Properties

Label 175.10.b.d.99.4
Level $175$
Weight $10$
Character 175.99
Analytic conductor $90.131$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,10,Mod(99,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.99");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 175.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(90.1312713287\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 853x^{4} + 185508x^{2} + 4064256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 7)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 99.4
Root \(22.2358i\) of defining polynomial
Character \(\chi\) \(=\) 175.99
Dual form 175.10.b.d.99.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+13.3607i q^{2} -163.415i q^{3} +333.491 q^{4} +2183.34 q^{6} +2401.00i q^{7} +11296.4i q^{8} -7021.32 q^{9} -90199.9 q^{11} -54497.3i q^{12} +3199.89i q^{13} -32079.1 q^{14} +19819.7 q^{16} +116494. i q^{17} -93809.9i q^{18} +142449. q^{19} +392358. q^{21} -1.20514e6i q^{22} -1.27391e6i q^{23} +1.84599e6 q^{24} -42752.8 q^{26} -2.06910e6i q^{27} +800712. i q^{28} +1.42931e6 q^{29} +9.67494e6 q^{31} +6.04855e6i q^{32} +1.47400e7i q^{33} -1.55645e6 q^{34} -2.34155e6 q^{36} -8.67744e6i q^{37} +1.90323e6i q^{38} +522908. q^{39} +1.32544e7 q^{41} +5.24219e6i q^{42} +2.97554e7i q^{43} -3.00809e7 q^{44} +1.70204e7 q^{46} -1.07969e7i q^{47} -3.23882e6i q^{48} -5.76480e6 q^{49} +1.90369e7 q^{51} +1.06713e6i q^{52} -7.07399e7i q^{53} +2.76447e7 q^{54} -2.71226e7 q^{56} -2.32783e7i q^{57} +1.90966e7i q^{58} -6.40400e6 q^{59} +1.69190e8 q^{61} +1.29264e8i q^{62} -1.68582e7i q^{63} -7.06653e7 q^{64} -1.96937e8 q^{66} -1.16276e8i q^{67} +3.88498e7i q^{68} -2.08176e8 q^{69} +1.44496e8 q^{71} -7.93154e7i q^{72} -1.60155e8i q^{73} +1.15937e8 q^{74} +4.75056e7 q^{76} -2.16570e8i q^{77} +6.98643e6i q^{78} +4.89322e8 q^{79} -4.76322e8 q^{81} +1.77088e8i q^{82} +8.31590e7i q^{83} +1.30848e8 q^{84} -3.97553e8 q^{86} -2.33569e8i q^{87} -1.01893e9i q^{88} -2.08083e6 q^{89} -7.68292e6 q^{91} -4.24838e8i q^{92} -1.58103e9i q^{93} +1.44255e8 q^{94} +9.88421e8 q^{96} -3.15885e8i q^{97} -7.70219e7i q^{98} +6.33322e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3114 q^{4} + 9828 q^{6} + 52002 q^{9} - 6888 q^{11} - 100842 q^{14} + 965922 q^{16} - 445704 q^{19} + 403368 q^{21} + 2899260 q^{24} - 17570112 q^{26} - 8163636 q^{29} + 5738880 q^{31} + 7963284 q^{34}+ \cdots + 3801958344 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 13.3607i 0.590466i 0.955425 + 0.295233i \(0.0953973\pi\)
−0.955425 + 0.295233i \(0.904603\pi\)
\(3\) − 163.415i − 1.16478i −0.812908 0.582392i \(-0.802117\pi\)
0.812908 0.582392i \(-0.197883\pi\)
\(4\) 333.491 0.651350
\(5\) 0 0
\(6\) 2183.34 0.687765
\(7\) 2401.00i 0.377964i
\(8\) 11296.4i 0.975066i
\(9\) −7021.32 −0.356720
\(10\) 0 0
\(11\) −90199.9 −1.85754 −0.928772 0.370652i \(-0.879134\pi\)
−0.928772 + 0.370652i \(0.879134\pi\)
\(12\) − 54497.3i − 0.758681i
\(13\) 3199.89i 0.0310734i 0.999879 + 0.0155367i \(0.00494569\pi\)
−0.999879 + 0.0155367i \(0.995054\pi\)
\(14\) −32079.1 −0.223175
\(15\) 0 0
\(16\) 19819.7 0.0756061
\(17\) 116494.i 0.338286i 0.985591 + 0.169143i \(0.0541000\pi\)
−0.985591 + 0.169143i \(0.945900\pi\)
\(18\) − 93809.9i − 0.210631i
\(19\) 142449. 0.250767 0.125383 0.992108i \(-0.459984\pi\)
0.125383 + 0.992108i \(0.459984\pi\)
\(20\) 0 0
\(21\) 392358. 0.440247
\(22\) − 1.20514e6i − 1.09682i
\(23\) − 1.27391e6i − 0.949213i −0.880198 0.474606i \(-0.842590\pi\)
0.880198 0.474606i \(-0.157410\pi\)
\(24\) 1.84599e6 1.13574
\(25\) 0 0
\(26\) −42752.8 −0.0183478
\(27\) − 2.06910e6i − 0.749282i
\(28\) 800712.i 0.246187i
\(29\) 1.42931e6 0.375262 0.187631 0.982240i \(-0.439919\pi\)
0.187631 + 0.982240i \(0.439919\pi\)
\(30\) 0 0
\(31\) 9.67494e6 1.88157 0.940786 0.339001i \(-0.110089\pi\)
0.940786 + 0.339001i \(0.110089\pi\)
\(32\) 6.04855e6i 1.01971i
\(33\) 1.47400e7i 2.16364i
\(34\) −1.55645e6 −0.199747
\(35\) 0 0
\(36\) −2.34155e6 −0.232349
\(37\) − 8.67744e6i − 0.761174i −0.924745 0.380587i \(-0.875722\pi\)
0.924745 0.380587i \(-0.124278\pi\)
\(38\) 1.90323e6i 0.148069i
\(39\) 522908. 0.0361938
\(40\) 0 0
\(41\) 1.32544e7 0.732541 0.366271 0.930508i \(-0.380634\pi\)
0.366271 + 0.930508i \(0.380634\pi\)
\(42\) 5.24219e6i 0.259951i
\(43\) 2.97554e7i 1.32726i 0.748060 + 0.663632i \(0.230986\pi\)
−0.748060 + 0.663632i \(0.769014\pi\)
\(44\) −3.00809e7 −1.20991
\(45\) 0 0
\(46\) 1.70204e7 0.560478
\(47\) − 1.07969e7i − 0.322745i −0.986894 0.161373i \(-0.948408\pi\)
0.986894 0.161373i \(-0.0515921\pi\)
\(48\) − 3.23882e6i − 0.0880647i
\(49\) −5.76480e6 −0.142857
\(50\) 0 0
\(51\) 1.90369e7 0.394030
\(52\) 1.06713e6i 0.0202397i
\(53\) − 7.07399e7i − 1.23147i −0.787954 0.615734i \(-0.788860\pi\)
0.787954 0.615734i \(-0.211140\pi\)
\(54\) 2.76447e7 0.442426
\(55\) 0 0
\(56\) −2.71226e7 −0.368540
\(57\) − 2.32783e7i − 0.292089i
\(58\) 1.90966e7i 0.221579i
\(59\) −6.40400e6 −0.0688046 −0.0344023 0.999408i \(-0.510953\pi\)
−0.0344023 + 0.999408i \(0.510953\pi\)
\(60\) 0 0
\(61\) 1.69190e8 1.56455 0.782275 0.622933i \(-0.214059\pi\)
0.782275 + 0.622933i \(0.214059\pi\)
\(62\) 1.29264e8i 1.11100i
\(63\) − 1.68582e7i − 0.134827i
\(64\) −7.06653e7 −0.526498
\(65\) 0 0
\(66\) −1.96937e8 −1.27755
\(67\) − 1.16276e8i − 0.704943i −0.935823 0.352471i \(-0.885341\pi\)
0.935823 0.352471i \(-0.114659\pi\)
\(68\) 3.88498e7i 0.220343i
\(69\) −2.08176e8 −1.10563
\(70\) 0 0
\(71\) 1.44496e8 0.674826 0.337413 0.941357i \(-0.390448\pi\)
0.337413 + 0.941357i \(0.390448\pi\)
\(72\) − 7.93154e7i − 0.347825i
\(73\) − 1.60155e8i − 0.660066i −0.943969 0.330033i \(-0.892940\pi\)
0.943969 0.330033i \(-0.107060\pi\)
\(74\) 1.15937e8 0.449447
\(75\) 0 0
\(76\) 4.75056e7 0.163337
\(77\) − 2.16570e8i − 0.702085i
\(78\) 6.98643e6i 0.0213712i
\(79\) 4.89322e8 1.41343 0.706713 0.707500i \(-0.250177\pi\)
0.706713 + 0.707500i \(0.250177\pi\)
\(80\) 0 0
\(81\) −4.76322e8 −1.22947
\(82\) 1.77088e8i 0.432541i
\(83\) 8.31590e7i 0.192335i 0.995365 + 0.0961674i \(0.0306584\pi\)
−0.995365 + 0.0961674i \(0.969342\pi\)
\(84\) 1.30848e8 0.286755
\(85\) 0 0
\(86\) −3.97553e8 −0.783704
\(87\) − 2.33569e8i − 0.437098i
\(88\) − 1.01893e9i − 1.81123i
\(89\) −2.08083e6 −0.00351546 −0.00175773 0.999998i \(-0.500560\pi\)
−0.00175773 + 0.999998i \(0.500560\pi\)
\(90\) 0 0
\(91\) −7.68292e6 −0.0117447
\(92\) − 4.24838e8i − 0.618270i
\(93\) − 1.58103e9i − 2.19162i
\(94\) 1.44255e8 0.190570
\(95\) 0 0
\(96\) 9.88421e8 1.18774
\(97\) − 3.15885e8i − 0.362290i −0.983456 0.181145i \(-0.942020\pi\)
0.983456 0.181145i \(-0.0579803\pi\)
\(98\) − 7.70219e7i − 0.0843523i
\(99\) 6.33322e8 0.662623
\(100\) 0 0
\(101\) −5.74841e8 −0.549669 −0.274835 0.961492i \(-0.588623\pi\)
−0.274835 + 0.961492i \(0.588623\pi\)
\(102\) 2.54346e8i 0.232662i
\(103\) 1.51870e9i 1.32955i 0.747044 + 0.664775i \(0.231473\pi\)
−0.747044 + 0.664775i \(0.768527\pi\)
\(104\) −3.61471e7 −0.0302987
\(105\) 0 0
\(106\) 9.45137e8 0.727140
\(107\) − 2.01863e8i − 0.148878i −0.997226 0.0744390i \(-0.976283\pi\)
0.997226 0.0744390i \(-0.0237166\pi\)
\(108\) − 6.90027e8i − 0.488044i
\(109\) 8.73952e8 0.593019 0.296509 0.955030i \(-0.404177\pi\)
0.296509 + 0.955030i \(0.404177\pi\)
\(110\) 0 0
\(111\) −1.41802e9 −0.886603
\(112\) 4.75871e7i 0.0285764i
\(113\) − 1.52955e9i − 0.882491i −0.897386 0.441245i \(-0.854537\pi\)
0.897386 0.441245i \(-0.145463\pi\)
\(114\) 3.11015e8 0.172469
\(115\) 0 0
\(116\) 4.76661e8 0.244427
\(117\) − 2.24674e7i − 0.0110845i
\(118\) − 8.55621e7i − 0.0406268i
\(119\) −2.79703e8 −0.127860
\(120\) 0 0
\(121\) 5.77807e9 2.45047
\(122\) 2.26050e9i 0.923814i
\(123\) − 2.16596e9i − 0.853252i
\(124\) 3.22651e9 1.22556
\(125\) 0 0
\(126\) 2.25238e8 0.0796110
\(127\) − 8.71958e8i − 0.297426i −0.988880 0.148713i \(-0.952487\pi\)
0.988880 0.148713i \(-0.0475130\pi\)
\(128\) 2.15272e9i 0.708830i
\(129\) 4.86246e9 1.54597
\(130\) 0 0
\(131\) 2.24404e9 0.665747 0.332874 0.942971i \(-0.391982\pi\)
0.332874 + 0.942971i \(0.391982\pi\)
\(132\) 4.91565e9i 1.40928i
\(133\) 3.42021e8i 0.0947809i
\(134\) 1.55353e9 0.416245
\(135\) 0 0
\(136\) −1.31596e9 −0.329852
\(137\) 4.16141e9i 1.00925i 0.863339 + 0.504624i \(0.168369\pi\)
−0.863339 + 0.504624i \(0.831631\pi\)
\(138\) − 2.78138e9i − 0.652836i
\(139\) 6.03383e9 1.37097 0.685483 0.728089i \(-0.259591\pi\)
0.685483 + 0.728089i \(0.259591\pi\)
\(140\) 0 0
\(141\) −1.76438e9 −0.375928
\(142\) 1.93057e9i 0.398462i
\(143\) − 2.88629e8i − 0.0577203i
\(144\) −1.39160e8 −0.0269702
\(145\) 0 0
\(146\) 2.13979e9 0.389747
\(147\) 9.42052e8i 0.166398i
\(148\) − 2.89385e9i − 0.495790i
\(149\) 4.37832e9 0.727728 0.363864 0.931452i \(-0.381457\pi\)
0.363864 + 0.931452i \(0.381457\pi\)
\(150\) 0 0
\(151\) −2.69365e9 −0.421642 −0.210821 0.977525i \(-0.567614\pi\)
−0.210821 + 0.977525i \(0.567614\pi\)
\(152\) 1.60916e9i 0.244514i
\(153\) − 8.17943e8i − 0.120673i
\(154\) 2.89353e9 0.414558
\(155\) 0 0
\(156\) 1.74385e8 0.0235748
\(157\) − 1.33044e9i − 0.174762i −0.996175 0.0873810i \(-0.972150\pi\)
0.996175 0.0873810i \(-0.0278498\pi\)
\(158\) 6.53770e9i 0.834580i
\(159\) −1.15599e10 −1.43439
\(160\) 0 0
\(161\) 3.05866e9 0.358769
\(162\) − 6.36401e9i − 0.725961i
\(163\) 3.56094e9i 0.395112i 0.980292 + 0.197556i \(0.0633005\pi\)
−0.980292 + 0.197556i \(0.936699\pi\)
\(164\) 4.42022e9 0.477140
\(165\) 0 0
\(166\) −1.11106e9 −0.113567
\(167\) − 1.04285e10i − 1.03752i −0.854919 0.518762i \(-0.826393\pi\)
0.854919 0.518762i \(-0.173607\pi\)
\(168\) 4.43223e9i 0.429270i
\(169\) 1.05943e10 0.999034
\(170\) 0 0
\(171\) −1.00018e9 −0.0894534
\(172\) 9.92314e9i 0.864512i
\(173\) − 2.04717e10i − 1.73759i −0.495176 0.868793i \(-0.664896\pi\)
0.495176 0.868793i \(-0.335104\pi\)
\(174\) 3.12066e9 0.258092
\(175\) 0 0
\(176\) −1.78773e9 −0.140442
\(177\) 1.04651e9i 0.0801424i
\(178\) − 2.78014e7i − 0.00207576i
\(179\) −5.46705e9 −0.398029 −0.199014 0.979997i \(-0.563774\pi\)
−0.199014 + 0.979997i \(0.563774\pi\)
\(180\) 0 0
\(181\) −2.11628e9 −0.146561 −0.0732807 0.997311i \(-0.523347\pi\)
−0.0732807 + 0.997311i \(0.523347\pi\)
\(182\) − 1.02649e8i − 0.00693482i
\(183\) − 2.76481e10i − 1.82236i
\(184\) 1.43906e10 0.925545
\(185\) 0 0
\(186\) 2.11237e10 1.29408
\(187\) − 1.05078e10i − 0.628381i
\(188\) − 3.60068e9i − 0.210220i
\(189\) 4.96792e9 0.283202
\(190\) 0 0
\(191\) 1.72421e10 0.937431 0.468715 0.883349i \(-0.344717\pi\)
0.468715 + 0.883349i \(0.344717\pi\)
\(192\) 1.15477e10i 0.613256i
\(193\) − 2.02030e10i − 1.04811i −0.851684 0.524055i \(-0.824418\pi\)
0.851684 0.524055i \(-0.175582\pi\)
\(194\) 4.22045e9 0.213920
\(195\) 0 0
\(196\) −1.92251e9 −0.0930500
\(197\) − 2.22592e10i − 1.05296i −0.850187 0.526481i \(-0.823511\pi\)
0.850187 0.526481i \(-0.176489\pi\)
\(198\) 8.46164e9i 0.391256i
\(199\) −1.70588e10 −0.771098 −0.385549 0.922687i \(-0.625988\pi\)
−0.385549 + 0.922687i \(0.625988\pi\)
\(200\) 0 0
\(201\) −1.90012e10 −0.821105
\(202\) − 7.68029e9i − 0.324561i
\(203\) 3.43176e9i 0.141836i
\(204\) 6.34862e9 0.256651
\(205\) 0 0
\(206\) −2.02909e10 −0.785054
\(207\) 8.94453e9i 0.338603i
\(208\) 6.34207e7i 0.00234934i
\(209\) −1.28489e10 −0.465810
\(210\) 0 0
\(211\) −3.19873e10 −1.11098 −0.555490 0.831523i \(-0.687469\pi\)
−0.555490 + 0.831523i \(0.687469\pi\)
\(212\) − 2.35911e10i − 0.802116i
\(213\) − 2.36127e10i − 0.786026i
\(214\) 2.69704e9 0.0879074
\(215\) 0 0
\(216\) 2.33734e10 0.730599
\(217\) 2.32295e10i 0.711167i
\(218\) 1.16766e10i 0.350157i
\(219\) −2.61717e10 −0.768834
\(220\) 0 0
\(221\) −3.72768e8 −0.0105117
\(222\) − 1.89458e10i − 0.523509i
\(223\) 2.30967e10i 0.625428i 0.949847 + 0.312714i \(0.101238\pi\)
−0.949847 + 0.312714i \(0.898762\pi\)
\(224\) −1.45226e10 −0.385414
\(225\) 0 0
\(226\) 2.04359e10 0.521081
\(227\) − 2.30894e10i − 0.577160i −0.957456 0.288580i \(-0.906817\pi\)
0.957456 0.288580i \(-0.0931832\pi\)
\(228\) − 7.76311e9i − 0.190252i
\(229\) −4.25496e10 −1.02244 −0.511218 0.859451i \(-0.670805\pi\)
−0.511218 + 0.859451i \(0.670805\pi\)
\(230\) 0 0
\(231\) −3.53907e10 −0.817777
\(232\) 1.61460e10i 0.365905i
\(233\) 1.26679e10i 0.281582i 0.990039 + 0.140791i \(0.0449645\pi\)
−0.990039 + 0.140791i \(0.955036\pi\)
\(234\) 3.00181e8 0.00654503
\(235\) 0 0
\(236\) −2.13568e9 −0.0448158
\(237\) − 7.99624e10i − 1.64633i
\(238\) − 3.73703e9i − 0.0754971i
\(239\) −6.37875e10 −1.26458 −0.632289 0.774733i \(-0.717884\pi\)
−0.632289 + 0.774733i \(0.717884\pi\)
\(240\) 0 0
\(241\) −2.91604e10 −0.556823 −0.278412 0.960462i \(-0.589808\pi\)
−0.278412 + 0.960462i \(0.589808\pi\)
\(242\) 7.71992e10i 1.44692i
\(243\) 3.71118e10i 0.682785i
\(244\) 5.64232e10 1.01907
\(245\) 0 0
\(246\) 2.89388e10 0.503816
\(247\) 4.55822e8i 0.00779218i
\(248\) 1.09292e11i 1.83466i
\(249\) 1.35894e10 0.224028
\(250\) 0 0
\(251\) 6.28939e10 1.00018 0.500088 0.865974i \(-0.333301\pi\)
0.500088 + 0.865974i \(0.333301\pi\)
\(252\) − 5.62205e9i − 0.0878198i
\(253\) 1.14907e11i 1.76320i
\(254\) 1.16500e10 0.175620
\(255\) 0 0
\(256\) −6.49425e10 −0.945038
\(257\) 1.14480e11i 1.63694i 0.574551 + 0.818469i \(0.305177\pi\)
−0.574551 + 0.818469i \(0.694823\pi\)
\(258\) 6.49660e10i 0.912845i
\(259\) 2.08345e10 0.287697
\(260\) 0 0
\(261\) −1.00356e10 −0.133863
\(262\) 2.99820e10i 0.393101i
\(263\) − 1.40705e10i − 0.181346i −0.995881 0.0906728i \(-0.971098\pi\)
0.995881 0.0906728i \(-0.0289018\pi\)
\(264\) −1.66508e11 −2.10969
\(265\) 0 0
\(266\) −4.56965e9 −0.0559649
\(267\) 3.40038e8i 0.00409475i
\(268\) − 3.87770e10i − 0.459164i
\(269\) −8.39143e10 −0.977127 −0.488563 0.872528i \(-0.662479\pi\)
−0.488563 + 0.872528i \(0.662479\pi\)
\(270\) 0 0
\(271\) 1.98401e10 0.223451 0.111726 0.993739i \(-0.464362\pi\)
0.111726 + 0.993739i \(0.464362\pi\)
\(272\) 2.30888e9i 0.0255765i
\(273\) 1.25550e9i 0.0136800i
\(274\) −5.55995e10 −0.595927
\(275\) 0 0
\(276\) −6.94247e10 −0.720150
\(277\) − 7.17911e10i − 0.732675i −0.930482 0.366338i \(-0.880611\pi\)
0.930482 0.366338i \(-0.119389\pi\)
\(278\) 8.06163e10i 0.809508i
\(279\) −6.79308e10 −0.671194
\(280\) 0 0
\(281\) 1.02853e11 0.984101 0.492050 0.870567i \(-0.336248\pi\)
0.492050 + 0.870567i \(0.336248\pi\)
\(282\) − 2.35733e10i − 0.221973i
\(283\) 5.52883e10i 0.512382i 0.966626 + 0.256191i \(0.0824676\pi\)
−0.966626 + 0.256191i \(0.917532\pi\)
\(284\) 4.81880e10 0.439548
\(285\) 0 0
\(286\) 3.85630e9 0.0340819
\(287\) 3.18238e10i 0.276875i
\(288\) − 4.24688e10i − 0.363750i
\(289\) 1.05017e11 0.885562
\(290\) 0 0
\(291\) −5.16202e10 −0.421989
\(292\) − 5.34102e10i − 0.429934i
\(293\) − 1.05721e11i − 0.838028i −0.907980 0.419014i \(-0.862376\pi\)
0.907980 0.419014i \(-0.137624\pi\)
\(294\) −1.25865e10 −0.0982522
\(295\) 0 0
\(296\) 9.80236e10 0.742195
\(297\) 1.86633e11i 1.39182i
\(298\) 5.84975e10i 0.429699i
\(299\) 4.07637e9 0.0294953
\(300\) 0 0
\(301\) −7.14426e10 −0.501658
\(302\) − 3.59891e10i − 0.248966i
\(303\) 9.39374e10i 0.640246i
\(304\) 2.82330e9 0.0189595
\(305\) 0 0
\(306\) 1.09283e10 0.0712536
\(307\) − 8.10064e10i − 0.520471i −0.965545 0.260236i \(-0.916200\pi\)
0.965545 0.260236i \(-0.0838003\pi\)
\(308\) − 7.22241e10i − 0.457303i
\(309\) 2.48178e11 1.54864
\(310\) 0 0
\(311\) −3.18435e11 −1.93018 −0.965091 0.261913i \(-0.915647\pi\)
−0.965091 + 0.261913i \(0.915647\pi\)
\(312\) 5.90696e9i 0.0352914i
\(313\) − 1.28876e11i − 0.758965i −0.925199 0.379483i \(-0.876102\pi\)
0.925199 0.379483i \(-0.123898\pi\)
\(314\) 1.77757e10 0.103191
\(315\) 0 0
\(316\) 1.63185e11 0.920635
\(317\) − 7.44722e10i − 0.414217i −0.978318 0.207108i \(-0.933595\pi\)
0.978318 0.207108i \(-0.0664053\pi\)
\(318\) − 1.54449e11i − 0.846961i
\(319\) −1.28923e11 −0.697065
\(320\) 0 0
\(321\) −3.29874e10 −0.173411
\(322\) 4.08659e10i 0.211841i
\(323\) 1.65945e10i 0.0848309i
\(324\) −1.58849e11 −0.800815
\(325\) 0 0
\(326\) −4.75768e10 −0.233301
\(327\) − 1.42816e11i − 0.690738i
\(328\) 1.49726e11i 0.714276i
\(329\) 2.59234e10 0.121986
\(330\) 0 0
\(331\) 2.83840e11 1.29971 0.649857 0.760057i \(-0.274829\pi\)
0.649857 + 0.760057i \(0.274829\pi\)
\(332\) 2.77328e10i 0.125277i
\(333\) 6.09271e10i 0.271526i
\(334\) 1.39332e11 0.612623
\(335\) 0 0
\(336\) 7.77642e9 0.0332853
\(337\) − 5.61414e9i − 0.0237109i −0.999930 0.0118555i \(-0.996226\pi\)
0.999930 0.0118555i \(-0.00377380\pi\)
\(338\) 1.41547e11i 0.589896i
\(339\) −2.49950e11 −1.02791
\(340\) 0 0
\(341\) −8.72679e11 −3.49510
\(342\) − 1.33632e10i − 0.0528192i
\(343\) − 1.38413e10i − 0.0539949i
\(344\) −3.36128e11 −1.29417
\(345\) 0 0
\(346\) 2.73517e11 1.02599
\(347\) 3.39846e11i 1.25834i 0.777267 + 0.629171i \(0.216606\pi\)
−0.777267 + 0.629171i \(0.783394\pi\)
\(348\) − 7.78933e10i − 0.284704i
\(349\) −3.46718e10 −0.125101 −0.0625506 0.998042i \(-0.519923\pi\)
−0.0625506 + 0.998042i \(0.519923\pi\)
\(350\) 0 0
\(351\) 6.62089e9 0.0232828
\(352\) − 5.45578e11i − 1.89415i
\(353\) 3.46900e11i 1.18910i 0.804059 + 0.594550i \(0.202670\pi\)
−0.804059 + 0.594550i \(0.797330\pi\)
\(354\) −1.39821e10 −0.0473214
\(355\) 0 0
\(356\) −6.93939e8 −0.00228979
\(357\) 4.57075e10i 0.148929i
\(358\) − 7.30438e10i − 0.235023i
\(359\) 2.51011e11 0.797569 0.398785 0.917045i \(-0.369432\pi\)
0.398785 + 0.917045i \(0.369432\pi\)
\(360\) 0 0
\(361\) −3.02396e11 −0.937116
\(362\) − 2.82750e10i − 0.0865396i
\(363\) − 9.44221e11i − 2.85426i
\(364\) −2.56219e9 −0.00764988
\(365\) 0 0
\(366\) 3.69398e11 1.07604
\(367\) 4.79871e11i 1.38079i 0.723433 + 0.690394i \(0.242563\pi\)
−0.723433 + 0.690394i \(0.757437\pi\)
\(368\) − 2.52485e10i − 0.0717663i
\(369\) −9.30632e10 −0.261312
\(370\) 0 0
\(371\) 1.69847e11 0.465451
\(372\) − 5.27258e11i − 1.42751i
\(373\) 1.84794e11i 0.494308i 0.968976 + 0.247154i \(0.0794954\pi\)
−0.968976 + 0.247154i \(0.920505\pi\)
\(374\) 1.40391e11 0.371038
\(375\) 0 0
\(376\) 1.21966e11 0.314698
\(377\) 4.57361e9i 0.0116607i
\(378\) 6.63750e10i 0.167221i
\(379\) 7.08908e11 1.76487 0.882437 0.470431i \(-0.155902\pi\)
0.882437 + 0.470431i \(0.155902\pi\)
\(380\) 0 0
\(381\) −1.42491e11 −0.346437
\(382\) 2.30367e11i 0.553521i
\(383\) − 1.23789e11i − 0.293959i −0.989140 0.146980i \(-0.953045\pi\)
0.989140 0.146980i \(-0.0469552\pi\)
\(384\) 3.51785e11 0.825633
\(385\) 0 0
\(386\) 2.69926e11 0.618874
\(387\) − 2.08922e11i − 0.473461i
\(388\) − 1.05345e11i − 0.235977i
\(389\) 2.97971e11 0.659782 0.329891 0.944019i \(-0.392988\pi\)
0.329891 + 0.944019i \(0.392988\pi\)
\(390\) 0 0
\(391\) 1.48403e11 0.321106
\(392\) − 6.51213e10i − 0.139295i
\(393\) − 3.66708e11i − 0.775451i
\(394\) 2.97400e11 0.621738
\(395\) 0 0
\(396\) 2.11207e11 0.431599
\(397\) 5.33426e11i 1.07775i 0.842387 + 0.538873i \(0.181150\pi\)
−0.842387 + 0.538873i \(0.818850\pi\)
\(398\) − 2.27918e11i − 0.455307i
\(399\) 5.58912e10 0.110399
\(400\) 0 0
\(401\) 4.15640e11 0.802726 0.401363 0.915919i \(-0.368537\pi\)
0.401363 + 0.915919i \(0.368537\pi\)
\(402\) − 2.53870e11i − 0.484835i
\(403\) 3.09587e10i 0.0584669i
\(404\) −1.91704e11 −0.358027
\(405\) 0 0
\(406\) −4.58508e10 −0.0837491
\(407\) 7.82704e11i 1.41391i
\(408\) 2.15047e11i 0.384206i
\(409\) −1.07978e12 −1.90801 −0.954006 0.299788i \(-0.903084\pi\)
−0.954006 + 0.299788i \(0.903084\pi\)
\(410\) 0 0
\(411\) 6.80035e11 1.17556
\(412\) 5.06473e11i 0.866002i
\(413\) − 1.53760e10i − 0.0260057i
\(414\) −1.19505e11 −0.199934
\(415\) 0 0
\(416\) −1.93547e10 −0.0316859
\(417\) − 9.86015e11i − 1.59688i
\(418\) − 1.71671e11i − 0.275045i
\(419\) 2.20998e11 0.350289 0.175144 0.984543i \(-0.443961\pi\)
0.175144 + 0.984543i \(0.443961\pi\)
\(420\) 0 0
\(421\) 3.47478e11 0.539086 0.269543 0.962988i \(-0.413127\pi\)
0.269543 + 0.962988i \(0.413127\pi\)
\(422\) − 4.27373e11i − 0.655996i
\(423\) 7.58087e10i 0.115130i
\(424\) 7.99105e11 1.20076
\(425\) 0 0
\(426\) 3.15483e11 0.464122
\(427\) 4.06224e11i 0.591344i
\(428\) − 6.73196e10i − 0.0969716i
\(429\) −4.71662e10 −0.0672316
\(430\) 0 0
\(431\) 1.23574e11 0.172496 0.0862479 0.996274i \(-0.472512\pi\)
0.0862479 + 0.996274i \(0.472512\pi\)
\(432\) − 4.10090e10i − 0.0566503i
\(433\) 7.27679e11i 0.994820i 0.867516 + 0.497410i \(0.165716\pi\)
−0.867516 + 0.497410i \(0.834284\pi\)
\(434\) −3.10363e11 −0.419920
\(435\) 0 0
\(436\) 2.91455e11 0.386262
\(437\) − 1.81468e11i − 0.238031i
\(438\) − 3.49672e11i − 0.453970i
\(439\) 5.85966e11 0.752977 0.376489 0.926421i \(-0.377131\pi\)
0.376489 + 0.926421i \(0.377131\pi\)
\(440\) 0 0
\(441\) 4.04765e10 0.0509600
\(442\) − 4.98045e9i − 0.00620681i
\(443\) 2.11546e11i 0.260969i 0.991450 + 0.130484i \(0.0416533\pi\)
−0.991450 + 0.130484i \(0.958347\pi\)
\(444\) −4.72897e11 −0.577488
\(445\) 0 0
\(446\) −3.08588e11 −0.369294
\(447\) − 7.15480e11i − 0.847645i
\(448\) − 1.69667e11i − 0.198997i
\(449\) 9.21048e11 1.06948 0.534741 0.845016i \(-0.320409\pi\)
0.534741 + 0.845016i \(0.320409\pi\)
\(450\) 0 0
\(451\) −1.19554e12 −1.36073
\(452\) − 5.10091e11i − 0.574810i
\(453\) 4.40181e11i 0.491122i
\(454\) 3.08491e11 0.340794
\(455\) 0 0
\(456\) 2.62961e11 0.284806
\(457\) 8.11185e11i 0.869955i 0.900441 + 0.434977i \(0.143244\pi\)
−0.900441 + 0.434977i \(0.856756\pi\)
\(458\) − 5.68493e11i − 0.603713i
\(459\) 2.41039e11 0.253472
\(460\) 0 0
\(461\) −1.90069e11 −0.196001 −0.0980004 0.995186i \(-0.531245\pi\)
−0.0980004 + 0.995186i \(0.531245\pi\)
\(462\) − 4.72845e11i − 0.482870i
\(463\) − 4.76945e11i − 0.482341i −0.970483 0.241170i \(-0.922469\pi\)
0.970483 0.241170i \(-0.0775313\pi\)
\(464\) 2.83284e10 0.0283721
\(465\) 0 0
\(466\) −1.69253e11 −0.166264
\(467\) 1.06392e12i 1.03510i 0.855653 + 0.517549i \(0.173156\pi\)
−0.855653 + 0.517549i \(0.826844\pi\)
\(468\) − 7.49268e9i − 0.00721990i
\(469\) 2.79179e11 0.266443
\(470\) 0 0
\(471\) −2.17413e11 −0.203560
\(472\) − 7.23420e10i − 0.0670890i
\(473\) − 2.68393e12i − 2.46545i
\(474\) 1.06836e12 0.972105
\(475\) 0 0
\(476\) −9.32784e10 −0.0832817
\(477\) 4.96687e11i 0.439289i
\(478\) − 8.52248e11i − 0.746690i
\(479\) 8.43415e11 0.732034 0.366017 0.930608i \(-0.380721\pi\)
0.366017 + 0.930608i \(0.380721\pi\)
\(480\) 0 0
\(481\) 2.77668e10 0.0236523
\(482\) − 3.89605e11i − 0.328785i
\(483\) − 4.99829e11i − 0.417888i
\(484\) 1.92694e12 1.59611
\(485\) 0 0
\(486\) −4.95841e11 −0.403162
\(487\) 1.15202e12i 0.928065i 0.885818 + 0.464032i \(0.153598\pi\)
−0.885818 + 0.464032i \(0.846402\pi\)
\(488\) 1.91123e12i 1.52554i
\(489\) 5.81910e11 0.460220
\(490\) 0 0
\(491\) −9.68703e11 −0.752184 −0.376092 0.926582i \(-0.622732\pi\)
−0.376092 + 0.926582i \(0.622732\pi\)
\(492\) − 7.22328e11i − 0.555765i
\(493\) 1.66506e11i 0.126946i
\(494\) −6.09011e9 −0.00460102
\(495\) 0 0
\(496\) 1.91754e11 0.142258
\(497\) 3.46934e11i 0.255060i
\(498\) 1.81564e11i 0.132281i
\(499\) −2.62821e12 −1.89761 −0.948805 0.315863i \(-0.897706\pi\)
−0.948805 + 0.315863i \(0.897706\pi\)
\(500\) 0 0
\(501\) −1.70417e12 −1.20849
\(502\) 8.40308e11i 0.590570i
\(503\) − 3.95070e11i − 0.275181i −0.990489 0.137590i \(-0.956064\pi\)
0.990489 0.137590i \(-0.0439358\pi\)
\(504\) 1.90436e11 0.131466
\(505\) 0 0
\(506\) −1.53524e12 −1.04111
\(507\) − 1.73126e12i − 1.16366i
\(508\) − 2.90790e11i − 0.193728i
\(509\) −6.64157e11 −0.438572 −0.219286 0.975661i \(-0.570373\pi\)
−0.219286 + 0.975661i \(0.570373\pi\)
\(510\) 0 0
\(511\) 3.84532e11 0.249482
\(512\) 2.34512e11i 0.150817i
\(513\) − 2.94743e11i − 0.187895i
\(514\) −1.52954e12 −0.966556
\(515\) 0 0
\(516\) 1.62159e12 1.00697
\(517\) 9.73882e11i 0.599513i
\(518\) 2.78364e11i 0.169875i
\(519\) −3.34537e12 −2.02391
\(520\) 0 0
\(521\) 5.22766e11 0.310841 0.155420 0.987848i \(-0.450327\pi\)
0.155420 + 0.987848i \(0.450327\pi\)
\(522\) − 1.34083e11i − 0.0790417i
\(523\) 3.09135e12i 1.80672i 0.428882 + 0.903360i \(0.358907\pi\)
−0.428882 + 0.903360i \(0.641093\pi\)
\(524\) 7.48366e11 0.433634
\(525\) 0 0
\(526\) 1.87991e11 0.107078
\(527\) 1.12708e12i 0.636510i
\(528\) 2.92142e11i 0.163584i
\(529\) 1.78305e11 0.0989947
\(530\) 0 0
\(531\) 4.49645e10 0.0245440
\(532\) 1.14061e11i 0.0617355i
\(533\) 4.24125e10i 0.0227626i
\(534\) −4.54316e9 −0.00241781
\(535\) 0 0
\(536\) 1.31350e12 0.687366
\(537\) 8.93396e11i 0.463617i
\(538\) − 1.12116e12i − 0.576960i
\(539\) 5.19984e11 0.265363
\(540\) 0 0
\(541\) −1.47490e12 −0.740243 −0.370121 0.928983i \(-0.620684\pi\)
−0.370121 + 0.928983i \(0.620684\pi\)
\(542\) 2.65079e11i 0.131940i
\(543\) 3.45831e11i 0.170712i
\(544\) −7.04621e11 −0.344954
\(545\) 0 0
\(546\) −1.67744e10 −0.00807756
\(547\) 2.12294e12i 1.01390i 0.861976 + 0.506949i \(0.169227\pi\)
−0.861976 + 0.506949i \(0.830773\pi\)
\(548\) 1.38779e12i 0.657374i
\(549\) −1.18793e12 −0.558106
\(550\) 0 0
\(551\) 2.03604e11 0.0941031
\(552\) − 2.35163e12i − 1.07806i
\(553\) 1.17486e12i 0.534225i
\(554\) 9.59181e11 0.432620
\(555\) 0 0
\(556\) 2.01223e12 0.892978
\(557\) − 3.52857e12i − 1.55328i −0.629943 0.776641i \(-0.716922\pi\)
0.629943 0.776641i \(-0.283078\pi\)
\(558\) − 9.07605e11i − 0.396317i
\(559\) −9.52137e10 −0.0412426
\(560\) 0 0
\(561\) −1.71712e12 −0.731928
\(562\) 1.37419e12i 0.581078i
\(563\) 3.35280e12i 1.40644i 0.710974 + 0.703218i \(0.248254\pi\)
−0.710974 + 0.703218i \(0.751746\pi\)
\(564\) −5.88403e11 −0.244861
\(565\) 0 0
\(566\) −7.38691e11 −0.302544
\(567\) − 1.14365e12i − 0.464696i
\(568\) 1.63228e12i 0.658000i
\(569\) −2.99364e12 −1.19727 −0.598637 0.801020i \(-0.704291\pi\)
−0.598637 + 0.801020i \(0.704291\pi\)
\(570\) 0 0
\(571\) 4.67267e12 1.83951 0.919756 0.392490i \(-0.128386\pi\)
0.919756 + 0.392490i \(0.128386\pi\)
\(572\) − 9.62553e10i − 0.0375961i
\(573\) − 2.81761e12i − 1.09190i
\(574\) −4.25189e11 −0.163485
\(575\) 0 0
\(576\) 4.96164e11 0.187812
\(577\) − 3.62799e12i − 1.36262i −0.731995 0.681310i \(-0.761411\pi\)
0.731995 0.681310i \(-0.238589\pi\)
\(578\) 1.40310e12i 0.522895i
\(579\) −3.30146e12 −1.22082
\(580\) 0 0
\(581\) −1.99665e11 −0.0726957
\(582\) − 6.89683e11i − 0.249170i
\(583\) 6.38073e12i 2.28751i
\(584\) 1.80917e12 0.643608
\(585\) 0 0
\(586\) 1.41252e12 0.494827
\(587\) 3.97200e12i 1.38082i 0.723417 + 0.690411i \(0.242570\pi\)
−0.723417 + 0.690411i \(0.757430\pi\)
\(588\) 3.14166e11i 0.108383i
\(589\) 1.37819e12 0.471835
\(590\) 0 0
\(591\) −3.63748e12 −1.22647
\(592\) − 1.71984e11i − 0.0575494i
\(593\) − 2.67436e12i − 0.888123i −0.895996 0.444061i \(-0.853537\pi\)
0.895996 0.444061i \(-0.146463\pi\)
\(594\) −2.49355e12 −0.821825
\(595\) 0 0
\(596\) 1.46013e12 0.474005
\(597\) 2.78765e12i 0.898162i
\(598\) 5.44632e10i 0.0174160i
\(599\) −4.84522e12 −1.53777 −0.768887 0.639384i \(-0.779189\pi\)
−0.768887 + 0.639384i \(0.779189\pi\)
\(600\) 0 0
\(601\) −4.64764e12 −1.45311 −0.726553 0.687110i \(-0.758879\pi\)
−0.726553 + 0.687110i \(0.758879\pi\)
\(602\) − 9.54525e11i − 0.296212i
\(603\) 8.16411e11i 0.251467i
\(604\) −8.98307e11 −0.274637
\(605\) 0 0
\(606\) −1.25507e12 −0.378043
\(607\) − 6.52447e12i − 1.95073i −0.220604 0.975363i \(-0.570803\pi\)
0.220604 0.975363i \(-0.429197\pi\)
\(608\) 8.61613e11i 0.255709i
\(609\) 5.60800e11 0.165208
\(610\) 0 0
\(611\) 3.45489e10 0.0100288
\(612\) − 2.72777e11i − 0.0786006i
\(613\) 9.54536e11i 0.273036i 0.990638 + 0.136518i \(0.0435912\pi\)
−0.990638 + 0.136518i \(0.956409\pi\)
\(614\) 1.08230e12 0.307321
\(615\) 0 0
\(616\) 2.44645e12 0.684580
\(617\) − 4.50764e12i − 1.25218i −0.779752 0.626088i \(-0.784655\pi\)
0.779752 0.626088i \(-0.215345\pi\)
\(618\) 3.31583e12i 0.914418i
\(619\) −3.64346e12 −0.997484 −0.498742 0.866750i \(-0.666204\pi\)
−0.498742 + 0.866750i \(0.666204\pi\)
\(620\) 0 0
\(621\) −2.63585e12 −0.711228
\(622\) − 4.25452e12i − 1.13971i
\(623\) − 4.99608e9i − 0.00132872i
\(624\) 1.03639e10 0.00273647
\(625\) 0 0
\(626\) 1.72187e12 0.448143
\(627\) 2.09970e12i 0.542567i
\(628\) − 4.43690e11i − 0.113831i
\(629\) 1.01087e12 0.257495
\(630\) 0 0
\(631\) 3.61498e12 0.907766 0.453883 0.891061i \(-0.350038\pi\)
0.453883 + 0.891061i \(0.350038\pi\)
\(632\) 5.52757e12i 1.37818i
\(633\) 5.22718e12i 1.29405i
\(634\) 9.95003e11 0.244581
\(635\) 0 0
\(636\) −3.85513e12 −0.934292
\(637\) − 1.84467e10i − 0.00443906i
\(638\) − 1.72251e12i − 0.411593i
\(639\) −1.01455e12 −0.240724
\(640\) 0 0
\(641\) −2.66304e12 −0.623041 −0.311521 0.950239i \(-0.600838\pi\)
−0.311521 + 0.950239i \(0.600838\pi\)
\(642\) − 4.40736e11i − 0.102393i
\(643\) − 4.09899e12i − 0.945644i −0.881158 0.472822i \(-0.843235\pi\)
0.881158 0.472822i \(-0.156765\pi\)
\(644\) 1.02004e12 0.233684
\(645\) 0 0
\(646\) −2.21715e11 −0.0500898
\(647\) 6.11325e12i 1.37152i 0.727827 + 0.685761i \(0.240531\pi\)
−0.727827 + 0.685761i \(0.759469\pi\)
\(648\) − 5.38071e12i − 1.19882i
\(649\) 5.77640e11 0.127807
\(650\) 0 0
\(651\) 3.79604e12 0.828356
\(652\) 1.18754e12i 0.257356i
\(653\) − 7.66270e12i − 1.64920i −0.565719 0.824598i \(-0.691401\pi\)
0.565719 0.824598i \(-0.308599\pi\)
\(654\) 1.90813e12 0.407858
\(655\) 0 0
\(656\) 2.62698e11 0.0553846
\(657\) 1.12450e12i 0.235459i
\(658\) 3.46356e11i 0.0720287i
\(659\) 8.20110e9 0.00169390 0.000846950 1.00000i \(-0.499730\pi\)
0.000846950 1.00000i \(0.499730\pi\)
\(660\) 0 0
\(661\) 3.20922e12 0.653872 0.326936 0.945046i \(-0.393984\pi\)
0.326936 + 0.945046i \(0.393984\pi\)
\(662\) 3.79231e12i 0.767437i
\(663\) 6.09158e10i 0.0122439i
\(664\) −9.39395e11 −0.187539
\(665\) 0 0
\(666\) −8.14030e11 −0.160327
\(667\) − 1.82081e12i − 0.356203i
\(668\) − 3.47781e12i − 0.675791i
\(669\) 3.77433e12 0.728488
\(670\) 0 0
\(671\) −1.52609e13 −2.90622
\(672\) 2.37320e12i 0.448923i
\(673\) 4.91229e12i 0.923031i 0.887132 + 0.461515i \(0.152694\pi\)
−0.887132 + 0.461515i \(0.847306\pi\)
\(674\) 7.50089e10 0.0140005
\(675\) 0 0
\(676\) 3.53309e12 0.650721
\(677\) − 3.11910e12i − 0.570664i −0.958429 0.285332i \(-0.907896\pi\)
0.958429 0.285332i \(-0.0921038\pi\)
\(678\) − 3.33952e12i − 0.606946i
\(679\) 7.58440e11 0.136933
\(680\) 0 0
\(681\) −3.77315e12 −0.672267
\(682\) − 1.16596e13i − 2.06374i
\(683\) − 2.91806e12i − 0.513099i −0.966531 0.256550i \(-0.917414\pi\)
0.966531 0.256550i \(-0.0825857\pi\)
\(684\) −3.33552e11 −0.0582655
\(685\) 0 0
\(686\) 1.84930e11 0.0318822
\(687\) 6.95322e12i 1.19092i
\(688\) 5.89742e11i 0.100349i
\(689\) 2.26360e11 0.0382660
\(690\) 0 0
\(691\) 4.74697e12 0.792073 0.396037 0.918235i \(-0.370385\pi\)
0.396037 + 0.918235i \(0.370385\pi\)
\(692\) − 6.82712e12i − 1.13178i
\(693\) 1.52061e12i 0.250448i
\(694\) −4.54058e12 −0.743009
\(695\) 0 0
\(696\) 2.63849e12 0.426200
\(697\) 1.54406e12i 0.247809i
\(698\) − 4.63240e11i − 0.0738680i
\(699\) 2.07013e12 0.327981
\(700\) 0 0
\(701\) −2.24423e11 −0.0351023 −0.0175512 0.999846i \(-0.505587\pi\)
−0.0175512 + 0.999846i \(0.505587\pi\)
\(702\) 8.84599e10i 0.0137477i
\(703\) − 1.23610e12i − 0.190877i
\(704\) 6.37400e12 0.977992
\(705\) 0 0
\(706\) −4.63484e12 −0.702123
\(707\) − 1.38019e12i − 0.207755i
\(708\) 3.49001e11i 0.0522007i
\(709\) −4.25463e12 −0.632344 −0.316172 0.948702i \(-0.602398\pi\)
−0.316172 + 0.948702i \(0.602398\pi\)
\(710\) 0 0
\(711\) −3.43569e12 −0.504197
\(712\) − 2.35059e10i − 0.00342781i
\(713\) − 1.23250e13i − 1.78601i
\(714\) −6.10685e11 −0.0879378
\(715\) 0 0
\(716\) −1.82321e12 −0.259256
\(717\) 1.04238e13i 1.47296i
\(718\) 3.35369e12i 0.470938i
\(719\) 4.28931e12 0.598559 0.299280 0.954165i \(-0.403254\pi\)
0.299280 + 0.954165i \(0.403254\pi\)
\(720\) 0 0
\(721\) −3.64640e12 −0.502523
\(722\) − 4.04023e12i − 0.553335i
\(723\) 4.76524e12i 0.648578i
\(724\) −7.05761e11 −0.0954627
\(725\) 0 0
\(726\) 1.26155e13 1.68535
\(727\) 1.28935e13i 1.71185i 0.517098 + 0.855926i \(0.327012\pi\)
−0.517098 + 0.855926i \(0.672988\pi\)
\(728\) − 8.67892e10i − 0.0114518i
\(729\) −3.31084e12 −0.434174
\(730\) 0 0
\(731\) −3.46633e12 −0.448995
\(732\) − 9.22038e12i − 1.18699i
\(733\) − 2.71447e12i − 0.347310i −0.984807 0.173655i \(-0.944442\pi\)
0.984807 0.173655i \(-0.0555578\pi\)
\(734\) −6.41143e12 −0.815309
\(735\) 0 0
\(736\) 7.70531e12 0.967921
\(737\) 1.04881e13i 1.30946i
\(738\) − 1.24339e12i − 0.154296i
\(739\) 9.62579e12 1.18723 0.593617 0.804747i \(-0.297699\pi\)
0.593617 + 0.804747i \(0.297699\pi\)
\(740\) 0 0
\(741\) 7.44880e10 0.00907620
\(742\) 2.26927e12i 0.274833i
\(743\) 1.24362e13i 1.49706i 0.663103 + 0.748529i \(0.269239\pi\)
−0.663103 + 0.748529i \(0.730761\pi\)
\(744\) 1.78599e13 2.13698
\(745\) 0 0
\(746\) −2.46898e12 −0.291872
\(747\) − 5.83886e11i − 0.0686097i
\(748\) − 3.50425e12i − 0.409296i
\(749\) 4.84674e11 0.0562706
\(750\) 0 0
\(751\) 4.26959e12 0.489786 0.244893 0.969550i \(-0.421247\pi\)
0.244893 + 0.969550i \(0.421247\pi\)
\(752\) − 2.13992e11i − 0.0244015i
\(753\) − 1.02778e13i − 1.16499i
\(754\) −6.11068e10 −0.00688523
\(755\) 0 0
\(756\) 1.65676e12 0.184463
\(757\) 9.76840e12i 1.08116i 0.841291 + 0.540582i \(0.181796\pi\)
−0.841291 + 0.540582i \(0.818204\pi\)
\(758\) 9.47153e12i 1.04210i
\(759\) 1.87774e13 2.05375
\(760\) 0 0
\(761\) 1.23336e13 1.33309 0.666543 0.745466i \(-0.267773\pi\)
0.666543 + 0.745466i \(0.267773\pi\)
\(762\) − 1.90378e12i − 0.204559i
\(763\) 2.09836e12i 0.224140i
\(764\) 5.75008e12 0.610595
\(765\) 0 0
\(766\) 1.65391e12 0.173573
\(767\) − 2.04921e10i − 0.00213800i
\(768\) 1.06125e13i 1.10076i
\(769\) 1.68919e13 1.74185 0.870926 0.491415i \(-0.163520\pi\)
0.870926 + 0.491415i \(0.163520\pi\)
\(770\) 0 0
\(771\) 1.87078e13 1.90668
\(772\) − 6.73751e12i − 0.682687i
\(773\) − 1.47186e13i − 1.48272i −0.671109 0.741359i \(-0.734182\pi\)
0.671109 0.741359i \(-0.265818\pi\)
\(774\) 2.79135e12 0.279563
\(775\) 0 0
\(776\) 3.56835e12 0.353257
\(777\) − 3.40467e12i − 0.335104i
\(778\) 3.98111e12i 0.389579i
\(779\) 1.88808e12 0.183697
\(780\) 0 0
\(781\) −1.30335e13 −1.25352
\(782\) 1.98278e12i 0.189602i
\(783\) − 2.95738e12i − 0.281177i
\(784\) −1.14257e11 −0.0108009
\(785\) 0 0
\(786\) 4.89949e12 0.457878
\(787\) − 1.82466e13i − 1.69549i −0.530406 0.847744i \(-0.677960\pi\)
0.530406 0.847744i \(-0.322040\pi\)
\(788\) − 7.42326e12i − 0.685846i
\(789\) −2.29932e12 −0.211228
\(790\) 0 0
\(791\) 3.67245e12 0.333550
\(792\) 7.15424e12i 0.646101i
\(793\) 5.41388e11i 0.0486160i
\(794\) −7.12695e12 −0.636373
\(795\) 0 0
\(796\) −5.68895e12 −0.502254
\(797\) − 1.21558e13i − 1.06714i −0.845757 0.533568i \(-0.820851\pi\)
0.845757 0.533568i \(-0.179149\pi\)
\(798\) 7.46748e11i 0.0651870i
\(799\) 1.25778e12 0.109180
\(800\) 0 0
\(801\) 1.46102e10 0.00125403
\(802\) 5.55325e12i 0.473982i
\(803\) 1.44460e13i 1.22610i
\(804\) −6.33673e12 −0.534827
\(805\) 0 0
\(806\) −4.13631e11 −0.0345227
\(807\) 1.37128e13i 1.13814i
\(808\) − 6.49362e12i − 0.535964i
\(809\) 2.61893e12 0.214959 0.107479 0.994207i \(-0.465722\pi\)
0.107479 + 0.994207i \(0.465722\pi\)
\(810\) 0 0
\(811\) 1.16994e13 0.949662 0.474831 0.880077i \(-0.342509\pi\)
0.474831 + 0.880077i \(0.342509\pi\)
\(812\) 1.14446e12i 0.0923845i
\(813\) − 3.24217e12i − 0.260272i
\(814\) −1.04575e13 −0.834868
\(815\) 0 0
\(816\) 3.77305e11 0.0297911
\(817\) 4.23863e12i 0.332833i
\(818\) − 1.44267e13i − 1.12662i
\(819\) 5.39443e10 0.00418955
\(820\) 0 0
\(821\) 5.17673e12 0.397659 0.198830 0.980034i \(-0.436286\pi\)
0.198830 + 0.980034i \(0.436286\pi\)
\(822\) 9.08577e12i 0.694126i
\(823\) 7.84017e12i 0.595698i 0.954613 + 0.297849i \(0.0962692\pi\)
−0.954613 + 0.297849i \(0.903731\pi\)
\(824\) −1.71558e13 −1.29640
\(825\) 0 0
\(826\) 2.05435e11 0.0153555
\(827\) − 1.43263e13i − 1.06502i −0.846422 0.532512i \(-0.821248\pi\)
0.846422 0.532512i \(-0.178752\pi\)
\(828\) 2.98292e12i 0.220549i
\(829\) −4.95546e12 −0.364408 −0.182204 0.983261i \(-0.558323\pi\)
−0.182204 + 0.983261i \(0.558323\pi\)
\(830\) 0 0
\(831\) −1.17317e13 −0.853408
\(832\) − 2.26121e11i − 0.0163601i
\(833\) − 6.71566e11i − 0.0483266i
\(834\) 1.31739e13 0.942902
\(835\) 0 0
\(836\) −4.28500e12 −0.303405
\(837\) − 2.00185e13i − 1.40983i
\(838\) 2.95270e12i 0.206834i
\(839\) −7.38235e12 −0.514358 −0.257179 0.966364i \(-0.582793\pi\)
−0.257179 + 0.966364i \(0.582793\pi\)
\(840\) 0 0
\(841\) −1.24642e13 −0.859179
\(842\) 4.64256e12i 0.318312i
\(843\) − 1.68077e13i − 1.14626i
\(844\) −1.06675e13 −0.723636
\(845\) 0 0
\(846\) −1.01286e12 −0.0679802
\(847\) 1.38732e13i 0.926189i
\(848\) − 1.40204e12i − 0.0931065i
\(849\) 9.03491e12 0.596814
\(850\) 0 0
\(851\) −1.10543e13 −0.722516
\(852\) − 7.87462e12i − 0.511978i
\(853\) − 2.13356e13i − 1.37985i −0.723879 0.689927i \(-0.757643\pi\)
0.723879 0.689927i \(-0.242357\pi\)
\(854\) −5.42745e12 −0.349169
\(855\) 0 0
\(856\) 2.28032e12 0.145166
\(857\) 1.65008e13i 1.04494i 0.852659 + 0.522468i \(0.174989\pi\)
−0.852659 + 0.522468i \(0.825011\pi\)
\(858\) − 6.30175e11i − 0.0396980i
\(859\) 1.94817e13 1.22083 0.610417 0.792080i \(-0.291002\pi\)
0.610417 + 0.792080i \(0.291002\pi\)
\(860\) 0 0
\(861\) 5.20047e12 0.322499
\(862\) 1.65103e12i 0.101853i
\(863\) − 1.61059e13i − 0.988411i −0.869345 0.494205i \(-0.835459\pi\)
0.869345 0.494205i \(-0.164541\pi\)
\(864\) 1.25151e13 0.764049
\(865\) 0 0
\(866\) −9.72232e12 −0.587408
\(867\) − 1.71613e13i − 1.03149i
\(868\) 7.74684e12i 0.463219i
\(869\) −4.41368e13 −2.62550
\(870\) 0 0
\(871\) 3.72070e11 0.0219050
\(872\) 9.87249e12i 0.578232i
\(873\) 2.21793e12i 0.129236i
\(874\) 2.42454e12 0.140549
\(875\) 0 0
\(876\) −8.72801e12 −0.500780
\(877\) − 1.84919e13i − 1.05556i −0.849381 0.527780i \(-0.823025\pi\)
0.849381 0.527780i \(-0.176975\pi\)
\(878\) 7.82892e12i 0.444607i
\(879\) −1.72764e13 −0.976121
\(880\) 0 0
\(881\) −2.83078e13 −1.58312 −0.791562 0.611089i \(-0.790732\pi\)
−0.791562 + 0.611089i \(0.790732\pi\)
\(882\) 5.40795e11i 0.0300901i
\(883\) 7.32328e12i 0.405399i 0.979241 + 0.202700i \(0.0649715\pi\)
−0.979241 + 0.202700i \(0.935029\pi\)
\(884\) −1.24315e11 −0.00684681
\(885\) 0 0
\(886\) −2.82641e12 −0.154093
\(887\) 1.51372e13i 0.821087i 0.911841 + 0.410544i \(0.134661\pi\)
−0.911841 + 0.410544i \(0.865339\pi\)
\(888\) − 1.60185e13i − 0.864496i
\(889\) 2.09357e12 0.112416
\(890\) 0 0
\(891\) 4.29642e13 2.28380
\(892\) 7.70253e12i 0.407372i
\(893\) − 1.53802e12i − 0.0809337i
\(894\) 9.55934e12 0.500506
\(895\) 0 0
\(896\) −5.16867e12 −0.267913
\(897\) − 6.66138e11i − 0.0343556i
\(898\) 1.23059e13i 0.631493i
\(899\) 1.38285e13 0.706082
\(900\) 0 0
\(901\) 8.24080e12 0.416589
\(902\) − 1.59733e13i − 0.803463i
\(903\) 1.16748e13i 0.584323i
\(904\) 1.72783e13 0.860487
\(905\) 0 0
\(906\) −5.88114e12 −0.289991
\(907\) − 2.24337e13i − 1.10070i −0.834935 0.550349i \(-0.814495\pi\)
0.834935 0.550349i \(-0.185505\pi\)
\(908\) − 7.70011e12i − 0.375933i
\(909\) 4.03614e12 0.196078
\(910\) 0 0
\(911\) −6.34178e12 −0.305055 −0.152528 0.988299i \(-0.548741\pi\)
−0.152528 + 0.988299i \(0.548741\pi\)
\(912\) − 4.61369e11i − 0.0220837i
\(913\) − 7.50094e12i − 0.357270i
\(914\) −1.08380e13 −0.513679
\(915\) 0 0
\(916\) −1.41899e13 −0.665963
\(917\) 5.38793e12i 0.251629i
\(918\) 3.22045e12i 0.149667i
\(919\) −9.04471e12 −0.418288 −0.209144 0.977885i \(-0.567068\pi\)
−0.209144 + 0.977885i \(0.567068\pi\)
\(920\) 0 0
\(921\) −1.32376e13 −0.606236
\(922\) − 2.53946e12i − 0.115732i
\(923\) 4.62369e11i 0.0209692i
\(924\) −1.18025e13 −0.532659
\(925\) 0 0
\(926\) 6.37233e12 0.284806
\(927\) − 1.06633e13i − 0.474277i
\(928\) 8.64522e12i 0.382658i
\(929\) −8.50641e12 −0.374693 −0.187346 0.982294i \(-0.559989\pi\)
−0.187346 + 0.982294i \(0.559989\pi\)
\(930\) 0 0
\(931\) −8.21193e11 −0.0358238
\(932\) 4.22464e12i 0.183408i
\(933\) 5.20368e13i 2.24824i
\(934\) −1.42147e13 −0.611191
\(935\) 0 0
\(936\) 2.53800e11 0.0108081
\(937\) − 3.00276e13i − 1.27260i −0.771442 0.636300i \(-0.780464\pi\)
0.771442 0.636300i \(-0.219536\pi\)
\(938\) 3.73003e12i 0.157326i
\(939\) −2.10602e13 −0.884030
\(940\) 0 0
\(941\) −3.15982e13 −1.31374 −0.656870 0.754004i \(-0.728120\pi\)
−0.656870 + 0.754004i \(0.728120\pi\)
\(942\) − 2.90480e12i − 0.120195i
\(943\) − 1.68849e13i − 0.695338i
\(944\) −1.26925e11 −0.00520205
\(945\) 0 0
\(946\) 3.58592e13 1.45576
\(947\) − 8.84885e12i − 0.357529i −0.983892 0.178765i \(-0.942790\pi\)
0.983892 0.178765i \(-0.0572101\pi\)
\(948\) − 2.66667e13i − 1.07234i
\(949\) 5.12477e11 0.0205105
\(950\) 0 0
\(951\) −1.21698e13 −0.482473
\(952\) − 3.15963e12i − 0.124672i
\(953\) 4.90260e12i 0.192534i 0.995356 + 0.0962672i \(0.0306903\pi\)
−0.995356 + 0.0962672i \(0.969310\pi\)
\(954\) −6.63610e12 −0.259385
\(955\) 0 0
\(956\) −2.12726e13 −0.823682
\(957\) 2.10679e13i 0.811929i
\(958\) 1.12686e13i 0.432241i
\(959\) −9.99155e12 −0.381460
\(960\) 0 0
\(961\) 6.71649e13 2.54031
\(962\) 3.70985e11i 0.0139659i
\(963\) 1.41735e12i 0.0531077i
\(964\) −9.72475e12 −0.362687
\(965\) 0 0
\(966\) 6.67808e12 0.246749
\(967\) 1.55633e13i 0.572378i 0.958173 + 0.286189i \(0.0923885\pi\)
−0.958173 + 0.286189i \(0.907612\pi\)
\(968\) 6.52713e13i 2.38937i
\(969\) 2.71179e12 0.0988096
\(970\) 0 0
\(971\) −2.49197e13 −0.899613 −0.449806 0.893126i \(-0.648507\pi\)
−0.449806 + 0.893126i \(0.648507\pi\)
\(972\) 1.23765e13i 0.444732i
\(973\) 1.44872e13i 0.518176i
\(974\) −1.53918e13 −0.547991
\(975\) 0 0
\(976\) 3.35329e12 0.118290
\(977\) 4.47898e12i 0.157273i 0.996903 + 0.0786364i \(0.0250566\pi\)
−0.996903 + 0.0786364i \(0.974943\pi\)
\(978\) 7.77474e12i 0.271745i
\(979\) 1.87691e11 0.00653012
\(980\) 0 0
\(981\) −6.13629e12 −0.211542
\(982\) − 1.29426e13i − 0.444139i
\(983\) 1.43233e13i 0.489275i 0.969615 + 0.244637i \(0.0786689\pi\)
−0.969615 + 0.244637i \(0.921331\pi\)
\(984\) 2.44675e13 0.831977
\(985\) 0 0
\(986\) −2.22464e12 −0.0749572
\(987\) − 4.23626e12i − 0.142088i
\(988\) 1.52013e11i 0.00507543i
\(989\) 3.79057e13 1.25986
\(990\) 0 0
\(991\) −2.28575e13 −0.752829 −0.376415 0.926451i \(-0.622843\pi\)
−0.376415 + 0.926451i \(0.622843\pi\)
\(992\) 5.85194e13i 1.91866i
\(993\) − 4.63836e13i − 1.51388i
\(994\) −4.63529e12 −0.150605
\(995\) 0 0
\(996\) 4.53194e12 0.145921
\(997\) − 2.67132e13i − 0.856243i −0.903721 0.428121i \(-0.859176\pi\)
0.903721 0.428121i \(-0.140824\pi\)
\(998\) − 3.51147e13i − 1.12047i
\(999\) −1.79545e13 −0.570334
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.10.b.d.99.4 6
5.2 odd 4 175.10.a.d.1.2 3
5.3 odd 4 7.10.a.b.1.2 3
5.4 even 2 inner 175.10.b.d.99.3 6
15.8 even 4 63.10.a.e.1.2 3
20.3 even 4 112.10.a.h.1.1 3
35.3 even 12 49.10.c.e.30.2 6
35.13 even 4 49.10.a.c.1.2 3
35.18 odd 12 49.10.c.d.30.2 6
35.23 odd 12 49.10.c.d.18.2 6
35.33 even 12 49.10.c.e.18.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7.10.a.b.1.2 3 5.3 odd 4
49.10.a.c.1.2 3 35.13 even 4
49.10.c.d.18.2 6 35.23 odd 12
49.10.c.d.30.2 6 35.18 odd 12
49.10.c.e.18.2 6 35.33 even 12
49.10.c.e.30.2 6 35.3 even 12
63.10.a.e.1.2 3 15.8 even 4
112.10.a.h.1.1 3 20.3 even 4
175.10.a.d.1.2 3 5.2 odd 4
175.10.b.d.99.3 6 5.4 even 2 inner
175.10.b.d.99.4 6 1.1 even 1 trivial