pi\)
0.294303 + 0.955712i \(0.404913\pi\)
\(840\) 0 0
\(841\) −1.05896e13 −0.729959
\(842\) 8.66450e11i 0.0594072i
\(843\) − 2.34073e13i − 1.59634i
\(844\) −2.42934e12 −0.164796
\(845\) 0 0
\(846\) −2.53989e11 −0.0170470
\(847\) 5.50542e12i 0.367549i
\(848\) − 3.21470e11i − 0.0213481i
\(849\) 9.13847e12 0.603655
\(850\) 0 0
\(851\) 4.32066e12 0.282402
\(852\) 8.16674e12i 0.530970i
\(853\) 7.17311e12i 0.463913i 0.972726 + 0.231957i \(0.0745128\pi\)
−0.972726 + 0.231957i \(0.925487\pi\)
\(854\) 4.62843e12 0.297765
\(855\) 0 0
\(856\) 2.39557e13 1.52502
\(857\) 2.17636e13i 1.37821i 0.724660 + 0.689107i \(0.241997\pi\)
−0.724660 + 0.689107i \(0.758003\pi\)
\(858\) − 2.35130e12i − 0.148121i
\(859\) 9.02945e12 0.565838 0.282919 0.959144i \(-0.408697\pi\)
0.282919 + 0.959144i \(0.408697\pi\)
\(860\) 0 0
\(861\) 4.91273e12 0.304655
\(862\) − 2.10712e12i − 0.129989i
\(863\) 1.84428e13i 1.13182i 0.824467 + 0.565910i \(0.191475\pi\)
−0.824467 + 0.565910i \(0.808525\pi\)
\(864\) 1.53947e13 0.939854
\(865\) 0 0
\(866\) 5.03012e12 0.303912
\(867\) − 1.62566e13i − 0.977111i
\(868\) 5.56680e12i 0.332864i
\(869\) −3.13961e12 −0.186761
\(870\) 0 0
\(871\) −1.31468e13 −0.773993
\(872\) − 1.26109e13i − 0.738623i
\(873\) 9.91868e11i 0.0577950i
\(874\) 8.81940e12 0.511255
\(875\) 0 0
\(876\) 5.67693e12 0.325721
\(877\) − 1.12140e13i − 0.640120i −0.947397 0.320060i \(-0.896297\pi\)
0.947397 0.320060i \(-0.103703\pi\)
\(878\) − 2.22906e12i − 0.126589i
\(879\) −1.03905e12 −0.0587064
\(880\) 0 0
\(881\) 3.00664e13 1.68147 0.840735 0.541446i \(-0.182123\pi\)
0.840735 + 0.541446i \(0.182123\pi\)
\(882\) − 6.33727e10i − 0.00352609i
\(883\) 1.58968e13i 0.880007i 0.897996 + 0.440004i \(0.145023\pi\)
−0.897996 + 0.440004i \(0.854977\pi\)
\(884\) 8.87956e11 0.0489053
\(885\) 0 0
\(886\) −1.48231e13 −0.808141
\(887\) 1.46131e13i 0.792658i 0.918109 + 0.396329i \(0.129716\pi\)
−0.918109 + 0.396329i \(0.870284\pi\)
\(888\) − 7.23585e12i − 0.390509i
\(889\) −1.29790e13 −0.696918
\(890\) 0 0
\(891\) 3.00593e12 0.159782
\(892\) − 5.06346e12i − 0.267797i
\(893\) − 1.32248e13i − 0.695915i
\(894\) 7.00758e12 0.366901
\(895\) 0 0
\(896\) 2.70047e12 0.139976
\(897\) 1.88442e13i 0.971878i
\(898\) 1.57531e13i 0.808393i
\(899\) 1.67791e13 0.856742
\(900\) 0 0
\(901\) 1.60866e11 0.00813208
\(902\) 1.84933e12i 0.0930217i
\(903\) 1.04119e13i 0.521118i
\(904\) 6.65093e12 0.331226
\(905\) 0 0
\(906\) −2.22074e13 −1.09502
\(907\) 1.41504e12i 0.0694281i 0.999397 + 0.0347141i \(0.0110521\pi\)
−0.999397 + 0.0347141i \(0.988948\pi\)
\(908\) 1.89123e13i 0.923333i
\(909\) −4.58315e11 −0.0222652
\(910\) 0 0
\(911\) −1.61901e13 −0.778784 −0.389392 0.921072i \(-0.627315\pi\)
−0.389392 + 0.921072i \(0.627315\pi\)
\(912\) − 3.73014e12i − 0.178545i
\(913\) − 5.99301e12i − 0.285447i
\(914\) 9.96417e12 0.472262
\(915\) 0 0
\(916\) 1.13498e13 0.532671
\(917\) 4.35271e12i 0.203281i
\(918\) − 1.02713e12i − 0.0477345i
\(919\) 1.60413e13 0.741858 0.370929 0.928661i \(-0.379039\pi\)
0.370929 + 0.928661i \(0.379039\pi\)
\(920\) 0 0
\(921\) −1.36475e13 −0.625008
\(922\) 1.61501e13i 0.736014i
\(923\) − 2.97290e13i − 1.34826i
\(924\) 7.29077e11 0.0329041
\(925\) 0 0
\(926\) 9.28876e12 0.415153
\(927\) 6.86349e11i 0.0305271i
\(928\) − 1.08470e13i − 0.480115i
\(929\) 3.98759e13 1.75647 0.878233 0.478233i \(-0.158723\pi\)
0.878233 + 0.478233i \(0.158723\pi\)
\(930\) 0 0
\(931\) 3.29971e12 0.143947
\(932\) − 2.91777e12i − 0.126672i
\(933\) 3.82906e12i 0.165434i
\(934\) −1.47177e13 −0.632819
\(935\) 0 0
\(936\) −1.18411e12 −0.0504256
\(937\) − 5.95427e12i − 0.252348i −0.992008 0.126174i \(-0.959730\pi\)
0.992008 0.126174i \(-0.0402698\pi\)
\(938\) 3.55490e12i 0.149939i
\(939\) −9.76855e12 −0.410048
\(940\) 0 0
\(941\) 9.86055e12 0.409966 0.204983 0.978766i \(-0.434286\pi\)
0.204983 + 0.978766i \(0.434286\pi\)
\(942\) − 1.03857e13i − 0.429739i
\(943\) − 1.48212e13i − 0.610353i
\(944\) 4.18782e12 0.171638
\(945\) 0 0
\(946\) −3.91943e12 −0.159115
\(947\) − 2.10061e13i − 0.848732i −0.905491 0.424366i \(-0.860497\pi\)
0.905491 0.424366i \(-0.139503\pi\)
\(948\) − 1.46721e13i − 0.590002i
\(949\) −2.06655e13 −0.827080
\(950\) 0 0
\(951\) −4.28939e13 −1.70053
\(952\) − 6.89594e11i − 0.0272099i
\(953\) 4.25218e13i 1.66991i 0.550318 + 0.834955i \(0.314506\pi\)
−0.550318 + 0.834955i \(0.685494\pi\)
\(954\) −7.46916e10 −0.00291947
\(955\) 0 0
\(956\) −1.88524e12 −0.0729972
\(957\) − 2.19754e12i − 0.0846901i
\(958\) − 3.07570e13i − 1.17977i
\(959\) −1.80121e12 −0.0687670
\(960\) 0 0
\(961\) 4.54266e13 1.71813
\(962\) 9.17125e12i 0.345256i
\(963\) − 1.40568e12i − 0.0526707i
\(964\) −7.45531e12 −0.278048
\(965\) 0 0
\(966\) 5.09550e12 0.188274
\(967\) − 1.21906e13i − 0.448338i −0.974550 0.224169i \(-0.928033\pi\)
0.974550 0.224169i \(-0.0719667\pi\)
\(968\) − 2.78157e13i − 1.01824i
\(969\) 1.86658e12 0.0680128
\(970\) 0 0
\(971\) 5.38639e12 0.194452 0.0972258 0.995262i \(-0.469003\pi\)
0.0972258 + 0.995262i \(0.469003\pi\)
\(972\) − 1.07466e12i − 0.0386167i
\(973\) 1.58247e13i 0.566016i
\(974\) 3.71954e13 1.32426
\(975\) 0 0
\(976\) −5.90583e12 −0.208332
\(977\) − 1.89284e13i − 0.664643i −0.943166 0.332321i \(-0.892168\pi\)
0.943166 0.332321i \(-0.107832\pi\)
\(978\) 2.14169e13i 0.748570i
\(979\) 2.13153e12 0.0741600
\(980\) 0 0
\(981\) −7.39990e11 −0.0255103
\(982\) 4.40719e12i 0.151238i
\(983\) − 3.98513e13i − 1.36129i −0.732612 0.680647i \(-0.761699\pi\)
0.732612 0.680647i \(-0.238301\pi\)
\(984\) −2.48212e13 −0.844004
\(985\) 0 0
\(986\) −7.23708e11 −0.0243847
\(987\) − 7.64075e12i − 0.256277i
\(988\) − 2.14671e13i − 0.716748i
\(989\) 3.14118e13 1.04402
\(990\) 0 0
\(991\) −3.44424e13 −1.13439 −0.567194 0.823584i \(-0.691971\pi\)
−0.567194 + 0.823584i \(0.691971\pi\)
\(992\) − 4.64588e13i − 1.52323i
\(993\) − 4.06020e13i − 1.32518i
\(994\) −8.03877e12 −0.261187
\(995\) 0 0
\(996\) 2.80066e13 0.901765
\(997\) 4.12406e13i 1.32189i 0.750433 + 0.660947i \(0.229845\pi\)
−0.750433 + 0.660947i \(0.770155\pi\)
\(998\) − 3.26777e13i − 1.04271i
\(999\) −1.21652e13 −0.386432
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.10.b.e.99.5 8
5.2 odd 4 175.10.a.e.1.2 4
5.3 odd 4 35.10.a.c.1.3 4
5.4 even 2 inner 175.10.b.e.99.4 8
15.8 even 4 315.10.a.g.1.2 4
35.13 even 4 245.10.a.e.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.10.a.c.1.3 4 5.3 odd 4
175.10.a.e.1.2 4 5.2 odd 4
175.10.b.e.99.4 8 5.4 even 2 inner
175.10.b.e.99.5 8 1.1 even 1 trivial
245.10.a.e.1.3 4 35.13 even 4
315.10.a.g.1.2 4 15.8 even 4