Properties

Label 175.10.b.d.99.1
Level $175$
Weight $10$
Character 175.99
Analytic conductor $90.131$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,10,Mod(99,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.99");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 175.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(90.1312713287\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 853x^{4} + 185508x^{2} + 4064256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 7)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 99.1
Root \(4.96128i\) of defining polynomial
Character \(\chi\) \(=\) 175.99
Dual form 175.10.b.d.99.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-41.8019i q^{2} +0.232339i q^{3} -1235.40 q^{4} +9.71222 q^{6} -2401.00i q^{7} +30239.6i q^{8} +19682.9 q^{9} +17401.5 q^{11} -287.032i q^{12} -122541. i q^{13} -100366. q^{14} +631550. q^{16} -331933. i q^{17} -822785. i q^{18} -761707. q^{19} +557.846 q^{21} -727418. i q^{22} +1.23249e6i q^{23} -7025.85 q^{24} -5.12246e6 q^{26} +9146.25i q^{27} +2.96620e6i q^{28} -634604. q^{29} -5.38069e6 q^{31} -1.09173e7i q^{32} +4043.06i q^{33} -1.38754e7 q^{34} -2.43164e7 q^{36} +3.03611e6i q^{37} +3.18408e7i q^{38} +28471.1 q^{39} -7.37009e6 q^{41} -23319.1i q^{42} -2.06990e7i q^{43} -2.14979e7 q^{44} +5.15203e7 q^{46} -2.03632e7i q^{47} +146734. i q^{48} -5.76480e6 q^{49} +77120.9 q^{51} +1.51388e8i q^{52} -5.97380e7i q^{53} +382331. q^{54} +7.26054e7 q^{56} -176974. i q^{57} +2.65277e7i q^{58} -6.03461e7 q^{59} -9.44357e6 q^{61} +2.24923e8i q^{62} -4.72588e7i q^{63} -1.33012e8 q^{64} +169008. q^{66} +2.19187e8i q^{67} +4.10071e8i q^{68} -286355. q^{69} -5.58741e7 q^{71} +5.95205e8i q^{72} +4.54332e8i q^{73} +1.26915e8 q^{74} +9.41015e8 q^{76} -4.17811e7i q^{77} -1.19015e6i q^{78} -4.51057e7 q^{79} +3.87417e8 q^{81} +3.08084e8i q^{82} -3.34665e8i q^{83} -689165. q^{84} -8.65259e8 q^{86} -147443. i q^{87} +5.26216e8i q^{88} -6.51886e8 q^{89} -2.94221e8 q^{91} -1.52262e9i q^{92} -1.25014e6i q^{93} -8.51220e8 q^{94} +2.53652e6 q^{96} +1.42804e9i q^{97} +2.40980e8i q^{98} +3.42514e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3114 q^{4} + 9828 q^{6} + 52002 q^{9} - 6888 q^{11} - 100842 q^{14} + 965922 q^{16} - 445704 q^{19} + 403368 q^{21} + 2899260 q^{24} - 17570112 q^{26} - 8163636 q^{29} + 5738880 q^{31} + 7963284 q^{34}+ \cdots + 3801958344 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 41.8019i − 1.84740i −0.383114 0.923701i \(-0.625148\pi\)
0.383114 0.923701i \(-0.374852\pi\)
\(3\) 0.232339i 0.00165606i 1.00000 0.000828031i \(0.000263570\pi\)
−1.00000 0.000828031i \(0.999736\pi\)
\(4\) −1235.40 −2.41290
\(5\) 0 0
\(6\) 9.71222 0.00305941
\(7\) − 2401.00i − 0.377964i
\(8\) 30239.6i 2.61019i
\(9\) 19682.9 0.999997
\(10\) 0 0
\(11\) 17401.5 0.358361 0.179180 0.983816i \(-0.442655\pi\)
0.179180 + 0.983816i \(0.442655\pi\)
\(12\) − 287.032i − 0.00399591i
\(13\) − 122541.i − 1.18997i −0.803736 0.594986i \(-0.797158\pi\)
0.803736 0.594986i \(-0.202842\pi\)
\(14\) −100366. −0.698253
\(15\) 0 0
\(16\) 631550. 2.40917
\(17\) − 331933.i − 0.963895i −0.876200 0.481948i \(-0.839930\pi\)
0.876200 0.481948i \(-0.160070\pi\)
\(18\) − 822785.i − 1.84740i
\(19\) −761707. −1.34090 −0.670450 0.741954i \(-0.733899\pi\)
−0.670450 + 0.741954i \(0.733899\pi\)
\(20\) 0 0
\(21\) 557.846 0.000625933 0
\(22\) − 727418.i − 0.662037i
\(23\) 1.23249e6i 0.918347i 0.888347 + 0.459173i \(0.151854\pi\)
−0.888347 + 0.459173i \(0.848146\pi\)
\(24\) −7025.85 −0.00432263
\(25\) 0 0
\(26\) −5.12246e6 −2.19836
\(27\) 9146.25i 0.00331212i
\(28\) 2.96620e6i 0.911989i
\(29\) −634604. −0.166614 −0.0833071 0.996524i \(-0.526548\pi\)
−0.0833071 + 0.996524i \(0.526548\pi\)
\(30\) 0 0
\(31\) −5.38069e6 −1.04643 −0.523215 0.852201i \(-0.675268\pi\)
−0.523215 + 0.852201i \(0.675268\pi\)
\(32\) − 1.09173e7i − 1.84052i
\(33\) 4043.06i 0 0.000593468i
\(34\) −1.38754e7 −1.78070
\(35\) 0 0
\(36\) −2.43164e7 −2.41289
\(37\) 3.03611e6i 0.266324i 0.991094 + 0.133162i \(0.0425130\pi\)
−0.991094 + 0.133162i \(0.957487\pi\)
\(38\) 3.18408e7i 2.47718i
\(39\) 28471.1 0.00197067
\(40\) 0 0
\(41\) −7.37009e6 −0.407329 −0.203665 0.979041i \(-0.565285\pi\)
−0.203665 + 0.979041i \(0.565285\pi\)
\(42\) − 23319.1i − 0.00115635i
\(43\) − 2.06990e7i − 0.923297i −0.887063 0.461649i \(-0.847258\pi\)
0.887063 0.461649i \(-0.152742\pi\)
\(44\) −2.14979e7 −0.864687
\(45\) 0 0
\(46\) 5.15203e7 1.69656
\(47\) − 2.03632e7i − 0.608702i −0.952560 0.304351i \(-0.901560\pi\)
0.952560 0.304351i \(-0.0984396\pi\)
\(48\) 146734.i 0.00398974i
\(49\) −5.76480e6 −0.142857
\(50\) 0 0
\(51\) 77120.9 0.00159627
\(52\) 1.51388e8i 2.87128i
\(53\) − 5.97380e7i − 1.03994i −0.854184 0.519971i \(-0.825943\pi\)
0.854184 0.519971i \(-0.174057\pi\)
\(54\) 382331. 0.00611882
\(55\) 0 0
\(56\) 7.26054e7 0.986558
\(57\) − 176974.i − 0.00222061i
\(58\) 2.65277e7i 0.307803i
\(59\) −6.03461e7 −0.648358 −0.324179 0.945996i \(-0.605088\pi\)
−0.324179 + 0.945996i \(0.605088\pi\)
\(60\) 0 0
\(61\) −9.44357e6 −0.0873277 −0.0436639 0.999046i \(-0.513903\pi\)
−0.0436639 + 0.999046i \(0.513903\pi\)
\(62\) 2.24923e8i 1.93318i
\(63\) − 4.72588e7i − 0.377963i
\(64\) −1.33012e8 −0.991013
\(65\) 0 0
\(66\) 169008. 0.00109637
\(67\) 2.19187e8i 1.32885i 0.747353 + 0.664427i \(0.231324\pi\)
−0.747353 + 0.664427i \(0.768676\pi\)
\(68\) 4.10071e8i 2.32578i
\(69\) −286355. −0.00152084
\(70\) 0 0
\(71\) −5.58741e7 −0.260944 −0.130472 0.991452i \(-0.541649\pi\)
−0.130472 + 0.991452i \(0.541649\pi\)
\(72\) 5.95205e8i 2.61018i
\(73\) 4.54332e8i 1.87250i 0.351340 + 0.936248i \(0.385726\pi\)
−0.351340 + 0.936248i \(0.614274\pi\)
\(74\) 1.26915e8 0.492007
\(75\) 0 0
\(76\) 9.41015e8 3.23545
\(77\) − 4.17811e7i − 0.135448i
\(78\) − 1.19015e6i − 0.00364062i
\(79\) −4.51057e7 −0.130289 −0.0651447 0.997876i \(-0.520751\pi\)
−0.0651447 + 0.997876i \(0.520751\pi\)
\(80\) 0 0
\(81\) 3.87417e8 0.999992
\(82\) 3.08084e8i 0.752501i
\(83\) − 3.34665e8i − 0.774031i −0.922073 0.387016i \(-0.873506\pi\)
0.922073 0.387016i \(-0.126494\pi\)
\(84\) −689165. −0.00151031
\(85\) 0 0
\(86\) −8.65259e8 −1.70570
\(87\) − 147443.i 0 0.000275923i
\(88\) 5.26216e8i 0.935389i
\(89\) −6.51886e8 −1.10133 −0.550664 0.834727i \(-0.685625\pi\)
−0.550664 + 0.834727i \(0.685625\pi\)
\(90\) 0 0
\(91\) −2.94221e8 −0.449767
\(92\) − 1.52262e9i − 2.21588i
\(93\) − 1.25014e6i − 0.00173295i
\(94\) −8.51220e8 −1.12452
\(95\) 0 0
\(96\) 2.53652e6 0.00304802
\(97\) 1.42804e9i 1.63783i 0.573916 + 0.818914i \(0.305424\pi\)
−0.573916 + 0.818914i \(0.694576\pi\)
\(98\) 2.40980e8i 0.263915i
\(99\) 3.42514e8 0.358360
\(100\) 0 0
\(101\) 8.91532e8 0.852493 0.426247 0.904607i \(-0.359836\pi\)
0.426247 + 0.904607i \(0.359836\pi\)
\(102\) − 3.22380e6i − 0.00294895i
\(103\) − 7.12000e8i − 0.623322i −0.950193 0.311661i \(-0.899115\pi\)
0.950193 0.311661i \(-0.100885\pi\)
\(104\) 3.70560e9 3.10605
\(105\) 0 0
\(106\) −2.49716e9 −1.92119
\(107\) − 2.48598e9i − 1.83346i −0.399510 0.916729i \(-0.630820\pi\)
0.399510 0.916729i \(-0.369180\pi\)
\(108\) − 1.12993e7i − 0.00799180i
\(109\) −3.83455e8 −0.260193 −0.130096 0.991501i \(-0.541529\pi\)
−0.130096 + 0.991501i \(0.541529\pi\)
\(110\) 0 0
\(111\) −705407. −0.000441048 0
\(112\) − 1.51635e9i − 0.910581i
\(113\) 2.39582e9i 1.38230i 0.722713 + 0.691148i \(0.242895\pi\)
−0.722713 + 0.691148i \(0.757105\pi\)
\(114\) −7.39787e6 −0.00410237
\(115\) 0 0
\(116\) 7.83991e8 0.402023
\(117\) − 2.41197e9i − 1.18997i
\(118\) 2.52258e9i 1.19778i
\(119\) −7.96970e8 −0.364318
\(120\) 0 0
\(121\) −2.05513e9 −0.871578
\(122\) 3.94760e8i 0.161329i
\(123\) − 1.71236e6i 0 0.000674562i
\(124\) 6.64732e9 2.52493
\(125\) 0 0
\(126\) −1.97551e9 −0.698251
\(127\) − 1.88261e9i − 0.642161i −0.947052 0.321080i \(-0.895954\pi\)
0.947052 0.321080i \(-0.104046\pi\)
\(128\) − 2.95237e7i − 0.00972134i
\(129\) 4.80919e6 0.00152904
\(130\) 0 0
\(131\) −1.49241e9 −0.442760 −0.221380 0.975188i \(-0.571056\pi\)
−0.221380 + 0.975188i \(0.571056\pi\)
\(132\) − 4.99480e6i − 0.00143198i
\(133\) 1.82886e9i 0.506813i
\(134\) 9.16242e9 2.45493
\(135\) 0 0
\(136\) 1.00375e10 2.51595
\(137\) 3.21118e9i 0.778792i 0.921070 + 0.389396i \(0.127316\pi\)
−0.921070 + 0.389396i \(0.872684\pi\)
\(138\) 1.19702e7i 0.00280960i
\(139\) 3.03934e9 0.690577 0.345289 0.938497i \(-0.387781\pi\)
0.345289 + 0.938497i \(0.387781\pi\)
\(140\) 0 0
\(141\) 4.73116e6 0.00100805
\(142\) 2.33565e9i 0.482070i
\(143\) − 2.13240e9i − 0.426439i
\(144\) 1.24308e10 2.40917
\(145\) 0 0
\(146\) 1.89920e10 3.45925
\(147\) − 1.33939e6i 0 0.000236580i
\(148\) − 3.75082e9i − 0.642611i
\(149\) 3.64286e9 0.605487 0.302743 0.953072i \(-0.402098\pi\)
0.302743 + 0.953072i \(0.402098\pi\)
\(150\) 0 0
\(151\) 5.05862e9 0.791837 0.395919 0.918286i \(-0.370426\pi\)
0.395919 + 0.918286i \(0.370426\pi\)
\(152\) − 2.30337e10i − 3.50000i
\(153\) − 6.53341e9i − 0.963893i
\(154\) −1.74653e9 −0.250226
\(155\) 0 0
\(156\) −3.51733e7 −0.00475502
\(157\) 1.19687e10i 1.57216i 0.618122 + 0.786082i \(0.287894\pi\)
−0.618122 + 0.786082i \(0.712106\pi\)
\(158\) 1.88551e9i 0.240697i
\(159\) 1.38795e7 0.00172221
\(160\) 0 0
\(161\) 2.95920e9 0.347102
\(162\) − 1.61948e10i − 1.84739i
\(163\) 1.40960e10i 1.56405i 0.623245 + 0.782027i \(0.285814\pi\)
−0.623245 + 0.782027i \(0.714186\pi\)
\(164\) 9.10503e9 0.982843
\(165\) 0 0
\(166\) −1.39896e10 −1.42995
\(167\) − 3.56028e9i − 0.354210i −0.984192 0.177105i \(-0.943327\pi\)
0.984192 0.177105i \(-0.0566732\pi\)
\(168\) 1.68691e7i 0.00163380i
\(169\) −4.41184e9 −0.416034
\(170\) 0 0
\(171\) −1.49926e10 −1.34090
\(172\) 2.55716e10i 2.22782i
\(173\) 2.64068e9i 0.224134i 0.993701 + 0.112067i \(0.0357471\pi\)
−0.993701 + 0.112067i \(0.964253\pi\)
\(174\) −6.16342e6 −0.000509741 0
\(175\) 0 0
\(176\) 1.09899e10 0.863353
\(177\) − 1.40208e7i − 0.00107372i
\(178\) 2.72501e10i 2.03459i
\(179\) −1.26973e9 −0.0924430 −0.0462215 0.998931i \(-0.514718\pi\)
−0.0462215 + 0.998931i \(0.514718\pi\)
\(180\) 0 0
\(181\) −2.17242e10 −1.50449 −0.752247 0.658881i \(-0.771030\pi\)
−0.752247 + 0.658881i \(0.771030\pi\)
\(182\) 1.22990e10i 0.830901i
\(183\) − 2.19411e6i 0 0.000144620i
\(184\) −3.72699e10 −2.39706
\(185\) 0 0
\(186\) −5.22584e7 −0.00320146
\(187\) − 5.77614e9i − 0.345422i
\(188\) 2.51567e10i 1.46874i
\(189\) 2.19601e7 0.00125186
\(190\) 0 0
\(191\) −1.07035e10 −0.581937 −0.290968 0.956733i \(-0.593977\pi\)
−0.290968 + 0.956733i \(0.593977\pi\)
\(192\) − 3.09038e7i − 0.00164118i
\(193\) 7.66063e9i 0.397426i 0.980058 + 0.198713i \(0.0636762\pi\)
−0.980058 + 0.198713i \(0.936324\pi\)
\(194\) 5.96950e10 3.02573
\(195\) 0 0
\(196\) 7.12185e9 0.344699
\(197\) 4.26160e9i 0.201592i 0.994907 + 0.100796i \(0.0321390\pi\)
−0.994907 + 0.100796i \(0.967861\pi\)
\(198\) − 1.43177e10i − 0.662035i
\(199\) −3.16291e10 −1.42971 −0.714856 0.699272i \(-0.753508\pi\)
−0.714856 + 0.699272i \(0.753508\pi\)
\(200\) 0 0
\(201\) −5.09256e7 −0.00220066
\(202\) − 3.72678e10i − 1.57490i
\(203\) 1.52368e9i 0.0629742i
\(204\) −9.52754e7 −0.00385163
\(205\) 0 0
\(206\) −2.97630e10 −1.15153
\(207\) 2.42590e10i 0.918344i
\(208\) − 7.73909e10i − 2.86685i
\(209\) −1.32549e10 −0.480526
\(210\) 0 0
\(211\) 1.76561e10 0.613229 0.306615 0.951834i \(-0.400804\pi\)
0.306615 + 0.951834i \(0.400804\pi\)
\(212\) 7.38005e10i 2.50927i
\(213\) − 1.29817e7i 0 0.000432140i
\(214\) −1.03919e11 −3.38713
\(215\) 0 0
\(216\) −2.76579e8 −0.00864525
\(217\) 1.29190e10i 0.395513i
\(218\) 1.60292e10i 0.480681i
\(219\) −1.05559e8 −0.00310097
\(220\) 0 0
\(221\) −4.06754e10 −1.14701
\(222\) 2.94874e7i 0 0.000814794i
\(223\) − 1.04686e10i − 0.283476i −0.989904 0.141738i \(-0.954731\pi\)
0.989904 0.141738i \(-0.0452690\pi\)
\(224\) −2.62125e10 −0.695652
\(225\) 0 0
\(226\) 1.00150e11 2.55366
\(227\) − 1.95043e10i − 0.487543i −0.969833 0.243772i \(-0.921615\pi\)
0.969833 0.243772i \(-0.0783848\pi\)
\(228\) 2.18634e8i 0.00535811i
\(229\) 5.96135e10 1.43247 0.716234 0.697860i \(-0.245864\pi\)
0.716234 + 0.697860i \(0.245864\pi\)
\(230\) 0 0
\(231\) 9.70738e6 0.000224310 0
\(232\) − 1.91902e10i − 0.434894i
\(233\) 8.42619e10i 1.87296i 0.350716 + 0.936482i \(0.385938\pi\)
−0.350716 + 0.936482i \(0.614062\pi\)
\(234\) −1.00825e11 −2.19835
\(235\) 0 0
\(236\) 7.45517e10 1.56442
\(237\) − 1.04798e7i 0 0.000215767i
\(238\) 3.33149e10i 0.673042i
\(239\) 7.28353e10 1.44395 0.721974 0.691920i \(-0.243235\pi\)
0.721974 + 0.691920i \(0.243235\pi\)
\(240\) 0 0
\(241\) 4.45555e10 0.850795 0.425397 0.905007i \(-0.360134\pi\)
0.425397 + 0.905007i \(0.360134\pi\)
\(242\) 8.59086e10i 1.61015i
\(243\) 2.70038e8i 0.00496817i
\(244\) 1.16666e10 0.210713
\(245\) 0 0
\(246\) −7.15800e7 −0.00124619
\(247\) 9.33404e10i 1.59564i
\(248\) − 1.62710e11i − 2.73138i
\(249\) 7.77557e7 0.00128184
\(250\) 0 0
\(251\) −9.55068e10 −1.51881 −0.759404 0.650620i \(-0.774509\pi\)
−0.759404 + 0.650620i \(0.774509\pi\)
\(252\) 5.83836e10i 0.911987i
\(253\) 2.14472e10i 0.329100i
\(254\) −7.86968e10 −1.18633
\(255\) 0 0
\(256\) −6.93361e10 −1.00897
\(257\) − 9.12794e10i − 1.30519i −0.757707 0.652595i \(-0.773680\pi\)
0.757707 0.652595i \(-0.226320\pi\)
\(258\) − 2.01033e8i − 0.00282475i
\(259\) 7.28970e9 0.100661
\(260\) 0 0
\(261\) −1.24909e10 −0.166614
\(262\) 6.23858e10i 0.817956i
\(263\) 1.50976e11i 1.94584i 0.231138 + 0.972921i \(0.425755\pi\)
−0.231138 + 0.972921i \(0.574245\pi\)
\(264\) −1.22261e8 −0.00154906
\(265\) 0 0
\(266\) 7.64498e10 0.936287
\(267\) − 1.51458e8i − 0.00182387i
\(268\) − 2.70784e11i − 3.20639i
\(269\) −2.39622e10 −0.279024 −0.139512 0.990220i \(-0.544553\pi\)
−0.139512 + 0.990220i \(0.544553\pi\)
\(270\) 0 0
\(271\) −5.51248e10 −0.620848 −0.310424 0.950598i \(-0.600471\pi\)
−0.310424 + 0.950598i \(0.600471\pi\)
\(272\) − 2.09632e11i − 2.32219i
\(273\) − 6.83591e7i 0 0.000744842i
\(274\) 1.34233e11 1.43874
\(275\) 0 0
\(276\) 3.53763e8 0.00366963
\(277\) − 2.19632e10i − 0.224149i −0.993700 0.112074i \(-0.964251\pi\)
0.993700 0.112074i \(-0.0357495\pi\)
\(278\) − 1.27050e11i − 1.27577i
\(279\) −1.05908e11 −1.04643
\(280\) 0 0
\(281\) −1.62670e10 −0.155643 −0.0778213 0.996967i \(-0.524796\pi\)
−0.0778213 + 0.996967i \(0.524796\pi\)
\(282\) − 1.97772e8i − 0.00186227i
\(283\) 1.35590e10i 0.125657i 0.998024 + 0.0628287i \(0.0200122\pi\)
−0.998024 + 0.0628287i \(0.979988\pi\)
\(284\) 6.90270e10 0.629632
\(285\) 0 0
\(286\) −8.91387e10 −0.787805
\(287\) 1.76956e10i 0.153956i
\(288\) − 2.14885e11i − 1.84052i
\(289\) 8.40858e9 0.0709059
\(290\) 0 0
\(291\) −3.31790e8 −0.00271235
\(292\) − 5.61284e11i − 4.51814i
\(293\) 5.41900e10i 0.429551i 0.976663 + 0.214776i \(0.0689021\pi\)
−0.976663 + 0.214776i \(0.931098\pi\)
\(294\) −5.59890e7 −0.000437059 0
\(295\) 0 0
\(296\) −9.18109e10 −0.695155
\(297\) 1.59159e8i 0.00118693i
\(298\) − 1.52279e11i − 1.11858i
\(299\) 1.51030e11 1.09281
\(300\) 0 0
\(301\) −4.96983e10 −0.348974
\(302\) − 2.11460e11i − 1.46284i
\(303\) 2.07138e8i 0.00141178i
\(304\) −4.81056e11 −3.23046
\(305\) 0 0
\(306\) −2.73109e11 −1.78070
\(307\) − 7.32498e10i − 0.470634i −0.971919 0.235317i \(-0.924387\pi\)
0.971919 0.235317i \(-0.0756129\pi\)
\(308\) 5.16165e10i 0.326821i
\(309\) 1.65425e8 0.00103226
\(310\) 0 0
\(311\) −2.44502e11 −1.48204 −0.741021 0.671482i \(-0.765658\pi\)
−0.741021 + 0.671482i \(0.765658\pi\)
\(312\) 8.60956e8i 0.00514381i
\(313\) − 4.39895e10i − 0.259060i −0.991576 0.129530i \(-0.958653\pi\)
0.991576 0.129530i \(-0.0413468\pi\)
\(314\) 5.00314e11 2.90442
\(315\) 0 0
\(316\) 5.57237e10 0.314375
\(317\) 2.17653e11i 1.21059i 0.795999 + 0.605297i \(0.206946\pi\)
−0.795999 + 0.605297i \(0.793054\pi\)
\(318\) − 5.80189e8i − 0.00318161i
\(319\) −1.10431e10 −0.0597080
\(320\) 0 0
\(321\) 5.77591e8 0.00303632
\(322\) − 1.23700e11i − 0.641238i
\(323\) 2.52835e11i 1.29249i
\(324\) −4.78616e11 −2.41288
\(325\) 0 0
\(326\) 5.89240e11 2.88944
\(327\) − 8.90917e7i 0 0.000430896i
\(328\) − 2.22869e11i − 1.06321i
\(329\) −4.88920e10 −0.230068
\(330\) 0 0
\(331\) −3.66945e11 −1.68026 −0.840128 0.542389i \(-0.817520\pi\)
−0.840128 + 0.542389i \(0.817520\pi\)
\(332\) 4.13446e11i 1.86766i
\(333\) 5.97596e10i 0.266323i
\(334\) −1.48827e11 −0.654368
\(335\) 0 0
\(336\) 3.52308e8 0.00150798
\(337\) − 1.99451e11i − 0.842367i −0.906976 0.421183i \(-0.861615\pi\)
0.906976 0.421183i \(-0.138385\pi\)
\(338\) 1.84423e11i 0.768583i
\(339\) −5.56642e8 −0.00228917
\(340\) 0 0
\(341\) −9.36322e10 −0.374999
\(342\) 6.26721e11i 2.47718i
\(343\) 1.38413e10i 0.0539949i
\(344\) 6.25931e11 2.40998
\(345\) 0 0
\(346\) 1.10385e11 0.414066
\(347\) − 6.63180e10i − 0.245555i −0.992434 0.122777i \(-0.960820\pi\)
0.992434 0.122777i \(-0.0391801\pi\)
\(348\) 1.82152e8i 0 0.000665774i
\(349\) 1.20301e11 0.434065 0.217033 0.976164i \(-0.430362\pi\)
0.217033 + 0.976164i \(0.430362\pi\)
\(350\) 0 0
\(351\) 1.12079e9 0.00394133
\(352\) − 1.89978e11i − 0.659571i
\(353\) 2.43060e11i 0.833159i 0.909099 + 0.416580i \(0.136771\pi\)
−0.909099 + 0.416580i \(0.863229\pi\)
\(354\) −5.86095e8 −0.00198360
\(355\) 0 0
\(356\) 8.05341e11 2.65739
\(357\) − 1.85167e8i 0 0.000603333i
\(358\) 5.30773e10i 0.170779i
\(359\) −2.81654e11 −0.894933 −0.447466 0.894301i \(-0.647674\pi\)
−0.447466 + 0.894301i \(0.647674\pi\)
\(360\) 0 0
\(361\) 2.57510e11 0.798015
\(362\) 9.08115e11i 2.77941i
\(363\) − 4.77488e8i − 0.00144339i
\(364\) 3.63482e11 1.08524
\(365\) 0 0
\(366\) −9.17181e7 −0.000267172 0
\(367\) 2.41000e11i 0.693458i 0.937965 + 0.346729i \(0.112708\pi\)
−0.937965 + 0.346729i \(0.887292\pi\)
\(368\) 7.78376e11i 2.21246i
\(369\) −1.45065e11 −0.407328
\(370\) 0 0
\(371\) −1.43431e11 −0.393061
\(372\) 1.54443e9i 0.00418143i
\(373\) − 1.33921e11i − 0.358227i −0.983828 0.179114i \(-0.942677\pi\)
0.983828 0.179114i \(-0.0573230\pi\)
\(374\) −2.41454e11 −0.638134
\(375\) 0 0
\(376\) 6.15775e11 1.58883
\(377\) 7.77651e10i 0.198266i
\(378\) − 9.17976e8i − 0.00231270i
\(379\) −5.67201e11 −1.41208 −0.706042 0.708170i \(-0.749521\pi\)
−0.706042 + 0.708170i \(0.749521\pi\)
\(380\) 0 0
\(381\) 4.37404e8 0.00106346
\(382\) 4.47427e11i 1.07507i
\(383\) − 1.03509e11i − 0.245800i −0.992419 0.122900i \(-0.960781\pi\)
0.992419 0.122900i \(-0.0392194\pi\)
\(384\) 6.85951e6 1.60991e−5 0
\(385\) 0 0
\(386\) 3.20229e11 0.734206
\(387\) − 4.07417e11i − 0.923295i
\(388\) − 1.76421e12i − 3.95191i
\(389\) 5.83600e11 1.29224 0.646119 0.763237i \(-0.276391\pi\)
0.646119 + 0.763237i \(0.276391\pi\)
\(390\) 0 0
\(391\) 4.09102e11 0.885190
\(392\) − 1.74326e11i − 0.372884i
\(393\) − 3.46746e8i 0 0.000733238i
\(394\) 1.78143e11 0.372422
\(395\) 0 0
\(396\) −4.23142e11 −0.864685
\(397\) 6.54542e10i 0.132245i 0.997812 + 0.0661226i \(0.0210629\pi\)
−0.997812 + 0.0661226i \(0.978937\pi\)
\(398\) 1.32216e12i 2.64125i
\(399\) −4.24915e8 −0.000839313 0
\(400\) 0 0
\(401\) 4.06647e10 0.0785359 0.0392679 0.999229i \(-0.487497\pi\)
0.0392679 + 0.999229i \(0.487497\pi\)
\(402\) 2.12879e9i 0.00406551i
\(403\) 6.59356e11i 1.24522i
\(404\) −1.10140e12 −2.05698
\(405\) 0 0
\(406\) 6.36930e10 0.116339
\(407\) 5.28330e10i 0.0954400i
\(408\) 2.33211e9i 0.00416657i
\(409\) −1.06163e12 −1.87594 −0.937970 0.346716i \(-0.887297\pi\)
−0.937970 + 0.346716i \(0.887297\pi\)
\(410\) 0 0
\(411\) −7.46081e8 −0.00128973
\(412\) 8.79607e11i 1.50401i
\(413\) 1.44891e11i 0.245056i
\(414\) 1.01407e12 1.69655
\(415\) 0 0
\(416\) −1.33782e12 −2.19017
\(417\) 7.06157e8i 0.00114364i
\(418\) 5.54079e11i 0.887726i
\(419\) 1.19335e12 1.89149 0.945744 0.324912i \(-0.105335\pi\)
0.945744 + 0.324912i \(0.105335\pi\)
\(420\) 0 0
\(421\) −5.88397e11 −0.912853 −0.456427 0.889761i \(-0.650871\pi\)
−0.456427 + 0.889761i \(0.650871\pi\)
\(422\) − 7.38058e11i − 1.13288i
\(423\) − 4.00807e11i − 0.608701i
\(424\) 1.80646e12 2.71444
\(425\) 0 0
\(426\) −5.42662e8 −0.000798337 0
\(427\) 2.26740e10i 0.0330068i
\(428\) 3.07119e12i 4.42394i
\(429\) 4.95441e8 0.000706210 0
\(430\) 0 0
\(431\) −1.22932e12 −1.71599 −0.857997 0.513655i \(-0.828291\pi\)
−0.857997 + 0.513655i \(0.828291\pi\)
\(432\) 5.77631e9i 0.00797946i
\(433\) − 4.73819e10i − 0.0647764i −0.999475 0.0323882i \(-0.989689\pi\)
0.999475 0.0323882i \(-0.0103113\pi\)
\(434\) 5.40041e11 0.730672
\(435\) 0 0
\(436\) 4.73722e11 0.627819
\(437\) − 9.38793e11i − 1.23141i
\(438\) 4.41258e9i 0.00572874i
\(439\) −6.14236e11 −0.789305 −0.394652 0.918830i \(-0.629135\pi\)
−0.394652 + 0.918830i \(0.629135\pi\)
\(440\) 0 0
\(441\) −1.13468e11 −0.142857
\(442\) 1.70031e12i 2.11899i
\(443\) − 8.19199e11i − 1.01058i −0.862948 0.505292i \(-0.831385\pi\)
0.862948 0.505292i \(-0.168615\pi\)
\(444\) 8.71462e8 0.00106420
\(445\) 0 0
\(446\) −4.37607e11 −0.523694
\(447\) 8.46379e8i 0.00100272i
\(448\) 3.19361e11i 0.374568i
\(449\) −4.81029e11 −0.558551 −0.279276 0.960211i \(-0.590094\pi\)
−0.279276 + 0.960211i \(0.590094\pi\)
\(450\) 0 0
\(451\) −1.28251e11 −0.145971
\(452\) − 2.95980e12i − 3.33534i
\(453\) 1.17532e9i 0.00131133i
\(454\) −8.15316e11 −0.900689
\(455\) 0 0
\(456\) 5.35164e9 0.00579622
\(457\) − 1.15328e12i − 1.23684i −0.785849 0.618419i \(-0.787774\pi\)
0.785849 0.618419i \(-0.212226\pi\)
\(458\) − 2.49196e12i − 2.64635i
\(459\) 3.03594e9 0.00319254
\(460\) 0 0
\(461\) −6.06986e11 −0.625928 −0.312964 0.949765i \(-0.601322\pi\)
−0.312964 + 0.949765i \(0.601322\pi\)
\(462\) − 4.05787e8i 0 0.000414390i
\(463\) − 8.87758e11i − 0.897801i −0.893582 0.448900i \(-0.851816\pi\)
0.893582 0.448900i \(-0.148184\pi\)
\(464\) −4.00784e11 −0.401402
\(465\) 0 0
\(466\) 3.52231e12 3.46012
\(467\) 1.09779e12i 1.06806i 0.845466 + 0.534029i \(0.179323\pi\)
−0.845466 + 0.534029i \(0.820677\pi\)
\(468\) 2.97976e12i 2.87127i
\(469\) 5.26267e11 0.502260
\(470\) 0 0
\(471\) −2.78079e9 −0.00260360
\(472\) − 1.82484e12i − 1.69234i
\(473\) − 3.60195e11i − 0.330874i
\(474\) −4.38076e8 −0.000398609 0
\(475\) 0 0
\(476\) 9.84579e11 0.879062
\(477\) − 1.17582e12i − 1.03994i
\(478\) − 3.04466e12i − 2.66755i
\(479\) 3.12229e11 0.270996 0.135498 0.990778i \(-0.456737\pi\)
0.135498 + 0.990778i \(0.456737\pi\)
\(480\) 0 0
\(481\) 3.72048e11 0.316918
\(482\) − 1.86251e12i − 1.57176i
\(483\) 6.87537e8i 0 0.000574823i
\(484\) 2.53892e12 2.10303
\(485\) 0 0
\(486\) 1.12881e10 0.00917820
\(487\) − 1.08377e12i − 0.873088i −0.899683 0.436544i \(-0.856202\pi\)
0.899683 0.436544i \(-0.143798\pi\)
\(488\) − 2.85570e11i − 0.227942i
\(489\) −3.27505e9 −0.00259017
\(490\) 0 0
\(491\) 2.14702e12 1.66713 0.833567 0.552419i \(-0.186295\pi\)
0.833567 + 0.552419i \(0.186295\pi\)
\(492\) 2.11545e9i 0.00162765i
\(493\) 2.10646e11i 0.160599i
\(494\) 3.90181e12 2.94778
\(495\) 0 0
\(496\) −3.39817e12 −2.52103
\(497\) 1.34154e11i 0.0986277i
\(498\) − 3.25034e9i − 0.00236808i
\(499\) 1.85705e12 1.34082 0.670411 0.741990i \(-0.266118\pi\)
0.670411 + 0.741990i \(0.266118\pi\)
\(500\) 0 0
\(501\) 8.27193e8 0.000586593 0
\(502\) 3.99237e12i 2.80585i
\(503\) − 1.59040e12i − 1.10777i −0.832593 0.553885i \(-0.813145\pi\)
0.832593 0.553885i \(-0.186855\pi\)
\(504\) 1.42909e12 0.986556
\(505\) 0 0
\(506\) 8.96533e11 0.607979
\(507\) − 1.02504e9i 0 0.000688979i
\(508\) 2.32578e12i 1.54947i
\(509\) −2.32864e12 −1.53771 −0.768853 0.639426i \(-0.779172\pi\)
−0.768853 + 0.639426i \(0.779172\pi\)
\(510\) 0 0
\(511\) 1.09085e12 0.707737
\(512\) 2.88327e12i 1.85426i
\(513\) − 6.96676e9i − 0.00444122i
\(514\) −3.81566e12 −2.41121
\(515\) 0 0
\(516\) −5.94128e9 −0.00368941
\(517\) − 3.54350e11i − 0.218135i
\(518\) − 3.04724e11i − 0.185961i
\(519\) −6.13532e8 −0.000371180 0
\(520\) 0 0
\(521\) −1.48366e12 −0.882197 −0.441099 0.897459i \(-0.645411\pi\)
−0.441099 + 0.897459i \(0.645411\pi\)
\(522\) 5.22143e11i 0.307802i
\(523\) − 1.95584e12i − 1.14308i −0.820574 0.571540i \(-0.806346\pi\)
0.820574 0.571540i \(-0.193654\pi\)
\(524\) 1.84373e12 1.06833
\(525\) 0 0
\(526\) 6.31110e12 3.59475
\(527\) 1.78603e12i 1.00865i
\(528\) 2.55339e9i 0.00142977i
\(529\) 2.82131e11 0.156639
\(530\) 0 0
\(531\) −1.18779e12 −0.648357
\(532\) − 2.25938e12i − 1.22289i
\(533\) 9.03139e11i 0.484710i
\(534\) −6.33126e9 −0.00336941
\(535\) 0 0
\(536\) −6.62812e12 −3.46856
\(537\) − 2.95009e8i 0 0.000153091i
\(538\) 1.00167e12i 0.515470i
\(539\) −1.00316e11 −0.0511944
\(540\) 0 0
\(541\) −1.34802e12 −0.676563 −0.338281 0.941045i \(-0.609846\pi\)
−0.338281 + 0.941045i \(0.609846\pi\)
\(542\) 2.30433e12i 1.14696i
\(543\) − 5.04738e9i − 0.00249154i
\(544\) −3.62381e12 −1.77407
\(545\) 0 0
\(546\) −2.85754e9 −0.00137602
\(547\) − 1.02503e12i − 0.489548i −0.969580 0.244774i \(-0.921286\pi\)
0.969580 0.244774i \(-0.0787137\pi\)
\(548\) − 3.96710e12i − 1.87914i
\(549\) −1.85877e11 −0.0873275
\(550\) 0 0
\(551\) 4.83382e11 0.223413
\(552\) − 8.65926e9i − 0.00396968i
\(553\) 1.08299e11i 0.0492448i
\(554\) −9.18103e11 −0.414093
\(555\) 0 0
\(556\) −3.75481e12 −1.66629
\(557\) − 1.75343e12i − 0.771864i −0.922527 0.385932i \(-0.873880\pi\)
0.922527 0.385932i \(-0.126120\pi\)
\(558\) 4.42715e12i 1.93317i
\(559\) −2.53648e12 −1.09870
\(560\) 0 0
\(561\) 1.34202e9 0.000572041 0
\(562\) 6.79991e11i 0.287535i
\(563\) − 2.17456e12i − 0.912185i −0.889932 0.456092i \(-0.849249\pi\)
0.889932 0.456092i \(-0.150751\pi\)
\(564\) −5.84489e9 −0.00243232
\(565\) 0 0
\(566\) 5.66792e11 0.232140
\(567\) − 9.30189e11i − 0.377961i
\(568\) − 1.68961e12i − 0.681114i
\(569\) −3.13812e12 −1.25506 −0.627531 0.778592i \(-0.715934\pi\)
−0.627531 + 0.778592i \(0.715934\pi\)
\(570\) 0 0
\(571\) 2.05979e12 0.810887 0.405444 0.914120i \(-0.367117\pi\)
0.405444 + 0.914120i \(0.367117\pi\)
\(572\) 2.63438e12i 1.02895i
\(573\) − 2.48684e9i 0 0.000963723i
\(574\) 7.39710e11 0.284419
\(575\) 0 0
\(576\) −2.61806e12 −0.991011
\(577\) − 3.94380e12i − 1.48123i −0.671927 0.740617i \(-0.734533\pi\)
0.671927 0.740617i \(-0.265467\pi\)
\(578\) − 3.51495e11i − 0.130992i
\(579\) −1.77986e9 −0.000658162 0
\(580\) 0 0
\(581\) −8.03530e11 −0.292556
\(582\) 1.38695e10i 0.00501079i
\(583\) − 1.03953e12i − 0.372675i
\(584\) −1.37389e13 −4.88757
\(585\) 0 0
\(586\) 2.26525e12 0.793555
\(587\) − 3.68239e12i − 1.28014i −0.768315 0.640071i \(-0.778905\pi\)
0.768315 0.640071i \(-0.221095\pi\)
\(588\) 1.65468e9i 0 0.000570844i
\(589\) 4.09851e12 1.40316
\(590\) 0 0
\(591\) −9.90135e8 −0.000333850 0
\(592\) 1.91746e12i 0.641620i
\(593\) − 1.17114e12i − 0.388921i −0.980910 0.194460i \(-0.937704\pi\)
0.980910 0.194460i \(-0.0622956\pi\)
\(594\) 6.65315e9 0.00219274
\(595\) 0 0
\(596\) −4.50040e12 −1.46098
\(597\) − 7.34868e9i − 0.00236769i
\(598\) − 6.31336e12i − 2.01886i
\(599\) −2.83757e12 −0.900586 −0.450293 0.892881i \(-0.648681\pi\)
−0.450293 + 0.892881i \(0.648681\pi\)
\(600\) 0 0
\(601\) 2.37066e12 0.741198 0.370599 0.928793i \(-0.379152\pi\)
0.370599 + 0.928793i \(0.379152\pi\)
\(602\) 2.07749e12i 0.644695i
\(603\) 4.31424e12i 1.32885i
\(604\) −6.24943e12 −1.91062
\(605\) 0 0
\(606\) 8.65876e9 0.00260813
\(607\) − 4.40080e12i − 1.31578i −0.753115 0.657889i \(-0.771450\pi\)
0.753115 0.657889i \(-0.228550\pi\)
\(608\) 8.31580e12i 2.46796i
\(609\) −3.54011e8 −0.000104289 0
\(610\) 0 0
\(611\) −2.49533e12 −0.724339
\(612\) 8.07140e12i 2.32577i
\(613\) − 1.87570e12i − 0.536527i −0.963346 0.268264i \(-0.913550\pi\)
0.963346 0.268264i \(-0.0864498\pi\)
\(614\) −3.06198e12 −0.869451
\(615\) 0 0
\(616\) 1.26345e12 0.353544
\(617\) 3.18170e12i 0.883845i 0.897053 + 0.441922i \(0.145703\pi\)
−0.897053 + 0.441922i \(0.854297\pi\)
\(618\) − 6.91510e9i − 0.00190700i
\(619\) 1.16476e11 0.0318880 0.0159440 0.999873i \(-0.494925\pi\)
0.0159440 + 0.999873i \(0.494925\pi\)
\(620\) 0 0
\(621\) −1.12726e10 −0.00304167
\(622\) 1.02207e13i 2.73793i
\(623\) 1.56518e12i 0.416263i
\(624\) 1.79809e10 0.00474768
\(625\) 0 0
\(626\) −1.83885e12 −0.478587
\(627\) − 3.07962e9i 0 0.000795781i
\(628\) − 1.47861e13i − 3.79347i
\(629\) 1.00778e12 0.256708
\(630\) 0 0
\(631\) −3.71283e12 −0.932338 −0.466169 0.884696i \(-0.654366\pi\)
−0.466169 + 0.884696i \(0.654366\pi\)
\(632\) − 1.36398e12i − 0.340080i
\(633\) 4.10219e9i 0.00101555i
\(634\) 9.09834e12 2.23646
\(635\) 0 0
\(636\) −1.71467e10 −0.00415551
\(637\) 7.06425e11i 0.169996i
\(638\) 4.61622e11i 0.110305i
\(639\) −1.09977e12 −0.260944
\(640\) 0 0
\(641\) 2.93764e11 0.0687285 0.0343642 0.999409i \(-0.489059\pi\)
0.0343642 + 0.999409i \(0.489059\pi\)
\(642\) − 2.41444e10i − 0.00560930i
\(643\) 5.27980e12i 1.21806i 0.793148 + 0.609029i \(0.208441\pi\)
−0.793148 + 0.609029i \(0.791559\pi\)
\(644\) −3.65580e12 −0.837522
\(645\) 0 0
\(646\) 1.05690e13 2.38775
\(647\) 2.62000e12i 0.587804i 0.955836 + 0.293902i \(0.0949539\pi\)
−0.955836 + 0.293902i \(0.905046\pi\)
\(648\) 1.17154e13i 2.61017i
\(649\) −1.05011e12 −0.232346
\(650\) 0 0
\(651\) −3.00160e9 −0.000654995 0
\(652\) − 1.74142e13i − 3.77390i
\(653\) 3.15918e12i 0.679931i 0.940438 + 0.339965i \(0.110415\pi\)
−0.940438 + 0.339965i \(0.889585\pi\)
\(654\) −3.72420e9 −0.000796038 0
\(655\) 0 0
\(656\) −4.65458e12 −0.981326
\(657\) 8.94260e12i 1.87249i
\(658\) 2.04378e12i 0.425028i
\(659\) −8.77292e11 −0.181201 −0.0906004 0.995887i \(-0.528879\pi\)
−0.0906004 + 0.995887i \(0.528879\pi\)
\(660\) 0 0
\(661\) 8.22108e12 1.67503 0.837514 0.546416i \(-0.184008\pi\)
0.837514 + 0.546416i \(0.184008\pi\)
\(662\) 1.53390e13i 3.10411i
\(663\) − 9.45049e9i − 0.00189952i
\(664\) 1.01201e13 2.02037
\(665\) 0 0
\(666\) 2.49807e12 0.492006
\(667\) − 7.82140e11i − 0.153010i
\(668\) 4.39838e12i 0.854671i
\(669\) 2.43226e9 0.000469454 0
\(670\) 0 0
\(671\) −1.64333e11 −0.0312948
\(672\) − 6.09018e9i − 0.00115204i
\(673\) − 7.47304e12i − 1.40420i −0.712077 0.702101i \(-0.752246\pi\)
0.712077 0.702101i \(-0.247754\pi\)
\(674\) −8.33743e12 −1.55619
\(675\) 0 0
\(676\) 5.45039e12 1.00385
\(677\) − 8.71309e12i − 1.59413i −0.603895 0.797064i \(-0.706386\pi\)
0.603895 0.797064i \(-0.293614\pi\)
\(678\) 2.32687e10i 0.00422901i
\(679\) 3.42873e12 0.619041
\(680\) 0 0
\(681\) 4.53160e9 0.000807402 0
\(682\) 3.91401e12i 0.692775i
\(683\) − 3.73903e12i − 0.657455i −0.944425 0.328727i \(-0.893380\pi\)
0.944425 0.328727i \(-0.106620\pi\)
\(684\) 1.85219e13 3.23545
\(685\) 0 0
\(686\) 5.78593e11 0.0997504
\(687\) 1.38505e10i 0.00237226i
\(688\) − 1.30725e13i − 2.22438i
\(689\) −7.32036e12 −1.23750
\(690\) 0 0
\(691\) −6.26971e12 −1.04616 −0.523078 0.852285i \(-0.675216\pi\)
−0.523078 + 0.852285i \(0.675216\pi\)
\(692\) − 3.26230e12i − 0.540812i
\(693\) − 8.22375e11i − 0.135447i
\(694\) −2.77222e12 −0.453639
\(695\) 0 0
\(696\) 4.45863e9 0.000720212 0
\(697\) 2.44637e12i 0.392623i
\(698\) − 5.02882e12i − 0.801893i
\(699\) −1.95773e10 −0.00310174
\(700\) 0 0
\(701\) −5.13904e12 −0.803805 −0.401903 0.915682i \(-0.631651\pi\)
−0.401903 + 0.915682i \(0.631651\pi\)
\(702\) − 4.68513e10i − 0.00728122i
\(703\) − 2.31263e12i − 0.357114i
\(704\) −2.31461e12 −0.355140
\(705\) 0 0
\(706\) 1.01604e13 1.53918
\(707\) − 2.14057e12i − 0.322212i
\(708\) 1.73213e10i 0.00259078i
\(709\) 2.95438e12 0.439094 0.219547 0.975602i \(-0.429542\pi\)
0.219547 + 0.975602i \(0.429542\pi\)
\(710\) 0 0
\(711\) −8.87813e11 −0.130289
\(712\) − 1.97128e13i − 2.87467i
\(713\) − 6.63162e12i − 0.960986i
\(714\) −7.74035e9 −0.00111460
\(715\) 0 0
\(716\) 1.56863e12 0.223055
\(717\) 1.69225e10i 0.00239127i
\(718\) 1.17737e13i 1.65330i
\(719\) 1.21819e13 1.69994 0.849971 0.526829i \(-0.176619\pi\)
0.849971 + 0.526829i \(0.176619\pi\)
\(720\) 0 0
\(721\) −1.70951e12 −0.235594
\(722\) − 1.07644e13i − 1.47426i
\(723\) 1.03520e10i 0.00140897i
\(724\) 2.68382e13 3.63019
\(725\) 0 0
\(726\) −1.99599e10 −0.00266652
\(727\) − 1.26291e13i − 1.67675i −0.545093 0.838376i \(-0.683506\pi\)
0.545093 0.838376i \(-0.316494\pi\)
\(728\) − 8.89715e12i − 1.17398i
\(729\) 7.62547e12 0.999984
\(730\) 0 0
\(731\) −6.87068e12 −0.889962
\(732\) 2.71061e9i 0 0.000348953i
\(733\) 9.16594e12i 1.17276i 0.810036 + 0.586380i \(0.199447\pi\)
−0.810036 + 0.586380i \(0.800553\pi\)
\(734\) 1.00743e13 1.28110
\(735\) 0 0
\(736\) 1.34554e13 1.69024
\(737\) 3.81418e12i 0.476209i
\(738\) 6.06400e12i 0.752499i
\(739\) −1.10658e13 −1.36484 −0.682420 0.730960i \(-0.739073\pi\)
−0.682420 + 0.730960i \(0.739073\pi\)
\(740\) 0 0
\(741\) −2.16866e10 −0.00264247
\(742\) 5.99569e12i 0.726142i
\(743\) 1.84642e12i 0.222270i 0.993805 + 0.111135i \(0.0354486\pi\)
−0.993805 + 0.111135i \(0.964551\pi\)
\(744\) 3.78039e10 0.00452333
\(745\) 0 0
\(746\) −5.59816e12 −0.661790
\(747\) − 6.58719e12i − 0.774029i
\(748\) 7.13586e12i 0.833468i
\(749\) −5.96884e12 −0.692982
\(750\) 0 0
\(751\) −9.19672e12 −1.05500 −0.527501 0.849555i \(-0.676871\pi\)
−0.527501 + 0.849555i \(0.676871\pi\)
\(752\) − 1.28604e13i − 1.46647i
\(753\) − 2.21900e10i − 0.00251524i
\(754\) 3.25073e12 0.366277
\(755\) 0 0
\(756\) −2.71296e10 −0.00302062
\(757\) − 8.81778e12i − 0.975950i −0.872858 0.487975i \(-0.837736\pi\)
0.872858 0.487975i \(-0.162264\pi\)
\(758\) 2.37101e13i 2.60869i
\(759\) −4.98301e9 −0.000545009 0
\(760\) 0 0
\(761\) −2.42043e12 −0.261614 −0.130807 0.991408i \(-0.541757\pi\)
−0.130807 + 0.991408i \(0.541757\pi\)
\(762\) − 1.82843e10i − 0.00196464i
\(763\) 9.20676e11i 0.0983437i
\(764\) 1.32231e13 1.40415
\(765\) 0 0
\(766\) −4.32686e12 −0.454092
\(767\) 7.39488e12i 0.771528i
\(768\) − 1.61095e10i − 0.00167092i
\(769\) −7.67945e12 −0.791885 −0.395942 0.918275i \(-0.629582\pi\)
−0.395942 + 0.918275i \(0.629582\pi\)
\(770\) 0 0
\(771\) 2.12078e10 0.00216148
\(772\) − 9.46396e12i − 0.958948i
\(773\) 1.04693e13i 1.05466i 0.849662 + 0.527328i \(0.176806\pi\)
−0.849662 + 0.527328i \(0.823194\pi\)
\(774\) −1.70308e13 −1.70570
\(775\) 0 0
\(776\) −4.31835e13 −4.27504
\(777\) 1.69368e9i 0 0.000166701i
\(778\) − 2.43956e13i − 2.38728i
\(779\) 5.61385e12 0.546188
\(780\) 0 0
\(781\) −9.72296e11 −0.0935123
\(782\) − 1.71013e13i − 1.63530i
\(783\) − 5.80424e9i 0 0.000551846i
\(784\) −3.64076e12 −0.344167
\(785\) 0 0
\(786\) −1.44947e10 −0.00135459
\(787\) 1.26490e13i 1.17535i 0.809095 + 0.587677i \(0.199958\pi\)
−0.809095 + 0.587677i \(0.800042\pi\)
\(788\) − 5.26479e12i − 0.486422i
\(789\) −3.50777e10 −0.00322243
\(790\) 0 0
\(791\) 5.75236e12 0.522459
\(792\) 1.03575e13i 0.935387i
\(793\) 1.15723e12i 0.103918i
\(794\) 2.73611e12 0.244310
\(795\) 0 0
\(796\) 3.90747e13 3.44975
\(797\) 6.02337e11i 0.0528782i 0.999650 + 0.0264391i \(0.00841681\pi\)
−0.999650 + 0.0264391i \(0.991583\pi\)
\(798\) 1.77623e10i 0.00155055i
\(799\) −6.75920e12 −0.586725
\(800\) 0 0
\(801\) −1.28310e13 −1.10132
\(802\) − 1.69986e12i − 0.145087i
\(803\) 7.90608e12i 0.671029i
\(804\) 6.29136e10 0.00530997
\(805\) 0 0
\(806\) 2.75624e13 2.30043
\(807\) − 5.56736e9i 0 0.000462081i
\(808\) 2.69596e13i 2.22517i
\(809\) 7.72967e12 0.634443 0.317222 0.948351i \(-0.397250\pi\)
0.317222 + 0.948351i \(0.397250\pi\)
\(810\) 0 0
\(811\) −1.20157e13 −0.975335 −0.487668 0.873029i \(-0.662152\pi\)
−0.487668 + 0.873029i \(0.662152\pi\)
\(812\) − 1.88236e12i − 0.151950i
\(813\) − 1.28077e10i − 0.00102816i
\(814\) 2.20852e12 0.176316
\(815\) 0 0
\(816\) 4.87057e10 0.00384569
\(817\) 1.57666e13i 1.23805i
\(818\) 4.43783e13i 3.46562i
\(819\) −5.79114e12 −0.449766
\(820\) 0 0
\(821\) 1.39952e13 1.07507 0.537533 0.843243i \(-0.319356\pi\)
0.537533 + 0.843243i \(0.319356\pi\)
\(822\) 3.11877e10i 0.00238265i
\(823\) 1.61982e13i 1.23074i 0.788238 + 0.615371i \(0.210994\pi\)
−0.788238 + 0.615371i \(0.789006\pi\)
\(824\) 2.15306e13 1.62699
\(825\) 0 0
\(826\) 6.05672e12 0.452718
\(827\) 1.30127e13i 0.967374i 0.875241 + 0.483687i \(0.160703\pi\)
−0.875241 + 0.483687i \(0.839297\pi\)
\(828\) − 2.99696e13i − 2.21587i
\(829\) 1.31364e13 0.966007 0.483004 0.875618i \(-0.339546\pi\)
0.483004 + 0.875618i \(0.339546\pi\)
\(830\) 0 0
\(831\) 5.10290e9 0.000371204 0
\(832\) 1.62994e13i 1.17928i
\(833\) 1.91353e12i 0.137699i
\(834\) 2.95187e10 0.00211276
\(835\) 0 0
\(836\) 1.63751e13 1.15946
\(837\) − 4.92131e10i − 0.00346590i
\(838\) − 4.98842e13i − 3.49434i
\(839\) 5.22420e12 0.363991 0.181996 0.983299i \(-0.441744\pi\)
0.181996 + 0.983299i \(0.441744\pi\)
\(840\) 0 0
\(841\) −1.41044e13 −0.972240
\(842\) 2.45961e13i 1.68641i
\(843\) − 3.77945e9i 0 0.000257754i
\(844\) −2.18124e13 −1.47966
\(845\) 0 0
\(846\) −1.67545e13 −1.12452
\(847\) 4.93438e12i 0.329425i
\(848\) − 3.77275e13i − 2.50540i
\(849\) −3.15028e9 −0.000208096 0
\(850\) 0 0
\(851\) −3.74196e12 −0.244578
\(852\) 1.60377e10i 0.00104271i
\(853\) − 5.65076e12i − 0.365457i −0.983163 0.182728i \(-0.941507\pi\)
0.983163 0.182728i \(-0.0584929\pi\)
\(854\) 9.47818e11 0.0609768
\(855\) 0 0
\(856\) 7.51752e13 4.78567
\(857\) − 1.42516e12i − 0.0902503i −0.998981 0.0451251i \(-0.985631\pi\)
0.998981 0.0451251i \(-0.0143687\pi\)
\(858\) − 2.07104e10i − 0.00130465i
\(859\) −2.77961e13 −1.74186 −0.870932 0.491404i \(-0.836484\pi\)
−0.870932 + 0.491404i \(0.836484\pi\)
\(860\) 0 0
\(861\) −4.11137e9 −0.000254960 0
\(862\) 5.13878e13i 3.17013i
\(863\) − 1.14117e13i − 0.700326i −0.936689 0.350163i \(-0.886126\pi\)
0.936689 0.350163i \(-0.113874\pi\)
\(864\) 9.98525e10 0.00609603
\(865\) 0 0
\(866\) −1.98066e12 −0.119668
\(867\) 1.95364e9i 0 0.000117425i
\(868\) − 1.59602e13i − 0.954333i
\(869\) −7.84908e11 −0.0466906
\(870\) 0 0
\(871\) 2.68594e13 1.58130
\(872\) − 1.15956e13i − 0.679153i
\(873\) 2.81081e13i 1.63782i
\(874\) −3.92434e13 −2.27491
\(875\) 0 0
\(876\) 1.30408e11 0.00748232
\(877\) 1.21188e13i 0.691769i 0.938277 + 0.345884i \(0.112421\pi\)
−0.938277 + 0.345884i \(0.887579\pi\)
\(878\) 2.56763e13i 1.45816i
\(879\) −1.25905e10 −0.000711364 0
\(880\) 0 0
\(881\) −4.60741e12 −0.257671 −0.128836 0.991666i \(-0.541124\pi\)
−0.128836 + 0.991666i \(0.541124\pi\)
\(882\) 4.74319e12i 0.263914i
\(883\) 1.04709e13i 0.579642i 0.957081 + 0.289821i \(0.0935958\pi\)
−0.957081 + 0.289821i \(0.906404\pi\)
\(884\) 5.02505e13 2.76761
\(885\) 0 0
\(886\) −3.42441e13 −1.86696
\(887\) 3.68711e12i 0.200000i 0.994987 + 0.0999999i \(0.0318842\pi\)
−0.994987 + 0.0999999i \(0.968116\pi\)
\(888\) − 2.13313e10i − 0.00115122i
\(889\) −4.52015e12 −0.242714
\(890\) 0 0
\(891\) 6.74166e12 0.358358
\(892\) 1.29329e13i 0.683998i
\(893\) 1.55108e13i 0.816209i
\(894\) 3.53803e10 0.00185243
\(895\) 0 0
\(896\) −7.08864e10 −0.00367432
\(897\) 3.50902e10i 0.00180976i
\(898\) 2.01080e13i 1.03187i
\(899\) 3.41461e12 0.174350
\(900\) 0 0
\(901\) −1.98290e13 −1.00240
\(902\) 5.36114e12i 0.269667i
\(903\) − 1.15469e10i 0 0.000577922i
\(904\) −7.24487e13 −3.60805
\(905\) 0 0
\(906\) 4.91305e10 0.00242256
\(907\) 6.05209e11i 0.0296943i 0.999890 + 0.0148471i \(0.00472616\pi\)
−0.999890 + 0.0148471i \(0.995274\pi\)
\(908\) 2.40956e13i 1.17639i
\(909\) 1.75480e13 0.852491
\(910\) 0 0
\(911\) −3.27450e12 −0.157512 −0.0787559 0.996894i \(-0.525095\pi\)
−0.0787559 + 0.996894i \(0.525095\pi\)
\(912\) − 1.11768e11i − 0.00534984i
\(913\) − 5.82368e12i − 0.277383i
\(914\) −4.82094e13 −2.28494
\(915\) 0 0
\(916\) −7.36467e13 −3.45640
\(917\) 3.58329e12i 0.167348i
\(918\) − 1.26908e11i − 0.00589790i
\(919\) −2.21117e11 −0.0102259 −0.00511295 0.999987i \(-0.501628\pi\)
−0.00511295 + 0.999987i \(0.501628\pi\)
\(920\) 0 0
\(921\) 1.70188e10 0.000779400 0
\(922\) 2.53732e13i 1.15634i
\(923\) 6.84688e12i 0.310517i
\(924\) −1.19925e10 −0.000541236 0
\(925\) 0 0
\(926\) −3.71100e13 −1.65860
\(927\) − 1.40143e13i − 0.623320i
\(928\) 6.92817e12i 0.306657i
\(929\) 4.00147e12 0.176258 0.0881290 0.996109i \(-0.471911\pi\)
0.0881290 + 0.996109i \(0.471911\pi\)
\(930\) 0 0
\(931\) 4.39109e12 0.191557
\(932\) − 1.04097e14i − 4.51927i
\(933\) − 5.68073e10i − 0.00245435i
\(934\) 4.58899e13 1.97313
\(935\) 0 0
\(936\) 7.29372e13 3.10604
\(937\) 3.76138e10i 0.00159411i 1.00000 0.000797056i \(0.000253711\pi\)
−1.00000 0.000797056i \(0.999746\pi\)
\(938\) − 2.19990e13i − 0.927876i
\(939\) 1.02205e10 0.000429019 0
\(940\) 0 0
\(941\) −2.21494e12 −0.0920894 −0.0460447 0.998939i \(-0.514662\pi\)
−0.0460447 + 0.998939i \(0.514662\pi\)
\(942\) 1.16242e11i 0.00480990i
\(943\) − 9.08353e12i − 0.374069i
\(944\) −3.81116e13 −1.56201
\(945\) 0 0
\(946\) −1.50568e13 −0.611257
\(947\) − 2.36266e13i − 0.954610i −0.878738 0.477305i \(-0.841614\pi\)
0.878738 0.477305i \(-0.158386\pi\)
\(948\) 1.29468e10i 0 0.000520624i
\(949\) 5.56744e13 2.22822
\(950\) 0 0
\(951\) −5.05694e10 −0.00200482
\(952\) − 2.41001e13i − 0.950939i
\(953\) − 1.15037e13i − 0.451771i −0.974154 0.225885i \(-0.927473\pi\)
0.974154 0.225885i \(-0.0725274\pi\)
\(954\) −4.91516e13 −1.92119
\(955\) 0 0
\(956\) −8.99810e13 −3.48410
\(957\) − 2.56574e9i 0 9.88801e-5i
\(958\) − 1.30518e13i − 0.500639i
\(959\) 7.71003e12 0.294356
\(960\) 0 0
\(961\) 2.51218e12 0.0950156
\(962\) − 1.55524e13i − 0.585475i
\(963\) − 4.89314e13i − 1.83345i
\(964\) −5.50440e13 −2.05288
\(965\) 0 0
\(966\) 2.87404e10 0.00106193
\(967\) 1.36863e13i 0.503346i 0.967812 + 0.251673i \(0.0809808\pi\)
−0.967812 + 0.251673i \(0.919019\pi\)
\(968\) − 6.21465e13i − 2.27498i
\(969\) −5.87435e10 −0.00214044
\(970\) 0 0
\(971\) 9.95259e12 0.359294 0.179647 0.983731i \(-0.442504\pi\)
0.179647 + 0.983731i \(0.442504\pi\)
\(972\) − 3.33605e11i − 0.0119877i
\(973\) − 7.29745e12i − 0.261014i
\(974\) −4.53038e13 −1.61295
\(975\) 0 0
\(976\) −5.96409e12 −0.210387
\(977\) − 1.51387e13i − 0.531575i −0.964032 0.265787i \(-0.914368\pi\)
0.964032 0.265787i \(-0.0856319\pi\)
\(978\) 1.36903e11i 0.00478508i
\(979\) −1.13438e13 −0.394673
\(980\) 0 0
\(981\) −7.54753e12 −0.260192
\(982\) − 8.97498e13i − 3.07987i
\(983\) 5.47141e13i 1.86899i 0.355970 + 0.934497i \(0.384151\pi\)
−0.355970 + 0.934497i \(0.615849\pi\)
\(984\) 5.17811e10 0.00176073
\(985\) 0 0
\(986\) 8.80540e12 0.296690
\(987\) − 1.13595e10i 0 0.000381007i
\(988\) − 1.15313e14i − 3.85010i
\(989\) 2.55112e13 0.847907
\(990\) 0 0
\(991\) 4.86384e13 1.60195 0.800974 0.598699i \(-0.204316\pi\)
0.800974 + 0.598699i \(0.204316\pi\)
\(992\) 5.87427e13i 1.92598i
\(993\) − 8.52557e10i − 0.00278261i
\(994\) 5.60789e12 0.182205
\(995\) 0 0
\(996\) −9.60596e10 −0.00309296
\(997\) − 2.77758e13i − 0.890304i −0.895455 0.445152i \(-0.853150\pi\)
0.895455 0.445152i \(-0.146850\pi\)
\(998\) − 7.76283e13i − 2.47704i
\(999\) −2.77690e10 −0.000882096 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.10.b.d.99.1 6
5.2 odd 4 7.10.a.b.1.3 3
5.3 odd 4 175.10.a.d.1.1 3
5.4 even 2 inner 175.10.b.d.99.6 6
15.2 even 4 63.10.a.e.1.1 3
20.7 even 4 112.10.a.h.1.2 3
35.2 odd 12 49.10.c.d.18.1 6
35.12 even 12 49.10.c.e.18.1 6
35.17 even 12 49.10.c.e.30.1 6
35.27 even 4 49.10.a.c.1.3 3
35.32 odd 12 49.10.c.d.30.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7.10.a.b.1.3 3 5.2 odd 4
49.10.a.c.1.3 3 35.27 even 4
49.10.c.d.18.1 6 35.2 odd 12
49.10.c.d.30.1 6 35.32 odd 12
49.10.c.e.18.1 6 35.12 even 12
49.10.c.e.30.1 6 35.17 even 12
63.10.a.e.1.1 3 15.2 even 4
112.10.a.h.1.2 3 20.7 even 4
175.10.a.d.1.1 3 5.3 odd 4
175.10.b.d.99.1 6 1.1 even 1 trivial
175.10.b.d.99.6 6 5.4 even 2 inner