Properties

Label 175.10.b.d.99.2
Level $175$
Weight $10$
Character 175.99
Analytic conductor $90.131$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,10,Mod(99,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.99");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 175.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(90.1312713287\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 853x^{4} + 185508x^{2} + 4064256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 7)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 99.2
Root \(-18.2745i\) of defining polynomial
Character \(\chi\) \(=\) 175.99
Dual form 175.10.b.d.99.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-34.1627i q^{2} +79.6469i q^{3} -655.088 q^{4} +2720.95 q^{6} +2401.00i q^{7} +4888.28i q^{8} +13339.4 q^{9} +69354.4 q^{11} -52175.7i q^{12} -105959. i q^{13} +82024.6 q^{14} -168409. q^{16} +568267. i q^{17} -455709. i q^{18} +396405. q^{19} -191232. q^{21} -2.36933e6i q^{22} +620765. i q^{23} -389336. q^{24} -3.61984e6 q^{26} +2.63013e6i q^{27} -1.57287e6i q^{28} -4.87652e6 q^{29} -1.42482e6 q^{31} +8.25609e6i q^{32} +5.52386e6i q^{33} +1.94135e7 q^{34} -8.73846e6 q^{36} +1.31092e7i q^{37} -1.35423e7i q^{38} +8.43931e6 q^{39} -2.03049e7 q^{41} +6.53300e6i q^{42} +1.11768e7i q^{43} -4.54332e7 q^{44} +2.12070e7 q^{46} -1.99352e7i q^{47} -1.34132e7i q^{48} -5.76480e6 q^{49} -4.52607e7 q^{51} +6.94125e7i q^{52} -5.65007e7i q^{53} +8.98523e7 q^{54} -1.17367e7 q^{56} +3.15725e7i q^{57} +1.66595e8i q^{58} +1.09340e8 q^{59} +3.20008e7 q^{61} +4.86755e7i q^{62} +3.20278e7i q^{63} +1.95825e8 q^{64} +1.88710e8 q^{66} +8.02869e7i q^{67} -3.72265e8i q^{68} -4.94420e7 q^{69} +2.07893e8 q^{71} +6.52065e7i q^{72} +2.70274e8i q^{73} +4.47844e8 q^{74} -2.59680e8 q^{76} +1.66520e8i q^{77} -2.88309e8i q^{78} +5.16196e8 q^{79} +5.30772e7 q^{81} +6.93671e8i q^{82} +6.82693e8i q^{83} +1.25274e8 q^{84} +3.81830e8 q^{86} -3.88400e8i q^{87} +3.39023e8i q^{88} +1.47150e8 q^{89} +2.54408e8 q^{91} -4.06656e8i q^{92} -1.13482e8i q^{93} -6.81040e8 q^{94} -6.57572e8 q^{96} +1.09643e9i q^{97} +1.96941e8i q^{98} +9.25144e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3114 q^{4} + 9828 q^{6} + 52002 q^{9} - 6888 q^{11} - 100842 q^{14} + 965922 q^{16} - 445704 q^{19} + 403368 q^{21} + 2899260 q^{24} - 17570112 q^{26} - 8163636 q^{29} + 5738880 q^{31} + 7963284 q^{34}+ \cdots + 3801958344 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 34.1627i − 1.50979i −0.655845 0.754896i \(-0.727688\pi\)
0.655845 0.754896i \(-0.272312\pi\)
\(3\) 79.6469i 0.567706i 0.958868 + 0.283853i \(0.0916127\pi\)
−0.958868 + 0.283853i \(0.908387\pi\)
\(4\) −655.088 −1.27947
\(5\) 0 0
\(6\) 2720.95 0.857117
\(7\) 2401.00i 0.377964i
\(8\) 4888.28i 0.421940i
\(9\) 13339.4 0.677710
\(10\) 0 0
\(11\) 69354.4 1.42826 0.714129 0.700014i \(-0.246823\pi\)
0.714129 + 0.700014i \(0.246823\pi\)
\(12\) − 52175.7i − 0.726362i
\(13\) − 105959.i − 1.02895i −0.857506 0.514473i \(-0.827987\pi\)
0.857506 0.514473i \(-0.172013\pi\)
\(14\) 82024.6 0.570647
\(15\) 0 0
\(16\) −168409. −0.642428
\(17\) 568267.i 1.65018i 0.564998 + 0.825092i \(0.308877\pi\)
−0.564998 + 0.825092i \(0.691123\pi\)
\(18\) − 455709.i − 1.02320i
\(19\) 396405. 0.697828 0.348914 0.937155i \(-0.386551\pi\)
0.348914 + 0.937155i \(0.386551\pi\)
\(20\) 0 0
\(21\) −191232. −0.214573
\(22\) − 2.36933e6i − 2.15637i
\(23\) 620765.i 0.462543i 0.972889 + 0.231271i \(0.0742885\pi\)
−0.972889 + 0.231271i \(0.925712\pi\)
\(24\) −389336. −0.239538
\(25\) 0 0
\(26\) −3.61984e6 −1.55349
\(27\) 2.63013e6i 0.952446i
\(28\) − 1.57287e6i − 0.483594i
\(29\) −4.87652e6 −1.28032 −0.640161 0.768241i \(-0.721132\pi\)
−0.640161 + 0.768241i \(0.721132\pi\)
\(30\) 0 0
\(31\) −1.42482e6 −0.277096 −0.138548 0.990356i \(-0.544244\pi\)
−0.138548 + 0.990356i \(0.544244\pi\)
\(32\) 8.25609e6i 1.39187i
\(33\) 5.52386e6i 0.810830i
\(34\) 1.94135e7 2.49143
\(35\) 0 0
\(36\) −8.73846e6 −0.867109
\(37\) 1.31092e7i 1.14992i 0.818182 + 0.574960i \(0.194982\pi\)
−0.818182 + 0.574960i \(0.805018\pi\)
\(38\) − 1.35423e7i − 1.05357i
\(39\) 8.43931e6 0.584139
\(40\) 0 0
\(41\) −2.03049e7 −1.12221 −0.561105 0.827744i \(-0.689624\pi\)
−0.561105 + 0.827744i \(0.689624\pi\)
\(42\) 6.53300e6i 0.323960i
\(43\) 1.11768e7i 0.498551i 0.968433 + 0.249276i \(0.0801925\pi\)
−0.968433 + 0.249276i \(0.919807\pi\)
\(44\) −4.54332e7 −1.82741
\(45\) 0 0
\(46\) 2.12070e7 0.698343
\(47\) − 1.99352e7i − 0.595909i −0.954580 0.297955i \(-0.903696\pi\)
0.954580 0.297955i \(-0.0963044\pi\)
\(48\) − 1.34132e7i − 0.364710i
\(49\) −5.76480e6 −0.142857
\(50\) 0 0
\(51\) −4.52607e7 −0.936819
\(52\) 6.94125e7i 1.31651i
\(53\) − 5.65007e7i − 0.983586i −0.870712 0.491793i \(-0.836342\pi\)
0.870712 0.491793i \(-0.163658\pi\)
\(54\) 8.98523e7 1.43799
\(55\) 0 0
\(56\) −1.17367e7 −0.159478
\(57\) 3.15725e7i 0.396161i
\(58\) 1.66595e8i 1.93302i
\(59\) 1.09340e8 1.17475 0.587375 0.809315i \(-0.300161\pi\)
0.587375 + 0.809315i \(0.300161\pi\)
\(60\) 0 0
\(61\) 3.20008e7 0.295921 0.147961 0.988993i \(-0.452729\pi\)
0.147961 + 0.988993i \(0.452729\pi\)
\(62\) 4.86755e7i 0.418358i
\(63\) 3.20278e7i 0.256150i
\(64\) 1.95825e8 1.45901
\(65\) 0 0
\(66\) 1.88710e8 1.22418
\(67\) 8.02869e7i 0.486752i 0.969932 + 0.243376i \(0.0782549\pi\)
−0.969932 + 0.243376i \(0.921745\pi\)
\(68\) − 3.72265e8i − 2.11136i
\(69\) −4.94420e7 −0.262588
\(70\) 0 0
\(71\) 2.07893e8 0.970906 0.485453 0.874263i \(-0.338655\pi\)
0.485453 + 0.874263i \(0.338655\pi\)
\(72\) 6.52065e7i 0.285953i
\(73\) 2.70274e8i 1.11391i 0.830541 + 0.556957i \(0.188031\pi\)
−0.830541 + 0.556957i \(0.811969\pi\)
\(74\) 4.47844e8 1.73614
\(75\) 0 0
\(76\) −2.59680e8 −0.892849
\(77\) 1.66520e8i 0.539831i
\(78\) − 2.88309e8i − 0.881928i
\(79\) 5.16196e8 1.49105 0.745526 0.666477i \(-0.232198\pi\)
0.745526 + 0.666477i \(0.232198\pi\)
\(80\) 0 0
\(81\) 5.30772e7 0.137002
\(82\) 6.93671e8i 1.69430i
\(83\) 6.82693e8i 1.57897i 0.613769 + 0.789486i \(0.289653\pi\)
−0.613769 + 0.789486i \(0.710347\pi\)
\(84\) 1.25274e8 0.274539
\(85\) 0 0
\(86\) 3.81830e8 0.752708
\(87\) − 3.88400e8i − 0.726846i
\(88\) 3.39023e8i 0.602639i
\(89\) 1.47150e8 0.248602 0.124301 0.992245i \(-0.460331\pi\)
0.124301 + 0.992245i \(0.460331\pi\)
\(90\) 0 0
\(91\) 2.54408e8 0.388905
\(92\) − 4.06656e8i − 0.591809i
\(93\) − 1.13482e8i − 0.157309i
\(94\) −6.81040e8 −0.899699
\(95\) 0 0
\(96\) −6.57572e8 −0.790174
\(97\) 1.09643e9i 1.25750i 0.777608 + 0.628750i \(0.216433\pi\)
−0.777608 + 0.628750i \(0.783567\pi\)
\(98\) 1.96941e8i 0.215684i
\(99\) 9.25144e8 0.967945
\(100\) 0 0
\(101\) 2.08683e8 0.199545 0.0997727 0.995010i \(-0.468188\pi\)
0.0997727 + 0.995010i \(0.468188\pi\)
\(102\) 1.54623e9i 1.41440i
\(103\) − 6.78194e8i − 0.593727i −0.954920 0.296863i \(-0.904059\pi\)
0.954920 0.296863i \(-0.0959406\pi\)
\(104\) 5.17957e8 0.434154
\(105\) 0 0
\(106\) −1.93021e9 −1.48501
\(107\) − 4.59542e8i − 0.338921i −0.985537 0.169461i \(-0.945797\pi\)
0.985537 0.169461i \(-0.0542025\pi\)
\(108\) − 1.72297e9i − 1.21862i
\(109\) −5.21086e8 −0.353582 −0.176791 0.984248i \(-0.556572\pi\)
−0.176791 + 0.984248i \(0.556572\pi\)
\(110\) 0 0
\(111\) −1.04410e9 −0.652816
\(112\) − 4.04349e8i − 0.242815i
\(113\) − 4.45612e8i − 0.257101i −0.991703 0.128551i \(-0.958968\pi\)
0.991703 0.128551i \(-0.0410325\pi\)
\(114\) 1.07860e9 0.598120
\(115\) 0 0
\(116\) 3.19455e9 1.63813
\(117\) − 1.41343e9i − 0.697328i
\(118\) − 3.73535e9i − 1.77363i
\(119\) −1.36441e9 −0.623711
\(120\) 0 0
\(121\) 2.45208e9 1.03992
\(122\) − 1.09323e9i − 0.446779i
\(123\) − 1.61723e9i − 0.637086i
\(124\) 9.33380e8 0.354536
\(125\) 0 0
\(126\) 1.09416e9 0.386734
\(127\) 9.28626e8i 0.316755i 0.987379 + 0.158378i \(0.0506264\pi\)
−0.987379 + 0.158378i \(0.949374\pi\)
\(128\) − 2.46278e9i − 0.810925i
\(129\) −8.90198e8 −0.283030
\(130\) 0 0
\(131\) 2.57694e9 0.764509 0.382255 0.924057i \(-0.375148\pi\)
0.382255 + 0.924057i \(0.375148\pi\)
\(132\) − 3.61862e9i − 1.03743i
\(133\) 9.51769e8i 0.263754i
\(134\) 2.74281e9 0.734894
\(135\) 0 0
\(136\) −2.77785e9 −0.696279
\(137\) − 4.44116e9i − 1.07710i −0.842595 0.538548i \(-0.818973\pi\)
0.842595 0.538548i \(-0.181027\pi\)
\(138\) 1.68907e9i 0.396453i
\(139\) 7.28389e9 1.65499 0.827497 0.561470i \(-0.189764\pi\)
0.827497 + 0.561470i \(0.189764\pi\)
\(140\) 0 0
\(141\) 1.58778e9 0.338301
\(142\) − 7.10218e9i − 1.46587i
\(143\) − 7.34872e9i − 1.46960i
\(144\) −2.24647e9 −0.435380
\(145\) 0 0
\(146\) 9.23328e9 1.68178
\(147\) − 4.59149e8i − 0.0811008i
\(148\) − 8.58766e9i − 1.47129i
\(149\) −4.87355e9 −0.810042 −0.405021 0.914307i \(-0.632736\pi\)
−0.405021 + 0.914307i \(0.632736\pi\)
\(150\) 0 0
\(151\) −8.63776e9 −1.35209 −0.676044 0.736861i \(-0.736307\pi\)
−0.676044 + 0.736861i \(0.736307\pi\)
\(152\) 1.93774e9i 0.294442i
\(153\) 7.58033e9i 1.11835i
\(154\) 5.68876e9 0.815032
\(155\) 0 0
\(156\) −5.52849e9 −0.747388
\(157\) − 9.34170e9i − 1.22709i −0.789659 0.613546i \(-0.789742\pi\)
0.789659 0.613546i \(-0.210258\pi\)
\(158\) − 1.76346e10i − 2.25118i
\(159\) 4.50010e9 0.558387
\(160\) 0 0
\(161\) −1.49046e9 −0.174825
\(162\) − 1.81326e9i − 0.206844i
\(163\) 2.10680e9i 0.233765i 0.993146 + 0.116883i \(0.0372901\pi\)
−0.993146 + 0.116883i \(0.962710\pi\)
\(164\) 1.33015e10 1.43583
\(165\) 0 0
\(166\) 2.33226e10 2.38392
\(167\) 1.39800e10i 1.39086i 0.718593 + 0.695431i \(0.244787\pi\)
−0.718593 + 0.695431i \(0.755213\pi\)
\(168\) − 9.34796e8i − 0.0905367i
\(169\) −6.22820e8 −0.0587316
\(170\) 0 0
\(171\) 5.28780e9 0.472925
\(172\) − 7.32180e9i − 0.637881i
\(173\) 1.24435e10i 1.05618i 0.849190 + 0.528088i \(0.177091\pi\)
−0.849190 + 0.528088i \(0.822909\pi\)
\(174\) −1.32688e10 −1.09739
\(175\) 0 0
\(176\) −1.16799e10 −0.917553
\(177\) 8.70861e9i 0.666913i
\(178\) − 5.02704e9i − 0.375338i
\(179\) −7.30178e9 −0.531606 −0.265803 0.964027i \(-0.585637\pi\)
−0.265803 + 0.964027i \(0.585637\pi\)
\(180\) 0 0
\(181\) −1.27074e10 −0.880038 −0.440019 0.897988i \(-0.645028\pi\)
−0.440019 + 0.897988i \(0.645028\pi\)
\(182\) − 8.69125e9i − 0.587166i
\(183\) 2.54876e9i 0.167996i
\(184\) −3.03447e9 −0.195165
\(185\) 0 0
\(186\) −3.87685e9 −0.237504
\(187\) 3.94118e10i 2.35689i
\(188\) 1.30593e10i 0.762448i
\(189\) −6.31494e9 −0.359991
\(190\) 0 0
\(191\) 1.61547e10 0.878311 0.439155 0.898411i \(-0.355278\pi\)
0.439155 + 0.898411i \(0.355278\pi\)
\(192\) 1.55968e10i 0.828287i
\(193\) 1.52841e10i 0.792924i 0.918051 + 0.396462i \(0.129762\pi\)
−0.918051 + 0.396462i \(0.870238\pi\)
\(194\) 3.74570e10 1.89856
\(195\) 0 0
\(196\) 3.77645e9 0.182781
\(197\) 2.33886e10i 1.10639i 0.833053 + 0.553193i \(0.186591\pi\)
−0.833053 + 0.553193i \(0.813409\pi\)
\(198\) − 3.16054e10i − 1.46139i
\(199\) 2.53610e10 1.14638 0.573189 0.819423i \(-0.305706\pi\)
0.573189 + 0.819423i \(0.305706\pi\)
\(200\) 0 0
\(201\) −6.39460e9 −0.276332
\(202\) − 7.12918e9i − 0.301272i
\(203\) − 1.17085e10i − 0.483916i
\(204\) 2.96498e10 1.19863
\(205\) 0 0
\(206\) −2.31689e10 −0.896403
\(207\) 8.28061e9i 0.313470i
\(208\) 1.78444e10i 0.661024i
\(209\) 2.74924e10 0.996678
\(210\) 0 0
\(211\) −9.23757e8 −0.0320838 −0.0160419 0.999871i \(-0.505107\pi\)
−0.0160419 + 0.999871i \(0.505107\pi\)
\(212\) 3.70129e10i 1.25847i
\(213\) 1.65580e10i 0.551189i
\(214\) −1.56992e10 −0.511700
\(215\) 0 0
\(216\) −1.28568e10 −0.401875
\(217\) − 3.42098e9i − 0.104733i
\(218\) 1.78017e10i 0.533835i
\(219\) −2.15265e10 −0.632375
\(220\) 0 0
\(221\) 6.02130e10 1.69795
\(222\) 3.56694e10i 0.985615i
\(223\) − 6.68635e9i − 0.181058i −0.995894 0.0905290i \(-0.971144\pi\)
0.995894 0.0905290i \(-0.0288558\pi\)
\(224\) −1.98229e10 −0.526078
\(225\) 0 0
\(226\) −1.52233e10 −0.388169
\(227\) − 4.82876e10i − 1.20703i −0.797351 0.603516i \(-0.793766\pi\)
0.797351 0.603516i \(-0.206234\pi\)
\(228\) − 2.06827e10i − 0.506876i
\(229\) 2.34264e10 0.562918 0.281459 0.959573i \(-0.409182\pi\)
0.281459 + 0.959573i \(0.409182\pi\)
\(230\) 0 0
\(231\) −1.32628e10 −0.306465
\(232\) − 2.38378e10i − 0.540219i
\(233\) 3.29140e10i 0.731609i 0.930692 + 0.365805i \(0.119206\pi\)
−0.930692 + 0.365805i \(0.880794\pi\)
\(234\) −4.82864e10 −1.05282
\(235\) 0 0
\(236\) −7.16275e10 −1.50306
\(237\) 4.11134e10i 0.846479i
\(238\) 4.66119e10i 0.941673i
\(239\) −2.51973e10 −0.499533 −0.249766 0.968306i \(-0.580354\pi\)
−0.249766 + 0.968306i \(0.580354\pi\)
\(240\) 0 0
\(241\) 7.00815e10 1.33822 0.669109 0.743165i \(-0.266676\pi\)
0.669109 + 0.743165i \(0.266676\pi\)
\(242\) − 8.37696e10i − 1.57006i
\(243\) 5.59963e10i 1.03022i
\(244\) −2.09633e10 −0.378622
\(245\) 0 0
\(246\) −5.52488e10 −0.961866
\(247\) − 4.20027e10i − 0.718028i
\(248\) − 6.96489e9i − 0.116918i
\(249\) −5.43744e10 −0.896391
\(250\) 0 0
\(251\) 4.19681e10 0.667401 0.333701 0.942679i \(-0.391703\pi\)
0.333701 + 0.942679i \(0.391703\pi\)
\(252\) − 2.09811e10i − 0.327737i
\(253\) 4.30527e10i 0.660630i
\(254\) 3.17243e10 0.478235
\(255\) 0 0
\(256\) 1.61271e10 0.234680
\(257\) 8.37595e10i 1.19766i 0.800875 + 0.598832i \(0.204368\pi\)
−0.800875 + 0.598832i \(0.795632\pi\)
\(258\) 3.04116e10i 0.427317i
\(259\) −3.14751e10 −0.434629
\(260\) 0 0
\(261\) −6.50497e10 −0.867687
\(262\) − 8.80350e10i − 1.15425i
\(263\) 2.34604e9i 0.0302367i 0.999886 + 0.0151184i \(0.00481251\pi\)
−0.999886 + 0.0151184i \(0.995187\pi\)
\(264\) −2.70021e10 −0.342122
\(265\) 0 0
\(266\) 3.25150e10 0.398214
\(267\) 1.17200e10i 0.141133i
\(268\) − 5.25950e10i − 0.622784i
\(269\) 6.44659e10 0.750663 0.375332 0.926891i \(-0.377529\pi\)
0.375332 + 0.926891i \(0.377529\pi\)
\(270\) 0 0
\(271\) −1.40530e10 −0.158273 −0.0791365 0.996864i \(-0.525216\pi\)
−0.0791365 + 0.996864i \(0.525216\pi\)
\(272\) − 9.57011e10i − 1.06012i
\(273\) 2.02628e10i 0.220784i
\(274\) −1.51722e11 −1.62619
\(275\) 0 0
\(276\) 3.23889e10 0.335973
\(277\) − 7.52768e10i − 0.768249i −0.923281 0.384124i \(-0.874503\pi\)
0.923281 0.384124i \(-0.125497\pi\)
\(278\) − 2.48837e11i − 2.49870i
\(279\) −1.90061e10 −0.187791
\(280\) 0 0
\(281\) 9.56085e10 0.914783 0.457391 0.889266i \(-0.348784\pi\)
0.457391 + 0.889266i \(0.348784\pi\)
\(282\) − 5.42427e10i − 0.510764i
\(283\) − 4.82806e10i − 0.447439i −0.974654 0.223719i \(-0.928180\pi\)
0.974654 0.223719i \(-0.0718199\pi\)
\(284\) −1.36188e11 −1.24224
\(285\) 0 0
\(286\) −2.51052e11 −2.21879
\(287\) − 4.87522e10i − 0.424156i
\(288\) 1.10131e11i 0.943286i
\(289\) −2.04340e11 −1.72311
\(290\) 0 0
\(291\) −8.73272e10 −0.713890
\(292\) − 1.77053e11i − 1.42522i
\(293\) 7.07439e10i 0.560770i 0.959888 + 0.280385i \(0.0904621\pi\)
−0.959888 + 0.280385i \(0.909538\pi\)
\(294\) −1.56857e10 −0.122445
\(295\) 0 0
\(296\) −6.40812e10 −0.485197
\(297\) 1.82411e11i 1.36034i
\(298\) 1.66494e11i 1.22299i
\(299\) 6.57756e10 0.475932
\(300\) 0 0
\(301\) −2.68355e10 −0.188435
\(302\) 2.95089e11i 2.04137i
\(303\) 1.66210e10i 0.113283i
\(304\) −6.67581e10 −0.448304
\(305\) 0 0
\(306\) 2.58964e11 1.68847
\(307\) 1.30493e11i 0.838429i 0.907887 + 0.419214i \(0.137694\pi\)
−0.907887 + 0.419214i \(0.862306\pi\)
\(308\) − 1.09085e11i − 0.690697i
\(309\) 5.40161e10 0.337062
\(310\) 0 0
\(311\) 8.51715e10 0.516265 0.258132 0.966110i \(-0.416893\pi\)
0.258132 + 0.966110i \(0.416893\pi\)
\(312\) 4.12537e10i 0.246472i
\(313\) 1.21745e11i 0.716969i 0.933536 + 0.358484i \(0.116706\pi\)
−0.933536 + 0.358484i \(0.883294\pi\)
\(314\) −3.19137e11 −1.85265
\(315\) 0 0
\(316\) −3.38154e11 −1.90775
\(317\) − 2.14595e11i − 1.19358i −0.802397 0.596791i \(-0.796442\pi\)
0.802397 0.596791i \(-0.203558\pi\)
\(318\) − 1.53736e11i − 0.843048i
\(319\) −3.38208e11 −1.82863
\(320\) 0 0
\(321\) 3.66011e10 0.192407
\(322\) 5.09180e10i 0.263949i
\(323\) 2.25264e11i 1.15154i
\(324\) −3.47703e10 −0.175289
\(325\) 0 0
\(326\) 7.19740e10 0.352936
\(327\) − 4.15029e10i − 0.200731i
\(328\) − 9.92562e10i − 0.473506i
\(329\) 4.78644e10 0.225233
\(330\) 0 0
\(331\) −5.48000e10 −0.250931 −0.125466 0.992098i \(-0.540042\pi\)
−0.125466 + 0.992098i \(0.540042\pi\)
\(332\) − 4.47224e11i − 2.02025i
\(333\) 1.74868e11i 0.779312i
\(334\) 4.77595e11 2.09991
\(335\) 0 0
\(336\) 3.22051e10 0.137847
\(337\) − 2.34297e11i − 0.989538i −0.869025 0.494769i \(-0.835253\pi\)
0.869025 0.494769i \(-0.164747\pi\)
\(338\) 2.12772e10i 0.0886725i
\(339\) 3.54916e10 0.145958
\(340\) 0 0
\(341\) −9.88172e10 −0.395765
\(342\) − 1.80645e11i − 0.714018i
\(343\) − 1.38413e10i − 0.0539949i
\(344\) −5.46353e10 −0.210359
\(345\) 0 0
\(346\) 4.25104e11 1.59460
\(347\) 3.43449e10i 0.127169i 0.997976 + 0.0635843i \(0.0202532\pi\)
−0.997976 + 0.0635843i \(0.979747\pi\)
\(348\) 2.54436e11i 0.929977i
\(349\) 2.13485e11 0.770288 0.385144 0.922856i \(-0.374152\pi\)
0.385144 + 0.922856i \(0.374152\pi\)
\(350\) 0 0
\(351\) 2.78686e11 0.980016
\(352\) 5.72595e11i 1.98795i
\(353\) − 2.75882e11i − 0.945664i −0.881153 0.472832i \(-0.843232\pi\)
0.881153 0.472832i \(-0.156768\pi\)
\(354\) 2.97509e11 1.00690
\(355\) 0 0
\(356\) −9.63962e10 −0.318079
\(357\) − 1.08671e11i − 0.354084i
\(358\) 2.49448e11i 0.802614i
\(359\) 3.46238e11 1.10015 0.550073 0.835117i \(-0.314600\pi\)
0.550073 + 0.835117i \(0.314600\pi\)
\(360\) 0 0
\(361\) −1.65550e11 −0.513036
\(362\) 4.34117e11i 1.32867i
\(363\) 1.95300e11i 0.590369i
\(364\) −1.66659e11 −0.497592
\(365\) 0 0
\(366\) 8.70725e10 0.253639
\(367\) 3.56842e11i 1.02678i 0.858155 + 0.513391i \(0.171611\pi\)
−0.858155 + 0.513391i \(0.828389\pi\)
\(368\) − 1.04542e11i − 0.297150i
\(369\) −2.70855e11 −0.760534
\(370\) 0 0
\(371\) 1.35658e11 0.371760
\(372\) 7.43408e10i 0.201272i
\(373\) − 6.73833e11i − 1.80245i −0.433354 0.901224i \(-0.642670\pi\)
0.433354 0.901224i \(-0.357330\pi\)
\(374\) 1.34641e12 3.55841
\(375\) 0 0
\(376\) 9.74487e10 0.251438
\(377\) 5.16711e11i 1.31738i
\(378\) 2.15735e11i 0.543511i
\(379\) −5.90163e11 −1.46925 −0.734625 0.678473i \(-0.762642\pi\)
−0.734625 + 0.678473i \(0.762642\pi\)
\(380\) 0 0
\(381\) −7.39622e10 −0.179824
\(382\) − 5.51887e11i − 1.32607i
\(383\) 1.58931e11i 0.377412i 0.982034 + 0.188706i \(0.0604293\pi\)
−0.982034 + 0.188706i \(0.939571\pi\)
\(384\) 1.96153e11 0.460367
\(385\) 0 0
\(386\) 5.22145e11 1.19715
\(387\) 1.49092e11i 0.337873i
\(388\) − 7.18258e11i − 1.60893i
\(389\) 3.75434e11 0.831304 0.415652 0.909524i \(-0.363553\pi\)
0.415652 + 0.909524i \(0.363553\pi\)
\(390\) 0 0
\(391\) −3.52760e11 −0.763280
\(392\) − 2.81799e10i − 0.0602771i
\(393\) 2.05245e11i 0.434016i
\(394\) 7.99018e11 1.67041
\(395\) 0 0
\(396\) −6.06051e11 −1.23846
\(397\) − 4.33507e11i − 0.875869i −0.899007 0.437935i \(-0.855710\pi\)
0.899007 0.437935i \(-0.144290\pi\)
\(398\) − 8.66400e11i − 1.73079i
\(399\) −7.58055e10 −0.149735
\(400\) 0 0
\(401\) −1.77805e11 −0.343395 −0.171698 0.985150i \(-0.554925\pi\)
−0.171698 + 0.985150i \(0.554925\pi\)
\(402\) 2.18457e11i 0.417203i
\(403\) 1.50972e11i 0.285118i
\(404\) −1.36706e11 −0.255312
\(405\) 0 0
\(406\) −3.99994e11 −0.730612
\(407\) 9.09178e11i 1.64238i
\(408\) − 2.21247e11i − 0.395281i
\(409\) 7.67870e11 1.35685 0.678427 0.734668i \(-0.262662\pi\)
0.678427 + 0.734668i \(0.262662\pi\)
\(410\) 0 0
\(411\) 3.53725e11 0.611473
\(412\) 4.44277e11i 0.759655i
\(413\) 2.62526e11i 0.444014i
\(414\) 2.82888e11 0.473274
\(415\) 0 0
\(416\) 8.74807e11 1.43216
\(417\) 5.80139e11i 0.939550i
\(418\) − 9.39215e11i − 1.50478i
\(419\) −4.96552e11 −0.787048 −0.393524 0.919314i \(-0.628744\pi\)
−0.393524 + 0.919314i \(0.628744\pi\)
\(420\) 0 0
\(421\) −4.48514e11 −0.695835 −0.347917 0.937525i \(-0.613111\pi\)
−0.347917 + 0.937525i \(0.613111\pi\)
\(422\) 3.15580e10i 0.0484399i
\(423\) − 2.65923e11i − 0.403854i
\(424\) 2.76191e11 0.415014
\(425\) 0 0
\(426\) 5.65667e11 0.832180
\(427\) 7.68338e10i 0.111848i
\(428\) 3.01041e11i 0.433639i
\(429\) 5.85303e11 0.834301
\(430\) 0 0
\(431\) −1.65940e11 −0.231635 −0.115817 0.993271i \(-0.536949\pi\)
−0.115817 + 0.993271i \(0.536949\pi\)
\(432\) − 4.42936e11i − 0.611878i
\(433\) 4.10674e11i 0.561438i 0.959790 + 0.280719i \(0.0905730\pi\)
−0.959790 + 0.280719i \(0.909427\pi\)
\(434\) −1.16870e11 −0.158124
\(435\) 0 0
\(436\) 3.41358e11 0.452398
\(437\) 2.46074e11i 0.322775i
\(438\) 7.35402e11i 0.954754i
\(439\) 3.29593e11 0.423534 0.211767 0.977320i \(-0.432078\pi\)
0.211767 + 0.977320i \(0.432078\pi\)
\(440\) 0 0
\(441\) −7.68988e10 −0.0968158
\(442\) − 2.05704e12i − 2.56355i
\(443\) − 5.09091e11i − 0.628027i −0.949418 0.314014i \(-0.898326\pi\)
0.949418 0.314014i \(-0.101674\pi\)
\(444\) 6.83981e11 0.835258
\(445\) 0 0
\(446\) −2.28424e11 −0.273360
\(447\) − 3.88163e11i − 0.459865i
\(448\) 4.70175e11i 0.551453i
\(449\) −1.49596e12 −1.73705 −0.868525 0.495646i \(-0.834931\pi\)
−0.868525 + 0.495646i \(0.834931\pi\)
\(450\) 0 0
\(451\) −1.40824e12 −1.60281
\(452\) 2.91915e11i 0.328953i
\(453\) − 6.87971e11i − 0.767588i
\(454\) −1.64963e12 −1.82237
\(455\) 0 0
\(456\) −1.54335e11 −0.167156
\(457\) 1.43920e12i 1.54347i 0.635944 + 0.771735i \(0.280611\pi\)
−0.635944 + 0.771735i \(0.719389\pi\)
\(458\) − 8.00307e11i − 0.849889i
\(459\) −1.49462e12 −1.57171
\(460\) 0 0
\(461\) −1.37741e12 −1.42039 −0.710195 0.704005i \(-0.751393\pi\)
−0.710195 + 0.704005i \(0.751393\pi\)
\(462\) 4.53092e11i 0.462698i
\(463\) − 1.76612e12i − 1.78610i −0.449960 0.893049i \(-0.648562\pi\)
0.449960 0.893049i \(-0.351438\pi\)
\(464\) 8.21248e11 0.822514
\(465\) 0 0
\(466\) 1.12443e12 1.10458
\(467\) − 1.17323e12i − 1.14145i −0.821140 0.570727i \(-0.806661\pi\)
0.821140 0.570727i \(-0.193339\pi\)
\(468\) 9.25919e11i 0.892209i
\(469\) −1.92769e11 −0.183975
\(470\) 0 0
\(471\) 7.44037e11 0.696627
\(472\) 5.34485e11i 0.495674i
\(473\) 7.75161e11i 0.712060i
\(474\) 1.40454e12 1.27801
\(475\) 0 0
\(476\) 8.93808e11 0.798019
\(477\) − 7.53683e11i − 0.666586i
\(478\) 8.60808e11i 0.754190i
\(479\) 1.98723e12 1.72480 0.862401 0.506225i \(-0.168960\pi\)
0.862401 + 0.506225i \(0.168960\pi\)
\(480\) 0 0
\(481\) 1.38903e12 1.18321
\(482\) − 2.39417e12i − 2.02043i
\(483\) − 1.18710e11i − 0.0992489i
\(484\) −1.60633e12 −1.33055
\(485\) 0 0
\(486\) 1.91298e12 1.55542
\(487\) − 1.23240e12i − 0.992825i −0.868087 0.496413i \(-0.834650\pi\)
0.868087 0.496413i \(-0.165350\pi\)
\(488\) 1.56428e11i 0.124861i
\(489\) −1.67800e11 −0.132710
\(490\) 0 0
\(491\) −2.03763e12 −1.58219 −0.791095 0.611693i \(-0.790489\pi\)
−0.791095 + 0.611693i \(0.790489\pi\)
\(492\) 1.05943e12i 0.815131i
\(493\) − 2.77117e12i − 2.11277i
\(494\) −1.43493e12 −1.08407
\(495\) 0 0
\(496\) 2.39951e11 0.178014
\(497\) 4.99151e11i 0.366968i
\(498\) 1.85758e12i 1.35336i
\(499\) 3.26299e11 0.235594 0.117797 0.993038i \(-0.462417\pi\)
0.117797 + 0.993038i \(0.462417\pi\)
\(500\) 0 0
\(501\) −1.11347e12 −0.789601
\(502\) − 1.43374e12i − 1.00764i
\(503\) 4.46869e11i 0.311261i 0.987815 + 0.155630i \(0.0497409\pi\)
−0.987815 + 0.155630i \(0.950259\pi\)
\(504\) −1.56561e11 −0.108080
\(505\) 0 0
\(506\) 1.47080e12 0.997413
\(507\) − 4.96056e10i − 0.0333423i
\(508\) − 6.08332e11i − 0.405279i
\(509\) −1.34100e12 −0.885523 −0.442761 0.896639i \(-0.646001\pi\)
−0.442761 + 0.896639i \(0.646001\pi\)
\(510\) 0 0
\(511\) −6.48928e11 −0.421020
\(512\) − 1.81189e12i − 1.16524i
\(513\) 1.04260e12i 0.664643i
\(514\) 2.86145e12 1.80822
\(515\) 0 0
\(516\) 5.83158e11 0.362129
\(517\) − 1.38259e12i − 0.851112i
\(518\) 1.07527e12i 0.656199i
\(519\) −9.91089e11 −0.599597
\(520\) 0 0
\(521\) 2.98523e12 1.77504 0.887520 0.460769i \(-0.152426\pi\)
0.887520 + 0.460769i \(0.152426\pi\)
\(522\) 2.22227e12i 1.31003i
\(523\) − 1.64651e12i − 0.962289i −0.876641 0.481145i \(-0.840221\pi\)
0.876641 0.481145i \(-0.159779\pi\)
\(524\) −1.68812e12 −0.978166
\(525\) 0 0
\(526\) 8.01470e10 0.0456511
\(527\) − 8.09676e11i − 0.457260i
\(528\) − 9.30265e11i − 0.520900i
\(529\) 1.41580e12 0.786054
\(530\) 0 0
\(531\) 1.45853e12 0.796141
\(532\) − 6.23493e11i − 0.337465i
\(533\) 2.15149e12i 1.15470i
\(534\) 4.00388e11 0.213081
\(535\) 0 0
\(536\) −3.92464e11 −0.205380
\(537\) − 5.81564e11i − 0.301796i
\(538\) − 2.20233e12i − 1.13334i
\(539\) −3.99814e11 −0.204037
\(540\) 0 0
\(541\) −4.57968e11 −0.229852 −0.114926 0.993374i \(-0.536663\pi\)
−0.114926 + 0.993374i \(0.536663\pi\)
\(542\) 4.80087e11i 0.238959i
\(543\) − 1.01210e12i − 0.499603i
\(544\) −4.69166e12 −2.29684
\(545\) 0 0
\(546\) 6.92231e11 0.333337
\(547\) 2.39624e12i 1.14443i 0.820105 + 0.572213i \(0.193915\pi\)
−0.820105 + 0.572213i \(0.806085\pi\)
\(548\) 2.90935e12i 1.37811i
\(549\) 4.26870e11 0.200549
\(550\) 0 0
\(551\) −1.93308e12 −0.893444
\(552\) − 2.41686e11i − 0.110796i
\(553\) 1.23939e12i 0.563565i
\(554\) −2.57166e12 −1.15990
\(555\) 0 0
\(556\) −4.77159e12 −2.11751
\(557\) 1.07863e12i 0.474814i 0.971410 + 0.237407i \(0.0762976\pi\)
−0.971410 + 0.237407i \(0.923702\pi\)
\(558\) 6.49301e11i 0.283525i
\(559\) 1.18428e12 0.512983
\(560\) 0 0
\(561\) −3.13903e12 −1.33802
\(562\) − 3.26624e12i − 1.38113i
\(563\) − 2.33140e11i − 0.0977976i −0.998804 0.0488988i \(-0.984429\pi\)
0.998804 0.0488988i \(-0.0155712\pi\)
\(564\) −1.04013e12 −0.432846
\(565\) 0 0
\(566\) −1.64939e12 −0.675539
\(567\) 1.27438e11i 0.0517817i
\(568\) 1.01624e12i 0.409664i
\(569\) −4.50535e11 −0.180187 −0.0900934 0.995933i \(-0.528717\pi\)
−0.0900934 + 0.995933i \(0.528717\pi\)
\(570\) 0 0
\(571\) −4.38839e12 −1.72760 −0.863800 0.503835i \(-0.831922\pi\)
−0.863800 + 0.503835i \(0.831922\pi\)
\(572\) 4.81406e12i 1.88031i
\(573\) 1.28667e12i 0.498622i
\(574\) −1.66550e12 −0.640387
\(575\) 0 0
\(576\) 2.61218e12 0.988785
\(577\) 3.13994e12i 1.17932i 0.807653 + 0.589658i \(0.200737\pi\)
−0.807653 + 0.589658i \(0.799263\pi\)
\(578\) 6.98079e12i 2.60153i
\(579\) −1.21733e12 −0.450148
\(580\) 0 0
\(581\) −1.63915e12 −0.596795
\(582\) 2.98333e12i 1.07782i
\(583\) − 3.91857e12i − 1.40481i
\(584\) −1.32117e12 −0.470005
\(585\) 0 0
\(586\) 2.41680e12 0.846645
\(587\) 2.52512e12i 0.877829i 0.898529 + 0.438915i \(0.144637\pi\)
−0.898529 + 0.438915i \(0.855363\pi\)
\(588\) 3.00783e11i 0.103766i
\(589\) −5.64805e11 −0.193366
\(590\) 0 0
\(591\) −1.86283e12 −0.628102
\(592\) − 2.20770e12i − 0.738740i
\(593\) 9.35417e11i 0.310641i 0.987864 + 0.155321i \(0.0496410\pi\)
−0.987864 + 0.155321i \(0.950359\pi\)
\(594\) 6.23165e12 2.05383
\(595\) 0 0
\(596\) 3.19261e12 1.03642
\(597\) 2.01993e12i 0.650805i
\(598\) − 2.24707e12i − 0.718557i
\(599\) −4.73586e12 −1.50307 −0.751534 0.659694i \(-0.770686\pi\)
−0.751534 + 0.659694i \(0.770686\pi\)
\(600\) 0 0
\(601\) −5.99855e12 −1.87548 −0.937738 0.347344i \(-0.887084\pi\)
−0.937738 + 0.347344i \(0.887084\pi\)
\(602\) 9.16773e11i 0.284497i
\(603\) 1.07098e12i 0.329877i
\(604\) 5.65850e12 1.72995
\(605\) 0 0
\(606\) 5.67817e11 0.171034
\(607\) 3.43715e12i 1.02766i 0.857892 + 0.513830i \(0.171774\pi\)
−0.857892 + 0.513830i \(0.828226\pi\)
\(608\) 3.27276e12i 0.971287i
\(609\) 9.32548e11 0.274722
\(610\) 0 0
\(611\) −2.11231e12 −0.613159
\(612\) − 4.96578e12i − 1.43089i
\(613\) − 4.15273e12i − 1.18785i −0.804520 0.593925i \(-0.797577\pi\)
0.804520 0.593925i \(-0.202423\pi\)
\(614\) 4.45801e12 1.26585
\(615\) 0 0
\(616\) −8.13995e11 −0.227776
\(617\) − 1.12196e12i − 0.311669i −0.987783 0.155834i \(-0.950193\pi\)
0.987783 0.155834i \(-0.0498066\pi\)
\(618\) − 1.84533e12i − 0.508893i
\(619\) 5.98940e12 1.63974 0.819871 0.572549i \(-0.194045\pi\)
0.819871 + 0.572549i \(0.194045\pi\)
\(620\) 0 0
\(621\) −1.63269e12 −0.440547
\(622\) − 2.90969e12i − 0.779452i
\(623\) 3.53307e11i 0.0939628i
\(624\) −1.42125e12 −0.375267
\(625\) 0 0
\(626\) 4.15912e12 1.08247
\(627\) 2.18969e12i 0.565820i
\(628\) 6.11963e12i 1.57003i
\(629\) −7.44951e12 −1.89758
\(630\) 0 0
\(631\) 4.97135e12 1.24837 0.624184 0.781277i \(-0.285432\pi\)
0.624184 + 0.781277i \(0.285432\pi\)
\(632\) 2.52331e12i 0.629134i
\(633\) − 7.35743e10i − 0.0182142i
\(634\) −7.33113e12 −1.80206
\(635\) 0 0
\(636\) −2.94796e12 −0.714439
\(637\) 6.10833e11i 0.146992i
\(638\) 1.15541e13i 2.76085i
\(639\) 2.77316e12 0.657993
\(640\) 0 0
\(641\) −2.41181e12 −0.564263 −0.282131 0.959376i \(-0.591041\pi\)
−0.282131 + 0.959376i \(0.591041\pi\)
\(642\) − 1.25039e12i − 0.290495i
\(643\) − 6.86804e12i − 1.58447i −0.610217 0.792234i \(-0.708918\pi\)
0.610217 0.792234i \(-0.291082\pi\)
\(644\) 9.76380e11 0.223683
\(645\) 0 0
\(646\) 7.69562e12 1.73859
\(647\) − 1.73394e12i − 0.389013i −0.980901 0.194506i \(-0.937690\pi\)
0.980901 0.194506i \(-0.0623105\pi\)
\(648\) 2.59456e11i 0.0578064i
\(649\) 7.58322e12 1.67785
\(650\) 0 0
\(651\) 2.72471e11 0.0594573
\(652\) − 1.38014e12i − 0.299095i
\(653\) − 2.86440e10i − 0.00616488i −0.999995 0.00308244i \(-0.999019\pi\)
0.999995 0.00308244i \(-0.000981173\pi\)
\(654\) −1.41785e12 −0.303061
\(655\) 0 0
\(656\) 3.41953e12 0.720940
\(657\) 3.60529e12i 0.754911i
\(658\) − 1.63518e12i − 0.340054i
\(659\) 6.31728e12 1.30481 0.652403 0.757872i \(-0.273761\pi\)
0.652403 + 0.757872i \(0.273761\pi\)
\(660\) 0 0
\(661\) −3.49558e12 −0.712217 −0.356109 0.934445i \(-0.615897\pi\)
−0.356109 + 0.934445i \(0.615897\pi\)
\(662\) 1.87212e12i 0.378854i
\(663\) 4.79578e12i 0.963937i
\(664\) −3.33719e12 −0.666231
\(665\) 0 0
\(666\) 5.97396e12 1.17660
\(667\) − 3.02717e12i − 0.592203i
\(668\) − 9.15816e12i − 1.77957i
\(669\) 5.32547e11 0.102788
\(670\) 0 0
\(671\) 2.21939e12 0.422652
\(672\) − 1.57883e12i − 0.298658i
\(673\) 8.02535e12i 1.50798i 0.656885 + 0.753991i \(0.271874\pi\)
−0.656885 + 0.753991i \(0.728126\pi\)
\(674\) −8.00422e12 −1.49400
\(675\) 0 0
\(676\) 4.08002e11 0.0751453
\(677\) 1.17163e12i 0.214358i 0.994240 + 0.107179i \(0.0341818\pi\)
−0.994240 + 0.107179i \(0.965818\pi\)
\(678\) − 1.21249e12i − 0.220366i
\(679\) −2.63253e12 −0.475290
\(680\) 0 0
\(681\) 3.84596e12 0.685239
\(682\) 3.37586e12i 0.597523i
\(683\) − 4.69754e12i − 0.825995i −0.910732 0.412997i \(-0.864482\pi\)
0.910732 0.412997i \(-0.135518\pi\)
\(684\) −3.46397e12 −0.605093
\(685\) 0 0
\(686\) −4.72855e11 −0.0815211
\(687\) 1.86584e12i 0.319572i
\(688\) − 1.88227e12i − 0.320283i
\(689\) −5.98676e12 −1.01206
\(690\) 0 0
\(691\) −7.83193e12 −1.30683 −0.653413 0.757001i \(-0.726664\pi\)
−0.653413 + 0.757001i \(0.726664\pi\)
\(692\) − 8.15161e12i − 1.35134i
\(693\) 2.22127e12i 0.365849i
\(694\) 1.17332e12 0.191998
\(695\) 0 0
\(696\) 1.89860e12 0.306685
\(697\) − 1.15386e13i − 1.85185i
\(698\) − 7.29322e12i − 1.16297i
\(699\) −2.62150e12 −0.415339
\(700\) 0 0
\(701\) 7.13243e12 1.11559 0.557797 0.829977i \(-0.311647\pi\)
0.557797 + 0.829977i \(0.311647\pi\)
\(702\) − 9.52066e12i − 1.47962i
\(703\) 5.19655e12i 0.802446i
\(704\) 1.35813e13 2.08384
\(705\) 0 0
\(706\) −9.42486e12 −1.42776
\(707\) 5.01049e11i 0.0754211i
\(708\) − 5.70491e12i − 0.853294i
\(709\) −8.65274e12 −1.28601 −0.643007 0.765861i \(-0.722313\pi\)
−0.643007 + 0.765861i \(0.722313\pi\)
\(710\) 0 0
\(711\) 6.88573e12 1.01050
\(712\) 7.19310e11i 0.104895i
\(713\) − 8.84475e11i − 0.128169i
\(714\) −3.71249e12 −0.534593
\(715\) 0 0
\(716\) 4.78331e12 0.680174
\(717\) − 2.00689e12i − 0.283588i
\(718\) − 1.18284e13i − 1.66099i
\(719\) −4.58446e11 −0.0639747 −0.0319873 0.999488i \(-0.510184\pi\)
−0.0319873 + 0.999488i \(0.510184\pi\)
\(720\) 0 0
\(721\) 1.62834e12 0.224408
\(722\) 5.65565e12i 0.774577i
\(723\) 5.58177e12i 0.759713i
\(724\) 8.32444e12 1.12598
\(725\) 0 0
\(726\) 6.67199e12 0.891334
\(727\) − 2.53850e12i − 0.337033i −0.985699 0.168517i \(-0.946102\pi\)
0.985699 0.168517i \(-0.0538977\pi\)
\(728\) 1.24361e12i 0.164095i
\(729\) −3.41521e12 −0.447861
\(730\) 0 0
\(731\) −6.35141e12 −0.822701
\(732\) − 1.66966e12i − 0.214946i
\(733\) − 1.09361e13i − 1.39925i −0.714511 0.699624i \(-0.753351\pi\)
0.714511 0.699624i \(-0.246649\pi\)
\(734\) 1.21907e13 1.55023
\(735\) 0 0
\(736\) −5.12509e12 −0.643800
\(737\) 5.56824e12i 0.695208i
\(738\) 9.25314e12i 1.14825i
\(739\) −7.34996e12 −0.906536 −0.453268 0.891374i \(-0.649742\pi\)
−0.453268 + 0.891374i \(0.649742\pi\)
\(740\) 0 0
\(741\) 3.34539e12 0.407628
\(742\) − 4.63444e12i − 0.561281i
\(743\) 1.60813e12i 0.193584i 0.995305 + 0.0967922i \(0.0308582\pi\)
−0.995305 + 0.0967922i \(0.969142\pi\)
\(744\) 5.54732e11 0.0663751
\(745\) 0 0
\(746\) −2.30199e13 −2.72132
\(747\) 9.10670e12i 1.07009i
\(748\) − 2.58182e13i − 3.01557i
\(749\) 1.10336e12 0.128100
\(750\) 0 0
\(751\) −2.95903e12 −0.339446 −0.169723 0.985492i \(-0.554287\pi\)
−0.169723 + 0.985492i \(0.554287\pi\)
\(752\) 3.35726e12i 0.382829i
\(753\) 3.34263e12i 0.378888i
\(754\) 1.76522e13 1.98897
\(755\) 0 0
\(756\) 4.13684e12 0.460597
\(757\) − 4.83223e12i − 0.534830i −0.963581 0.267415i \(-0.913830\pi\)
0.963581 0.267415i \(-0.0861695\pi\)
\(758\) 2.01616e13i 2.21826i
\(759\) −3.42902e12 −0.375043
\(760\) 0 0
\(761\) 3.15213e12 0.340701 0.170350 0.985384i \(-0.445510\pi\)
0.170350 + 0.985384i \(0.445510\pi\)
\(762\) 2.52675e12i 0.271496i
\(763\) − 1.25113e12i − 0.133642i
\(764\) −1.05827e13 −1.12377
\(765\) 0 0
\(766\) 5.42952e12 0.569813
\(767\) − 1.15856e13i − 1.20876i
\(768\) 1.28447e12i 0.133229i
\(769\) 6.87650e12 0.709086 0.354543 0.935040i \(-0.384636\pi\)
0.354543 + 0.935040i \(0.384636\pi\)
\(770\) 0 0
\(771\) −6.67118e12 −0.679920
\(772\) − 1.00124e13i − 1.01452i
\(773\) − 1.16083e13i − 1.16939i −0.811253 0.584696i \(-0.801214\pi\)
0.811253 0.584696i \(-0.198786\pi\)
\(774\) 5.09337e12 0.510118
\(775\) 0 0
\(776\) −5.35965e12 −0.530590
\(777\) − 2.50690e12i − 0.246741i
\(778\) − 1.28258e13i − 1.25510i
\(779\) −8.04899e12 −0.783110
\(780\) 0 0
\(781\) 1.44183e13 1.38670
\(782\) 1.20512e13i 1.15239i
\(783\) − 1.28259e13i − 1.21944i
\(784\) 9.70842e11 0.0917754
\(785\) 0 0
\(786\) 7.01171e12 0.655274
\(787\) − 2.50005e12i − 0.232307i −0.993231 0.116154i \(-0.962943\pi\)
0.993231 0.116154i \(-0.0370565\pi\)
\(788\) − 1.53216e13i − 1.41559i
\(789\) −1.86855e11 −0.0171656
\(790\) 0 0
\(791\) 1.06991e12 0.0971751
\(792\) 4.52236e12i 0.408415i
\(793\) − 3.39077e12i − 0.304487i
\(794\) −1.48098e13 −1.32238
\(795\) 0 0
\(796\) −1.66137e13 −1.46675
\(797\) 2.77023e12i 0.243194i 0.992580 + 0.121597i \(0.0388016\pi\)
−0.992580 + 0.121597i \(0.961198\pi\)
\(798\) 2.58972e12i 0.226068i
\(799\) 1.13285e13 0.983360
\(800\) 0 0
\(801\) 1.96289e12 0.168480
\(802\) 6.07429e12i 0.518455i
\(803\) 1.87447e13i 1.59096i
\(804\) 4.18903e12 0.353558
\(805\) 0 0
\(806\) 5.15761e12 0.430468
\(807\) 5.13451e12i 0.426156i
\(808\) 1.02010e12i 0.0841962i
\(809\) 2.96640e12 0.243479 0.121739 0.992562i \(-0.461153\pi\)
0.121739 + 0.992562i \(0.461153\pi\)
\(810\) 0 0
\(811\) −9.01447e12 −0.731722 −0.365861 0.930669i \(-0.619225\pi\)
−0.365861 + 0.930669i \(0.619225\pi\)
\(812\) 7.67012e12i 0.619156i
\(813\) − 1.11928e12i − 0.0898524i
\(814\) 3.10599e13 2.47965
\(815\) 0 0
\(816\) 7.62229e12 0.601838
\(817\) 4.43055e12i 0.347903i
\(818\) − 2.62325e13i − 2.04857i
\(819\) 3.39364e12 0.263565
\(820\) 0 0
\(821\) 1.25176e13 0.961563 0.480782 0.876840i \(-0.340353\pi\)
0.480782 + 0.876840i \(0.340353\pi\)
\(822\) − 1.20842e13i − 0.923197i
\(823\) 1.50348e13i 1.14234i 0.820830 + 0.571172i \(0.193511\pi\)
−0.820830 + 0.571172i \(0.806489\pi\)
\(824\) 3.31520e12 0.250517
\(825\) 0 0
\(826\) 8.96858e12 0.670369
\(827\) 2.31522e13i 1.72115i 0.509325 + 0.860574i \(0.329895\pi\)
−0.509325 + 0.860574i \(0.670105\pi\)
\(828\) − 5.42453e12i − 0.401075i
\(829\) −4.88071e12 −0.358912 −0.179456 0.983766i \(-0.557434\pi\)
−0.179456 + 0.983766i \(0.557434\pi\)
\(830\) 0 0
\(831\) 5.99556e12 0.436139
\(832\) − 2.07494e13i − 1.50124i
\(833\) − 3.27595e12i − 0.235741i
\(834\) 1.98191e13 1.41852
\(835\) 0 0
\(836\) −1.80100e13 −1.27522
\(837\) − 3.74745e12i − 0.263919i
\(838\) 1.69635e13i 1.18828i
\(839\) 1.18015e13 0.822258 0.411129 0.911577i \(-0.365135\pi\)
0.411129 + 0.911577i \(0.365135\pi\)
\(840\) 0 0
\(841\) 9.27330e12 0.639223
\(842\) 1.53224e13i 1.05057i
\(843\) 7.61492e12i 0.519327i
\(844\) 6.05142e11 0.0410503
\(845\) 0 0
\(846\) −9.08464e12 −0.609735
\(847\) 5.88744e12i 0.393053i
\(848\) 9.51520e12i 0.631883i
\(849\) 3.84540e12 0.254014
\(850\) 0 0
\(851\) −8.13771e12 −0.531887
\(852\) − 1.08470e13i − 0.705229i
\(853\) 2.54707e13i 1.64729i 0.567104 + 0.823646i \(0.308064\pi\)
−0.567104 + 0.823646i \(0.691936\pi\)
\(854\) 2.62485e12 0.168867
\(855\) 0 0
\(856\) 2.24637e12 0.143004
\(857\) 1.26584e13i 0.801615i 0.916162 + 0.400807i \(0.131270\pi\)
−0.916162 + 0.400807i \(0.868730\pi\)
\(858\) − 1.99955e13i − 1.25962i
\(859\) −2.01387e13 −1.26201 −0.631004 0.775779i \(-0.717357\pi\)
−0.631004 + 0.775779i \(0.717357\pi\)
\(860\) 0 0
\(861\) 3.88296e12 0.240796
\(862\) 5.66896e12i 0.349720i
\(863\) 1.44977e13i 0.889716i 0.895601 + 0.444858i \(0.146746\pi\)
−0.895601 + 0.444858i \(0.853254\pi\)
\(864\) −2.17146e13 −1.32568
\(865\) 0 0
\(866\) 1.40297e13 0.847655
\(867\) − 1.62750e13i − 0.978217i
\(868\) 2.24104e12i 0.134002i
\(869\) 3.58004e13 2.12961
\(870\) 0 0
\(871\) 8.50712e12 0.500842
\(872\) − 2.54721e12i − 0.149191i
\(873\) 1.46257e13i 0.852221i
\(874\) 8.40656e12 0.487323
\(875\) 0 0
\(876\) 1.41018e13 0.809104
\(877\) 1.83297e13i 1.04630i 0.852241 + 0.523150i \(0.175243\pi\)
−0.852241 + 0.523150i \(0.824757\pi\)
\(878\) − 1.12598e13i − 0.639448i
\(879\) −5.63453e12 −0.318352
\(880\) 0 0
\(881\) 4.57369e12 0.255785 0.127892 0.991788i \(-0.459179\pi\)
0.127892 + 0.991788i \(0.459179\pi\)
\(882\) 2.62707e12i 0.146172i
\(883\) − 3.07854e13i − 1.70420i −0.523377 0.852101i \(-0.675328\pi\)
0.523377 0.852101i \(-0.324672\pi\)
\(884\) −3.94448e13 −2.17248
\(885\) 0 0
\(886\) −1.73919e13 −0.948190
\(887\) − 2.58803e13i − 1.40382i −0.712264 0.701911i \(-0.752330\pi\)
0.712264 0.701911i \(-0.247670\pi\)
\(888\) − 5.10387e12i − 0.275449i
\(889\) −2.22963e12 −0.119722
\(890\) 0 0
\(891\) 3.68114e12 0.195674
\(892\) 4.38015e12i 0.231658i
\(893\) − 7.90242e12i − 0.415842i
\(894\) −1.32607e13 −0.694301
\(895\) 0 0
\(896\) 5.91314e12 0.306501
\(897\) 5.23882e12i 0.270189i
\(898\) 5.11061e13i 2.62258i
\(899\) 6.94814e12 0.354773
\(900\) 0 0
\(901\) 3.21075e13 1.62310
\(902\) 4.81091e13i 2.41990i
\(903\) − 2.13737e12i − 0.106975i
\(904\) 2.17827e12 0.108481
\(905\) 0 0
\(906\) −2.35029e13 −1.15890
\(907\) 9.64118e12i 0.473040i 0.971627 + 0.236520i \(0.0760068\pi\)
−0.971627 + 0.236520i \(0.923993\pi\)
\(908\) 3.16326e13i 1.54436i
\(909\) 2.78371e12 0.135234
\(910\) 0 0
\(911\) 7.28746e12 0.350545 0.175272 0.984520i \(-0.443919\pi\)
0.175272 + 0.984520i \(0.443919\pi\)
\(912\) − 5.31707e12i − 0.254505i
\(913\) 4.73478e13i 2.25518i
\(914\) 4.91669e13 2.33032
\(915\) 0 0
\(916\) −1.53463e13 −0.720236
\(917\) 6.18722e12i 0.288957i
\(918\) 5.10601e13i 2.37295i
\(919\) −2.73276e13 −1.26381 −0.631906 0.775045i \(-0.717727\pi\)
−0.631906 + 0.775045i \(0.717727\pi\)
\(920\) 0 0
\(921\) −1.03934e13 −0.475981
\(922\) 4.70559e13i 2.14449i
\(923\) − 2.20281e13i − 0.999011i
\(924\) 8.68829e12 0.392112
\(925\) 0 0
\(926\) −6.03353e13 −2.69663
\(927\) − 9.04668e12i − 0.402375i
\(928\) − 4.02610e13i − 1.78204i
\(929\) 7.21805e12 0.317943 0.158971 0.987283i \(-0.449182\pi\)
0.158971 + 0.987283i \(0.449182\pi\)
\(930\) 0 0
\(931\) −2.28520e12 −0.0996897
\(932\) − 2.15616e13i − 0.936071i
\(933\) 6.78365e12i 0.293087i
\(934\) −4.00808e13 −1.72336
\(935\) 0 0
\(936\) 6.90922e12 0.294231
\(937\) 1.41988e13i 0.601761i 0.953662 + 0.300880i \(0.0972805\pi\)
−0.953662 + 0.300880i \(0.902719\pi\)
\(938\) 6.58550e12i 0.277764i
\(939\) −9.69658e12 −0.407027
\(940\) 0 0
\(941\) −2.53242e13 −1.05289 −0.526445 0.850209i \(-0.676475\pi\)
−0.526445 + 0.850209i \(0.676475\pi\)
\(942\) − 2.54183e13i − 1.05176i
\(943\) − 1.26046e13i − 0.519070i
\(944\) −1.84138e13 −0.754693
\(945\) 0 0
\(946\) 2.64816e13 1.07506
\(947\) − 1.37160e13i − 0.554182i −0.960844 0.277091i \(-0.910630\pi\)
0.960844 0.277091i \(-0.0893703\pi\)
\(948\) − 2.69329e13i − 1.08304i
\(949\) 2.86380e13 1.14616
\(950\) 0 0
\(951\) 1.70918e13 0.677604
\(952\) − 6.66961e12i − 0.263169i
\(953\) − 2.44096e13i − 0.958610i −0.877648 0.479305i \(-0.840889\pi\)
0.877648 0.479305i \(-0.159111\pi\)
\(954\) −2.57478e13 −1.00641
\(955\) 0 0
\(956\) 1.65065e13 0.639137
\(957\) − 2.69372e13i − 1.03812i
\(958\) − 6.78892e13i − 2.60409i
\(959\) 1.06632e13 0.407104
\(960\) 0 0
\(961\) −2.44095e13 −0.923218
\(962\) − 4.74531e13i − 1.78639i
\(963\) − 6.13001e12i − 0.229690i
\(964\) −4.59096e13 −1.71221
\(965\) 0 0
\(966\) −4.05546e12 −0.149845
\(967\) − 4.19850e13i − 1.54410i −0.635563 0.772049i \(-0.719232\pi\)
0.635563 0.772049i \(-0.280768\pi\)
\(968\) 1.19864e13i 0.438784i
\(969\) −1.79416e13 −0.653738
\(970\) 0 0
\(971\) 3.13254e12 0.113086 0.0565432 0.998400i \(-0.481992\pi\)
0.0565432 + 0.998400i \(0.481992\pi\)
\(972\) − 3.66825e13i − 1.31814i
\(973\) 1.74886e13i 0.625529i
\(974\) −4.21022e13 −1.49896
\(975\) 0 0
\(976\) −5.38920e12 −0.190108
\(977\) 4.53124e13i 1.59108i 0.605902 + 0.795539i \(0.292812\pi\)
−0.605902 + 0.795539i \(0.707188\pi\)
\(978\) 5.73251e12i 0.200364i
\(979\) 1.02055e13 0.355068
\(980\) 0 0
\(981\) −6.95097e12 −0.239626
\(982\) 6.96109e13i 2.38878i
\(983\) 2.54481e13i 0.869290i 0.900602 + 0.434645i \(0.143126\pi\)
−0.900602 + 0.434645i \(0.856874\pi\)
\(984\) 7.90545e12 0.268812
\(985\) 0 0
\(986\) −9.46704e13 −3.18983
\(987\) 3.81225e12i 0.127866i
\(988\) 2.75155e13i 0.918694i
\(989\) −6.93817e12 −0.230601
\(990\) 0 0
\(991\) −5.41691e13 −1.78410 −0.892052 0.451933i \(-0.850734\pi\)
−0.892052 + 0.451933i \(0.850734\pi\)
\(992\) − 1.17634e13i − 0.385683i
\(993\) − 4.36465e12i − 0.142455i
\(994\) 1.70523e13 0.554045
\(995\) 0 0
\(996\) 3.56200e13 1.14690
\(997\) − 4.29329e13i − 1.37614i −0.725646 0.688069i \(-0.758459\pi\)
0.725646 0.688069i \(-0.241541\pi\)
\(998\) − 1.11473e13i − 0.355697i
\(999\) −3.44788e13 −1.09524
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.10.b.d.99.2 6
5.2 odd 4 175.10.a.d.1.3 3
5.3 odd 4 7.10.a.b.1.1 3
5.4 even 2 inner 175.10.b.d.99.5 6
15.8 even 4 63.10.a.e.1.3 3
20.3 even 4 112.10.a.h.1.3 3
35.3 even 12 49.10.c.e.30.3 6
35.13 even 4 49.10.a.c.1.1 3
35.18 odd 12 49.10.c.d.30.3 6
35.23 odd 12 49.10.c.d.18.3 6
35.33 even 12 49.10.c.e.18.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7.10.a.b.1.1 3 5.3 odd 4
49.10.a.c.1.1 3 35.13 even 4
49.10.c.d.18.3 6 35.23 odd 12
49.10.c.d.30.3 6 35.18 odd 12
49.10.c.e.18.3 6 35.33 even 12
49.10.c.e.30.3 6 35.3 even 12
63.10.a.e.1.3 3 15.8 even 4
112.10.a.h.1.3 3 20.3 even 4
175.10.a.d.1.3 3 5.2 odd 4
175.10.b.d.99.2 6 1.1 even 1 trivial
175.10.b.d.99.5 6 5.4 even 2 inner