Properties

Label 175.10.b.c.99.1
Level $175$
Weight $10$
Character 175.99
Analytic conductor $90.131$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,10,Mod(99,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.99");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 175.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(90.1312713287\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 99.1
Root \(-0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 175.99
Dual form 175.10.b.c.99.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-14.8284i q^{2} +239.735i q^{3} +292.118 q^{4} +3554.89 q^{6} +2401.00i q^{7} -11923.8i q^{8} -37789.9 q^{9} +O(q^{10})\) \(q-14.8284i q^{2} +239.735i q^{3} +292.118 q^{4} +3554.89 q^{6} +2401.00i q^{7} -11923.8i q^{8} -37789.9 q^{9} -16523.6 q^{11} +70030.9i q^{12} -26311.4i q^{13} +35603.1 q^{14} -27246.9 q^{16} -144003. i q^{17} +560365. i q^{18} +159710. q^{19} -575604. q^{21} +245019. i q^{22} -2.07393e6i q^{23} +2.85855e6 q^{24} -390156. q^{26} -4.34086e6i q^{27} +701375. i q^{28} +4.94938e6 q^{29} +4.22040e6 q^{31} -5.70096e6i q^{32} -3.96128e6i q^{33} -2.13533e6 q^{34} -1.10391e7 q^{36} -1.29081e7i q^{37} -2.36824e6i q^{38} +6.30776e6 q^{39} -2.87518e7 q^{41} +8.53530e6i q^{42} -3.54825e7i q^{43} -4.82683e6 q^{44} -3.07532e7 q^{46} +5.95633e7i q^{47} -6.53205e6i q^{48} -5.76480e6 q^{49} +3.45225e7 q^{51} -7.68602e6i q^{52} -2.31161e6i q^{53} -6.43681e7 q^{54} +2.86290e7 q^{56} +3.82880e7i q^{57} -7.33915e7i q^{58} +1.68651e8 q^{59} -6.70167e7 q^{61} -6.25819e7i q^{62} -9.07336e7i q^{63} -9.84867e7 q^{64} -5.87395e7 q^{66} -1.56259e8i q^{67} -4.20657e7i q^{68} +4.97195e8 q^{69} +6.95067e7 q^{71} +4.50599e8i q^{72} +7.83438e7i q^{73} -1.91407e8 q^{74} +4.66540e7 q^{76} -3.96731e7i q^{77} -9.35342e7i q^{78} +4.26957e8 q^{79} +2.96838e8 q^{81} +4.26344e8i q^{82} +5.31242e8i q^{83} -1.68144e8 q^{84} -5.26149e8 q^{86} +1.18654e9i q^{87} +1.97024e8i q^{88} +1.14168e8 q^{89} +6.31736e7 q^{91} -6.05833e8i q^{92} +1.01178e9i q^{93} +8.83231e8 q^{94} +1.36672e9 q^{96} -1.46573e9i q^{97} +8.54829e7i q^{98} +6.24424e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 1440 q^{4} + 5904 q^{6} - 44856 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 1440 q^{4} + 5904 q^{6} - 44856 q^{9} + 37132 q^{11} + 115248 q^{14} + 225536 q^{16} + 286552 q^{19} - 835548 q^{21} + 4583808 q^{24} + 639472 q^{26} + 23155108 q^{29} - 7907520 q^{31} - 8487888 q^{34} - 8932032 q^{36} + 22791492 q^{39} + 2117984 q^{41} + 20374752 q^{44} - 14312352 q^{46} - 23059204 q^{49} + 38818932 q^{51} - 170992944 q^{54} + 98652288 q^{56} + 232318416 q^{59} - 89377088 q^{61} - 158111744 q^{64} - 159789648 q^{66} + 1332641784 q^{69} - 588331648 q^{71} - 204836128 q^{74} + 79244736 q^{76} + 1385705708 q^{79} + 895546692 q^{81} - 201223008 q^{84} - 693978016 q^{86} + 1558087408 q^{89} - 245334180 q^{91} + 1875382064 q^{94} + 1984361472 q^{96} + 2326933080 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 14.8284i − 0.655330i −0.944794 0.327665i \(-0.893738\pi\)
0.944794 0.327665i \(-0.106262\pi\)
\(3\) 239.735i 1.70878i 0.519633 + 0.854390i \(0.326069\pi\)
−0.519633 + 0.854390i \(0.673931\pi\)
\(4\) 292.118 0.570542
\(5\) 0 0
\(6\) 3554.89 1.11981
\(7\) 2401.00i 0.377964i
\(8\) − 11923.8i − 1.02922i
\(9\) −37789.9 −1.91993
\(10\) 0 0
\(11\) −16523.6 −0.340280 −0.170140 0.985420i \(-0.554422\pi\)
−0.170140 + 0.985420i \(0.554422\pi\)
\(12\) 70030.9i 0.974931i
\(13\) − 26311.4i − 0.255505i −0.991806 0.127752i \(-0.959224\pi\)
0.991806 0.127752i \(-0.0407762\pi\)
\(14\) 35603.1 0.247691
\(15\) 0 0
\(16\) −27246.9 −0.103939
\(17\) − 144003.i − 0.418167i −0.977898 0.209084i \(-0.932952\pi\)
0.977898 0.209084i \(-0.0670481\pi\)
\(18\) 560365.i 1.25819i
\(19\) 159710. 0.281151 0.140576 0.990070i \(-0.455105\pi\)
0.140576 + 0.990070i \(0.455105\pi\)
\(20\) 0 0
\(21\) −575604. −0.645858
\(22\) 245019.i 0.222996i
\(23\) − 2.07393e6i − 1.54533i −0.634817 0.772663i \(-0.718925\pi\)
0.634817 0.772663i \(-0.281075\pi\)
\(24\) 2.85855e6 1.75872
\(25\) 0 0
\(26\) −390156. −0.167440
\(27\) − 4.34086e6i − 1.57195i
\(28\) 701375.i 0.215645i
\(29\) 4.94938e6 1.29945 0.649725 0.760169i \(-0.274884\pi\)
0.649725 + 0.760169i \(0.274884\pi\)
\(30\) 0 0
\(31\) 4.22040e6 0.820779 0.410389 0.911910i \(-0.365393\pi\)
0.410389 + 0.911910i \(0.365393\pi\)
\(32\) − 5.70096e6i − 0.961110i
\(33\) − 3.96128e6i − 0.581464i
\(34\) −2.13533e6 −0.274038
\(35\) 0 0
\(36\) −1.10391e7 −1.09540
\(37\) − 1.29081e7i − 1.13228i −0.824308 0.566142i \(-0.808435\pi\)
0.824308 0.566142i \(-0.191565\pi\)
\(38\) − 2.36824e6i − 0.184247i
\(39\) 6.30776e6 0.436601
\(40\) 0 0
\(41\) −2.87518e7 −1.58905 −0.794525 0.607231i \(-0.792280\pi\)
−0.794525 + 0.607231i \(0.792280\pi\)
\(42\) 8.53530e6i 0.423250i
\(43\) − 3.54825e7i − 1.58273i −0.611347 0.791363i \(-0.709372\pi\)
0.611347 0.791363i \(-0.290628\pi\)
\(44\) −4.82683e6 −0.194144
\(45\) 0 0
\(46\) −3.07532e7 −1.01270
\(47\) 5.95633e7i 1.78049i 0.455485 + 0.890243i \(0.349466\pi\)
−0.455485 + 0.890243i \(0.650534\pi\)
\(48\) − 6.53205e6i − 0.177608i
\(49\) −5.76480e6 −0.142857
\(50\) 0 0
\(51\) 3.45225e7 0.714555
\(52\) − 7.68602e6i − 0.145776i
\(53\) − 2.31161e6i − 0.0402414i −0.999798 0.0201207i \(-0.993595\pi\)
0.999798 0.0201207i \(-0.00640504\pi\)
\(54\) −6.43681e7 −1.03015
\(55\) 0 0
\(56\) 2.86290e7 0.389010
\(57\) 3.82880e7i 0.480425i
\(58\) − 7.33915e7i − 0.851569i
\(59\) 1.68651e8 1.81198 0.905992 0.423296i \(-0.139127\pi\)
0.905992 + 0.423296i \(0.139127\pi\)
\(60\) 0 0
\(61\) −6.70167e7 −0.619725 −0.309863 0.950781i \(-0.600283\pi\)
−0.309863 + 0.950781i \(0.600283\pi\)
\(62\) − 6.25819e7i − 0.537881i
\(63\) − 9.07336e7i − 0.725664i
\(64\) −9.84867e7 −0.733783
\(65\) 0 0
\(66\) −5.87395e7 −0.381051
\(67\) − 1.56259e8i − 0.947343i −0.880702 0.473671i \(-0.842928\pi\)
0.880702 0.473671i \(-0.157072\pi\)
\(68\) − 4.20657e7i − 0.238582i
\(69\) 4.97195e8 2.64062
\(70\) 0 0
\(71\) 6.95067e7 0.324612 0.162306 0.986740i \(-0.448107\pi\)
0.162306 + 0.986740i \(0.448107\pi\)
\(72\) 4.50599e8i 1.97603i
\(73\) 7.83438e7i 0.322888i 0.986882 + 0.161444i \(0.0516151\pi\)
−0.986882 + 0.161444i \(0.948385\pi\)
\(74\) −1.91407e8 −0.742020
\(75\) 0 0
\(76\) 4.66540e7 0.160409
\(77\) − 3.96731e7i − 0.128614i
\(78\) − 9.35342e7i − 0.286118i
\(79\) 4.26957e8 1.23328 0.616641 0.787245i \(-0.288493\pi\)
0.616641 + 0.787245i \(0.288493\pi\)
\(80\) 0 0
\(81\) 2.96838e8 0.766190
\(82\) 4.26344e8i 1.04135i
\(83\) 5.31242e8i 1.22869i 0.789039 + 0.614343i \(0.210579\pi\)
−0.789039 + 0.614343i \(0.789421\pi\)
\(84\) −1.68144e8 −0.368489
\(85\) 0 0
\(86\) −5.26149e8 −1.03721
\(87\) 1.18654e9i 2.22047i
\(88\) 1.97024e8i 0.350225i
\(89\) 1.14168e8 0.192881 0.0964404 0.995339i \(-0.469254\pi\)
0.0964404 + 0.995339i \(0.469254\pi\)
\(90\) 0 0
\(91\) 6.31736e7 0.0965716
\(92\) − 6.05833e8i − 0.881674i
\(93\) 1.01178e9i 1.40253i
\(94\) 8.83231e8 1.16681
\(95\) 0 0
\(96\) 1.36672e9 1.64232
\(97\) − 1.46573e9i − 1.68105i −0.541774 0.840524i \(-0.682247\pi\)
0.541774 0.840524i \(-0.317753\pi\)
\(98\) 8.54829e7i 0.0936186i
\(99\) 6.24424e8 0.653313
\(100\) 0 0
\(101\) 7.53733e8 0.720728 0.360364 0.932812i \(-0.382652\pi\)
0.360364 + 0.932812i \(0.382652\pi\)
\(102\) − 5.11914e8i − 0.468270i
\(103\) 1.32143e9i 1.15685i 0.815736 + 0.578425i \(0.196332\pi\)
−0.815736 + 0.578425i \(0.803668\pi\)
\(104\) −3.13732e8 −0.262971
\(105\) 0 0
\(106\) −3.42775e7 −0.0263714
\(107\) 1.07364e9i 0.791831i 0.918287 + 0.395915i \(0.129573\pi\)
−0.918287 + 0.395915i \(0.870427\pi\)
\(108\) − 1.26804e9i − 0.896864i
\(109\) −1.08650e9 −0.737245 −0.368623 0.929579i \(-0.620170\pi\)
−0.368623 + 0.929579i \(0.620170\pi\)
\(110\) 0 0
\(111\) 3.09453e9 1.93482
\(112\) − 6.54199e7i − 0.0392852i
\(113\) − 2.85559e9i − 1.64757i −0.566906 0.823783i \(-0.691860\pi\)
0.566906 0.823783i \(-0.308140\pi\)
\(114\) 5.67751e8 0.314837
\(115\) 0 0
\(116\) 1.44580e9 0.741392
\(117\) 9.94305e8i 0.490550i
\(118\) − 2.50083e9i − 1.18745i
\(119\) 3.45750e8 0.158052
\(120\) 0 0
\(121\) −2.08492e9 −0.884209
\(122\) 9.93753e8i 0.406125i
\(123\) − 6.89281e9i − 2.71534i
\(124\) 1.23285e9 0.468289
\(125\) 0 0
\(126\) −1.34544e9 −0.475549
\(127\) − 3.86082e9i − 1.31693i −0.752611 0.658465i \(-0.771206\pi\)
0.752611 0.658465i \(-0.228794\pi\)
\(128\) − 1.45849e9i − 0.480240i
\(129\) 8.50639e9 2.70453
\(130\) 0 0
\(131\) 4.01900e8 0.119233 0.0596166 0.998221i \(-0.481012\pi\)
0.0596166 + 0.998221i \(0.481012\pi\)
\(132\) − 1.15716e9i − 0.331750i
\(133\) 3.83463e8i 0.106265i
\(134\) −2.31707e9 −0.620822
\(135\) 0 0
\(136\) −1.71706e9 −0.430388
\(137\) 3.04172e9i 0.737695i 0.929490 + 0.368847i \(0.120247\pi\)
−0.929490 + 0.368847i \(0.879753\pi\)
\(138\) − 7.37262e9i − 1.73048i
\(139\) −8.36421e8 −0.190046 −0.0950229 0.995475i \(-0.530292\pi\)
−0.0950229 + 0.995475i \(0.530292\pi\)
\(140\) 0 0
\(141\) −1.42794e10 −3.04246
\(142\) − 1.03068e9i − 0.212728i
\(143\) 4.34758e8i 0.0869431i
\(144\) 1.02966e9 0.199555
\(145\) 0 0
\(146\) 1.16172e9 0.211598
\(147\) − 1.38202e9i − 0.244111i
\(148\) − 3.77069e9i − 0.646016i
\(149\) 7.76217e9 1.29016 0.645082 0.764114i \(-0.276823\pi\)
0.645082 + 0.764114i \(0.276823\pi\)
\(150\) 0 0
\(151\) 8.38042e9 1.31181 0.655903 0.754846i \(-0.272288\pi\)
0.655903 + 0.754846i \(0.272288\pi\)
\(152\) − 1.90435e9i − 0.289367i
\(153\) 5.44184e9i 0.802850i
\(154\) −5.88290e8 −0.0842845
\(155\) 0 0
\(156\) 1.84261e9 0.249099
\(157\) − 8.49699e9i − 1.11613i −0.829796 0.558067i \(-0.811543\pi\)
0.829796 0.558067i \(-0.188457\pi\)
\(158\) − 6.33110e9i − 0.808206i
\(159\) 5.54173e8 0.0687636
\(160\) 0 0
\(161\) 4.97952e9 0.584078
\(162\) − 4.40163e9i − 0.502107i
\(163\) − 4.25863e9i − 0.472526i −0.971689 0.236263i \(-0.924077\pi\)
0.971689 0.236263i \(-0.0759226\pi\)
\(164\) −8.39891e9 −0.906621
\(165\) 0 0
\(166\) 7.87749e9 0.805195
\(167\) 9.23536e8i 0.0918818i 0.998944 + 0.0459409i \(0.0146286\pi\)
−0.998944 + 0.0459409i \(0.985371\pi\)
\(168\) 6.86339e9i 0.664732i
\(169\) 9.91221e9 0.934717
\(170\) 0 0
\(171\) −6.03541e9 −0.539789
\(172\) − 1.03651e10i − 0.903012i
\(173\) 4.76006e9i 0.404022i 0.979383 + 0.202011i \(0.0647477\pi\)
−0.979383 + 0.202011i \(0.935252\pi\)
\(174\) 1.75945e10 1.45514
\(175\) 0 0
\(176\) 4.50217e8 0.0353683
\(177\) 4.04315e10i 3.09628i
\(178\) − 1.69293e9i − 0.126401i
\(179\) 9.47187e9 0.689599 0.344800 0.938676i \(-0.387947\pi\)
0.344800 + 0.938676i \(0.387947\pi\)
\(180\) 0 0
\(181\) −7.85395e9 −0.543919 −0.271960 0.962309i \(-0.587672\pi\)
−0.271960 + 0.962309i \(0.587672\pi\)
\(182\) − 9.36766e8i − 0.0632863i
\(183\) − 1.60663e10i − 1.05897i
\(184\) −2.47292e10 −1.59049
\(185\) 0 0
\(186\) 1.50031e10 0.919120
\(187\) 2.37944e9i 0.142294i
\(188\) 1.73995e10i 1.01584i
\(189\) 1.04224e10 0.594141
\(190\) 0 0
\(191\) 1.78210e10 0.968909 0.484454 0.874817i \(-0.339018\pi\)
0.484454 + 0.874817i \(0.339018\pi\)
\(192\) − 2.36107e10i − 1.25387i
\(193\) 1.93101e9i 0.100179i 0.998745 + 0.0500894i \(0.0159506\pi\)
−0.998745 + 0.0500894i \(0.984049\pi\)
\(194\) −2.17344e10 −1.10164
\(195\) 0 0
\(196\) −1.68400e9 −0.0815061
\(197\) 3.24598e10i 1.53549i 0.640755 + 0.767746i \(0.278622\pi\)
−0.640755 + 0.767746i \(0.721378\pi\)
\(198\) − 9.25923e9i − 0.428136i
\(199\) 2.75463e10 1.24516 0.622578 0.782558i \(-0.286085\pi\)
0.622578 + 0.782558i \(0.286085\pi\)
\(200\) 0 0
\(201\) 3.74606e10 1.61880
\(202\) − 1.11767e10i − 0.472315i
\(203\) 1.18835e10i 0.491146i
\(204\) 1.00846e10 0.407684
\(205\) 0 0
\(206\) 1.95947e10 0.758118
\(207\) 7.83738e10i 2.96691i
\(208\) 7.16904e8i 0.0265568i
\(209\) −2.63897e9 −0.0956702
\(210\) 0 0
\(211\) 1.94450e10 0.675362 0.337681 0.941261i \(-0.390357\pi\)
0.337681 + 0.941261i \(0.390357\pi\)
\(212\) − 6.75261e8i − 0.0229594i
\(213\) 1.66632e10i 0.554690i
\(214\) 1.59204e10 0.518911
\(215\) 0 0
\(216\) −5.17595e10 −1.61789
\(217\) 1.01332e10i 0.310225i
\(218\) 1.61111e10i 0.483139i
\(219\) −1.87818e10 −0.551744
\(220\) 0 0
\(221\) −3.78891e9 −0.106844
\(222\) − 4.58870e10i − 1.26795i
\(223\) 4.90459e10i 1.32810i 0.747688 + 0.664050i \(0.231164\pi\)
−0.747688 + 0.664050i \(0.768836\pi\)
\(224\) 1.36880e10 0.363265
\(225\) 0 0
\(226\) −4.23439e10 −1.07970
\(227\) − 6.87990e10i − 1.71975i −0.510503 0.859876i \(-0.670541\pi\)
0.510503 0.859876i \(-0.329459\pi\)
\(228\) 1.11846e10i 0.274103i
\(229\) 3.08456e9 0.0741198 0.0370599 0.999313i \(-0.488201\pi\)
0.0370599 + 0.999313i \(0.488201\pi\)
\(230\) 0 0
\(231\) 9.51103e9 0.219773
\(232\) − 5.90154e10i − 1.33743i
\(233\) 1.48643e10i 0.330402i 0.986260 + 0.165201i \(0.0528273\pi\)
−0.986260 + 0.165201i \(0.947173\pi\)
\(234\) 1.47440e10 0.321472
\(235\) 0 0
\(236\) 4.92659e10 1.03381
\(237\) 1.02357e11i 2.10741i
\(238\) − 5.12693e9i − 0.103576i
\(239\) −4.06416e10 −0.805713 −0.402857 0.915263i \(-0.631983\pi\)
−0.402857 + 0.915263i \(0.631983\pi\)
\(240\) 0 0
\(241\) −2.09799e10 −0.400615 −0.200308 0.979733i \(-0.564194\pi\)
−0.200308 + 0.979733i \(0.564194\pi\)
\(242\) 3.09161e10i 0.579449i
\(243\) − 1.42788e10i − 0.262701i
\(244\) −1.95768e10 −0.353580
\(245\) 0 0
\(246\) −1.02210e11 −1.77944
\(247\) − 4.20218e9i − 0.0718354i
\(248\) − 5.03232e10i − 0.844765i
\(249\) −1.27357e11 −2.09955
\(250\) 0 0
\(251\) −9.95566e10 −1.58321 −0.791605 0.611034i \(-0.790754\pi\)
−0.791605 + 0.611034i \(0.790754\pi\)
\(252\) − 2.65049e10i − 0.414022i
\(253\) 3.42688e10i 0.525844i
\(254\) −5.72499e10 −0.863024
\(255\) 0 0
\(256\) −7.20522e10 −1.04850
\(257\) − 1.30781e11i − 1.87002i −0.354624 0.935009i \(-0.615391\pi\)
0.354624 0.935009i \(-0.384609\pi\)
\(258\) − 1.26136e11i − 1.77236i
\(259\) 3.09924e10 0.427963
\(260\) 0 0
\(261\) −1.87037e11 −2.49485
\(262\) − 5.95954e9i − 0.0781371i
\(263\) 3.27938e10i 0.422660i 0.977415 + 0.211330i \(0.0677794\pi\)
−0.977415 + 0.211330i \(0.932221\pi\)
\(264\) −4.72335e10 −0.598456
\(265\) 0 0
\(266\) 5.68615e9 0.0696387
\(267\) 2.73700e10i 0.329591i
\(268\) − 4.56459e10i − 0.540499i
\(269\) −7.47690e9 −0.0870636 −0.0435318 0.999052i \(-0.513861\pi\)
−0.0435318 + 0.999052i \(0.513861\pi\)
\(270\) 0 0
\(271\) 6.72735e9 0.0757674 0.0378837 0.999282i \(-0.487938\pi\)
0.0378837 + 0.999282i \(0.487938\pi\)
\(272\) 3.92363e9i 0.0434638i
\(273\) 1.51449e10i 0.165020i
\(274\) 4.51039e10 0.483434
\(275\) 0 0
\(276\) 1.45239e11 1.50659
\(277\) − 1.52676e11i − 1.55815i −0.626928 0.779077i \(-0.715688\pi\)
0.626928 0.779077i \(-0.284312\pi\)
\(278\) 1.24028e10i 0.124543i
\(279\) −1.59489e11 −1.57583
\(280\) 0 0
\(281\) 3.09796e10 0.296413 0.148206 0.988956i \(-0.452650\pi\)
0.148206 + 0.988956i \(0.452650\pi\)
\(282\) 2.11741e11i 1.99381i
\(283\) 8.92078e10i 0.826731i 0.910565 + 0.413365i \(0.135647\pi\)
−0.910565 + 0.413365i \(0.864353\pi\)
\(284\) 2.03041e10 0.185205
\(285\) 0 0
\(286\) 6.44678e9 0.0569765
\(287\) − 6.90331e10i − 0.600605i
\(288\) 2.15439e11i 1.84526i
\(289\) 9.78512e10 0.825136
\(290\) 0 0
\(291\) 3.51386e11 2.87254
\(292\) 2.28856e10i 0.184221i
\(293\) − 6.30090e10i − 0.499457i −0.968316 0.249728i \(-0.919659\pi\)
0.968316 0.249728i \(-0.0803414\pi\)
\(294\) −2.04933e10 −0.159973
\(295\) 0 0
\(296\) −1.53914e11 −1.16537
\(297\) 7.17265e10i 0.534904i
\(298\) − 1.15101e11i − 0.845483i
\(299\) −5.45681e10 −0.394838
\(300\) 0 0
\(301\) 8.51934e10 0.598214
\(302\) − 1.24268e11i − 0.859665i
\(303\) 1.80696e11i 1.23157i
\(304\) −4.35160e9 −0.0292225
\(305\) 0 0
\(306\) 8.06939e10 0.526132
\(307\) − 1.22461e11i − 0.786821i −0.919363 0.393411i \(-0.871295\pi\)
0.919363 0.393411i \(-0.128705\pi\)
\(308\) − 1.15892e10i − 0.0733797i
\(309\) −3.16793e11 −1.97680
\(310\) 0 0
\(311\) 2.77926e11 1.68464 0.842321 0.538975i \(-0.181188\pi\)
0.842321 + 0.538975i \(0.181188\pi\)
\(312\) − 7.52125e10i − 0.449360i
\(313\) − 1.22493e11i − 0.721374i −0.932687 0.360687i \(-0.882542\pi\)
0.932687 0.360687i \(-0.117458\pi\)
\(314\) −1.25997e11 −0.731436
\(315\) 0 0
\(316\) 1.24722e11 0.703639
\(317\) 2.32000e11i 1.29039i 0.764016 + 0.645197i \(0.223225\pi\)
−0.764016 + 0.645197i \(0.776775\pi\)
\(318\) − 8.21752e9i − 0.0450628i
\(319\) −8.17814e10 −0.442177
\(320\) 0 0
\(321\) −2.57390e11 −1.35306
\(322\) − 7.38384e10i − 0.382764i
\(323\) − 2.29986e10i − 0.117568i
\(324\) 8.67115e10 0.437144
\(325\) 0 0
\(326\) −6.31487e10 −0.309660
\(327\) − 2.60473e11i − 1.25979i
\(328\) 3.42831e11i 1.63549i
\(329\) −1.43012e11 −0.672961
\(330\) 0 0
\(331\) −3.74253e11 −1.71372 −0.856859 0.515551i \(-0.827587\pi\)
−0.856859 + 0.515551i \(0.827587\pi\)
\(332\) 1.55185e11i 0.701018i
\(333\) 4.87797e11i 2.17390i
\(334\) 1.36946e10 0.0602129
\(335\) 0 0
\(336\) 1.56834e10 0.0671297
\(337\) 3.35878e11i 1.41856i 0.704927 + 0.709280i \(0.250980\pi\)
−0.704927 + 0.709280i \(0.749020\pi\)
\(338\) − 1.46982e11i − 0.612548i
\(339\) 6.84585e11 2.81533
\(340\) 0 0
\(341\) −6.97361e10 −0.279295
\(342\) 8.94956e10i 0.353740i
\(343\) − 1.38413e10i − 0.0539949i
\(344\) −4.23086e11 −1.62898
\(345\) 0 0
\(346\) 7.05842e10 0.264768
\(347\) − 3.63698e11i − 1.34666i −0.739341 0.673331i \(-0.764863\pi\)
0.739341 0.673331i \(-0.235137\pi\)
\(348\) 3.46609e11i 1.26687i
\(349\) −1.08740e11 −0.392350 −0.196175 0.980569i \(-0.562852\pi\)
−0.196175 + 0.980569i \(0.562852\pi\)
\(350\) 0 0
\(351\) −1.14214e11 −0.401640
\(352\) 9.42002e10i 0.327047i
\(353\) 3.36249e11i 1.15259i 0.817241 + 0.576296i \(0.195502\pi\)
−0.817241 + 0.576296i \(0.804498\pi\)
\(354\) 5.99535e11 2.02908
\(355\) 0 0
\(356\) 3.33505e10 0.110047
\(357\) 8.28884e10i 0.270077i
\(358\) − 1.40453e11i − 0.451915i
\(359\) −5.49944e11 −1.74741 −0.873703 0.486460i \(-0.838288\pi\)
−0.873703 + 0.486460i \(0.838288\pi\)
\(360\) 0 0
\(361\) −2.97181e11 −0.920954
\(362\) 1.16462e11i 0.356447i
\(363\) − 4.99828e11i − 1.51092i
\(364\) 1.84541e10 0.0550982
\(365\) 0 0
\(366\) −2.38237e11 −0.693977
\(367\) − 1.32204e11i − 0.380405i −0.981745 0.190203i \(-0.939086\pi\)
0.981745 0.190203i \(-0.0609145\pi\)
\(368\) 5.65084e10i 0.160619i
\(369\) 1.08653e12 3.05086
\(370\) 0 0
\(371\) 5.55017e9 0.0152098
\(372\) 2.95558e11i 0.800203i
\(373\) − 4.88064e11i − 1.30553i −0.757560 0.652765i \(-0.773609\pi\)
0.757560 0.652765i \(-0.226391\pi\)
\(374\) 3.52833e10 0.0932496
\(375\) 0 0
\(376\) 7.10222e11 1.83252
\(377\) − 1.30225e11i − 0.332015i
\(378\) − 1.54548e11i − 0.389359i
\(379\) −3.00162e11 −0.747274 −0.373637 0.927575i \(-0.621889\pi\)
−0.373637 + 0.927575i \(0.621889\pi\)
\(380\) 0 0
\(381\) 9.25574e11 2.25034
\(382\) − 2.64258e11i − 0.634955i
\(383\) − 7.74202e11i − 1.83848i −0.393694 0.919241i \(-0.628803\pi\)
0.393694 0.919241i \(-0.371197\pi\)
\(384\) 3.49651e11 0.820623
\(385\) 0 0
\(386\) 2.86338e10 0.0656501
\(387\) 1.34088e12i 3.03872i
\(388\) − 4.28165e11i − 0.959109i
\(389\) 1.70127e11 0.376703 0.188352 0.982102i \(-0.439686\pi\)
0.188352 + 0.982102i \(0.439686\pi\)
\(390\) 0 0
\(391\) −2.98652e11 −0.646204
\(392\) 6.87383e10i 0.147032i
\(393\) 9.63495e10i 0.203743i
\(394\) 4.81327e11 1.00625
\(395\) 0 0
\(396\) 1.82405e11 0.372743
\(397\) − 5.47242e11i − 1.10566i −0.833293 0.552831i \(-0.813548\pi\)
0.833293 0.552831i \(-0.186452\pi\)
\(398\) − 4.08468e11i − 0.815988i
\(399\) −9.19294e10 −0.181584
\(400\) 0 0
\(401\) −4.57174e11 −0.882941 −0.441471 0.897276i \(-0.645543\pi\)
−0.441471 + 0.897276i \(0.645543\pi\)
\(402\) − 5.55483e11i − 1.06085i
\(403\) − 1.11045e11i − 0.209713i
\(404\) 2.20179e11 0.411206
\(405\) 0 0
\(406\) 1.76213e11 0.321863
\(407\) 2.13288e11i 0.385294i
\(408\) − 4.11639e11i − 0.735437i
\(409\) −9.42996e10 −0.166631 −0.0833153 0.996523i \(-0.526551\pi\)
−0.0833153 + 0.996523i \(0.526551\pi\)
\(410\) 0 0
\(411\) −7.29207e11 −1.26056
\(412\) 3.86013e11i 0.660032i
\(413\) 4.04930e11i 0.684865i
\(414\) 1.16216e12 1.94431
\(415\) 0 0
\(416\) −1.50000e11 −0.245568
\(417\) − 2.00519e11i − 0.324746i
\(418\) 3.91318e10i 0.0626955i
\(419\) −1.66874e11 −0.264500 −0.132250 0.991216i \(-0.542220\pi\)
−0.132250 + 0.991216i \(0.542220\pi\)
\(420\) 0 0
\(421\) −5.52779e11 −0.857594 −0.428797 0.903401i \(-0.641062\pi\)
−0.428797 + 0.903401i \(0.641062\pi\)
\(422\) − 2.88339e11i − 0.442585i
\(423\) − 2.25089e12i − 3.41840i
\(424\) −2.75631e10 −0.0414174
\(425\) 0 0
\(426\) 2.47089e11 0.363505
\(427\) − 1.60907e11i − 0.234234i
\(428\) 3.13630e11i 0.451773i
\(429\) −1.04227e11 −0.148567
\(430\) 0 0
\(431\) −4.37408e11 −0.610575 −0.305288 0.952260i \(-0.598753\pi\)
−0.305288 + 0.952260i \(0.598753\pi\)
\(432\) 1.18275e11i 0.163387i
\(433\) − 2.79837e11i − 0.382569i −0.981535 0.191285i \(-0.938735\pi\)
0.981535 0.191285i \(-0.0612653\pi\)
\(434\) 1.50259e11 0.203300
\(435\) 0 0
\(436\) −3.17387e11 −0.420630
\(437\) − 3.31227e11i − 0.434470i
\(438\) 2.78504e11i 0.361575i
\(439\) −8.87150e11 −1.14000 −0.570002 0.821643i \(-0.693058\pi\)
−0.570002 + 0.821643i \(0.693058\pi\)
\(440\) 0 0
\(441\) 2.17851e11 0.274275
\(442\) 5.61835e10i 0.0700178i
\(443\) 5.87852e11i 0.725189i 0.931947 + 0.362594i \(0.118109\pi\)
−0.931947 + 0.362594i \(0.881891\pi\)
\(444\) 9.03967e11 1.10390
\(445\) 0 0
\(446\) 7.27274e11 0.870344
\(447\) 1.86086e12i 2.20460i
\(448\) − 2.36466e11i − 0.277344i
\(449\) 5.19918e11 0.603707 0.301854 0.953354i \(-0.402395\pi\)
0.301854 + 0.953354i \(0.402395\pi\)
\(450\) 0 0
\(451\) 4.75082e11 0.540723
\(452\) − 8.34168e11i − 0.940006i
\(453\) 2.00908e12i 2.24159i
\(454\) −1.02018e12 −1.12701
\(455\) 0 0
\(456\) 4.56538e11 0.494465
\(457\) − 1.03055e12i − 1.10521i −0.833442 0.552607i \(-0.813633\pi\)
0.833442 0.552607i \(-0.186367\pi\)
\(458\) − 4.57392e10i − 0.0485729i
\(459\) −6.25095e11 −0.657338
\(460\) 0 0
\(461\) 9.37018e11 0.966259 0.483130 0.875549i \(-0.339500\pi\)
0.483130 + 0.875549i \(0.339500\pi\)
\(462\) − 1.41034e11i − 0.144024i
\(463\) − 1.08281e12i − 1.09506i −0.836787 0.547529i \(-0.815569\pi\)
0.836787 0.547529i \(-0.184431\pi\)
\(464\) −1.34855e11 −0.135063
\(465\) 0 0
\(466\) 2.20414e11 0.216522
\(467\) 1.52419e11i 0.148290i 0.997247 + 0.0741451i \(0.0236228\pi\)
−0.997247 + 0.0741451i \(0.976377\pi\)
\(468\) 2.90454e11i 0.279879i
\(469\) 3.75177e11 0.358062
\(470\) 0 0
\(471\) 2.03703e12 1.90723
\(472\) − 2.01096e12i − 1.86494i
\(473\) 5.86297e11i 0.538570i
\(474\) 1.51779e12 1.38105
\(475\) 0 0
\(476\) 1.01000e11 0.0901756
\(477\) 8.73554e10i 0.0772604i
\(478\) 6.02652e11i 0.528008i
\(479\) 2.02244e11 0.175535 0.0877677 0.996141i \(-0.472027\pi\)
0.0877677 + 0.996141i \(0.472027\pi\)
\(480\) 0 0
\(481\) −3.39631e11 −0.289304
\(482\) 3.11099e11i 0.262535i
\(483\) 1.19376e12i 0.998060i
\(484\) −6.09042e11 −0.504479
\(485\) 0 0
\(486\) −2.11732e11 −0.172156
\(487\) 8.35572e11i 0.673137i 0.941659 + 0.336568i \(0.109266\pi\)
−0.941659 + 0.336568i \(0.890734\pi\)
\(488\) 7.99094e11i 0.637836i
\(489\) 1.02094e12 0.807442
\(490\) 0 0
\(491\) −1.06242e12 −0.824953 −0.412476 0.910968i \(-0.635336\pi\)
−0.412476 + 0.910968i \(0.635336\pi\)
\(492\) − 2.01351e12i − 1.54921i
\(493\) − 7.12723e11i − 0.543387i
\(494\) −6.23117e10 −0.0470759
\(495\) 0 0
\(496\) −1.14993e11 −0.0853108
\(497\) 1.66886e11i 0.122692i
\(498\) 1.88851e12i 1.37590i
\(499\) 3.33938e11 0.241109 0.120554 0.992707i \(-0.461533\pi\)
0.120554 + 0.992707i \(0.461533\pi\)
\(500\) 0 0
\(501\) −2.21404e11 −0.157006
\(502\) 1.47627e12i 1.03752i
\(503\) 3.60934e11i 0.251404i 0.992068 + 0.125702i \(0.0401183\pi\)
−0.992068 + 0.125702i \(0.959882\pi\)
\(504\) −1.08189e12 −0.746870
\(505\) 0 0
\(506\) 5.08152e11 0.344601
\(507\) 2.37630e12i 1.59723i
\(508\) − 1.12781e12i − 0.751365i
\(509\) −4.09926e11 −0.270692 −0.135346 0.990798i \(-0.543215\pi\)
−0.135346 + 0.990798i \(0.543215\pi\)
\(510\) 0 0
\(511\) −1.88104e11 −0.122040
\(512\) 3.21676e11i 0.206873i
\(513\) − 6.93277e11i − 0.441955i
\(514\) −1.93928e12 −1.22548
\(515\) 0 0
\(516\) 2.48487e12 1.54305
\(517\) − 9.84199e11i − 0.605865i
\(518\) − 4.59569e11i − 0.280457i
\(519\) −1.14115e12 −0.690384
\(520\) 0 0
\(521\) −1.09884e12 −0.653377 −0.326688 0.945132i \(-0.605933\pi\)
−0.326688 + 0.945132i \(0.605933\pi\)
\(522\) 2.77346e12i 1.63495i
\(523\) − 2.97552e12i − 1.73902i −0.493914 0.869511i \(-0.664434\pi\)
0.493914 0.869511i \(-0.335566\pi\)
\(524\) 1.17402e11 0.0680276
\(525\) 0 0
\(526\) 4.86280e11 0.276982
\(527\) − 6.07748e11i − 0.343223i
\(528\) 1.07933e11i 0.0604367i
\(529\) −2.50005e12 −1.38803
\(530\) 0 0
\(531\) −6.37329e12 −3.47887
\(532\) 1.12016e11i 0.0606288i
\(533\) 7.56500e11i 0.406010i
\(534\) 4.05855e11 0.215991
\(535\) 0 0
\(536\) −1.86320e12 −0.975028
\(537\) 2.27074e12i 1.17837i
\(538\) 1.10871e11i 0.0570554i
\(539\) 9.52551e10 0.0486115
\(540\) 0 0
\(541\) 2.97095e12 1.49110 0.745551 0.666449i \(-0.232187\pi\)
0.745551 + 0.666449i \(0.232187\pi\)
\(542\) − 9.97561e10i − 0.0496527i
\(543\) − 1.88287e12i − 0.929438i
\(544\) −8.20952e11 −0.401904
\(545\) 0 0
\(546\) 2.24576e11 0.108142
\(547\) − 1.50514e12i − 0.718842i −0.933176 0.359421i \(-0.882974\pi\)
0.933176 0.359421i \(-0.117026\pi\)
\(548\) 8.88540e11i 0.420886i
\(549\) 2.53256e12 1.18983
\(550\) 0 0
\(551\) 7.90463e11 0.365342
\(552\) − 5.92845e12i − 2.71779i
\(553\) 1.02512e12i 0.466136i
\(554\) −2.26394e12 −1.02111
\(555\) 0 0
\(556\) −2.44333e11 −0.108429
\(557\) − 2.17354e12i − 0.956797i −0.878143 0.478399i \(-0.841217\pi\)
0.878143 0.478399i \(-0.158783\pi\)
\(558\) 2.36496e12i 1.03269i
\(559\) −9.33593e11 −0.404394
\(560\) 0 0
\(561\) −5.70434e11 −0.243149
\(562\) − 4.59379e11i − 0.194248i
\(563\) − 1.40104e12i − 0.587710i −0.955850 0.293855i \(-0.905062\pi\)
0.955850 0.293855i \(-0.0949383\pi\)
\(564\) −4.17127e12 −1.73585
\(565\) 0 0
\(566\) 1.32281e12 0.541781
\(567\) 7.12707e11i 0.289592i
\(568\) − 8.28784e11i − 0.334098i
\(569\) 1.81226e12 0.724795 0.362397 0.932024i \(-0.381958\pi\)
0.362397 + 0.932024i \(0.381958\pi\)
\(570\) 0 0
\(571\) −3.38885e12 −1.33410 −0.667052 0.745012i \(-0.732444\pi\)
−0.667052 + 0.745012i \(0.732444\pi\)
\(572\) 1.27001e11i 0.0496048i
\(573\) 4.27233e12i 1.65565i
\(574\) −1.02365e12 −0.393594
\(575\) 0 0
\(576\) 3.72180e12 1.40881
\(577\) 2.86129e12i 1.07466i 0.843373 + 0.537329i \(0.180567\pi\)
−0.843373 + 0.537329i \(0.819433\pi\)
\(578\) − 1.45098e12i − 0.540737i
\(579\) −4.62930e11 −0.171183
\(580\) 0 0
\(581\) −1.27551e12 −0.464400
\(582\) − 5.21050e12i − 1.88246i
\(583\) 3.81960e10i 0.0136933i
\(584\) 9.34156e11 0.332324
\(585\) 0 0
\(586\) −9.34324e11 −0.327309
\(587\) − 7.85729e11i − 0.273150i −0.990630 0.136575i \(-0.956391\pi\)
0.990630 0.136575i \(-0.0436095\pi\)
\(588\) − 4.03714e11i − 0.139276i
\(589\) 6.74039e11 0.230763
\(590\) 0 0
\(591\) −7.78174e12 −2.62382
\(592\) 3.51707e11i 0.117688i
\(593\) − 8.24271e11i − 0.273731i −0.990590 0.136865i \(-0.956297\pi\)
0.990590 0.136865i \(-0.0437028\pi\)
\(594\) 1.06359e12 0.350538
\(595\) 0 0
\(596\) 2.26747e12 0.736093
\(597\) 6.60380e12i 2.12770i
\(598\) 8.09159e11i 0.258749i
\(599\) 2.60594e10 0.00827073 0.00413537 0.999991i \(-0.498684\pi\)
0.00413537 + 0.999991i \(0.498684\pi\)
\(600\) 0 0
\(601\) 1.90372e11 0.0595207 0.0297603 0.999557i \(-0.490526\pi\)
0.0297603 + 0.999557i \(0.490526\pi\)
\(602\) − 1.26328e12i − 0.392028i
\(603\) 5.90499e12i 1.81883i
\(604\) 2.44807e12 0.748441
\(605\) 0 0
\(606\) 2.67944e12 0.807082
\(607\) 1.77675e12i 0.531222i 0.964080 + 0.265611i \(0.0855738\pi\)
−0.964080 + 0.265611i \(0.914426\pi\)
\(608\) − 9.10497e11i − 0.270217i
\(609\) −2.84888e12 −0.839260
\(610\) 0 0
\(611\) 1.56719e12 0.454922
\(612\) 1.58966e12i 0.458060i
\(613\) 2.48518e11i 0.0710863i 0.999368 + 0.0355431i \(0.0113161\pi\)
−0.999368 + 0.0355431i \(0.988684\pi\)
\(614\) −1.81591e12 −0.515628
\(615\) 0 0
\(616\) −4.73054e11 −0.132372
\(617\) 3.52347e12i 0.978786i 0.872063 + 0.489393i \(0.162782\pi\)
−0.872063 + 0.489393i \(0.837218\pi\)
\(618\) 4.69755e12i 1.29546i
\(619\) 6.69712e12 1.83350 0.916748 0.399466i \(-0.130804\pi\)
0.916748 + 0.399466i \(0.130804\pi\)
\(620\) 0 0
\(621\) −9.00266e12 −2.42917
\(622\) − 4.12121e12i − 1.10400i
\(623\) 2.74117e11i 0.0729021i
\(624\) −1.71867e11 −0.0453798
\(625\) 0 0
\(626\) −1.81637e12 −0.472738
\(627\) − 6.32654e11i − 0.163479i
\(628\) − 2.48212e12i − 0.636802i
\(629\) −1.85880e12 −0.473484
\(630\) 0 0
\(631\) 6.29917e11 0.158180 0.0790900 0.996867i \(-0.474799\pi\)
0.0790900 + 0.996867i \(0.474799\pi\)
\(632\) − 5.09095e12i − 1.26932i
\(633\) 4.66165e12i 1.15404i
\(634\) 3.44020e12 0.845634
\(635\) 0 0
\(636\) 1.61884e11 0.0392325
\(637\) 1.51680e11i 0.0365006i
\(638\) 1.21269e12i 0.289772i
\(639\) −2.62665e12 −0.623231
\(640\) 0 0
\(641\) 2.82049e12 0.659877 0.329938 0.944002i \(-0.392972\pi\)
0.329938 + 0.944002i \(0.392972\pi\)
\(642\) 3.81668e12i 0.886704i
\(643\) − 7.19804e12i − 1.66060i −0.557317 0.830300i \(-0.688169\pi\)
0.557317 0.830300i \(-0.311831\pi\)
\(644\) 1.45461e12 0.333241
\(645\) 0 0
\(646\) −3.41033e11 −0.0770459
\(647\) 7.17803e12i 1.61041i 0.592998 + 0.805204i \(0.297944\pi\)
−0.592998 + 0.805204i \(0.702056\pi\)
\(648\) − 3.53943e12i − 0.788580i
\(649\) −2.78671e12 −0.616582
\(650\) 0 0
\(651\) −2.42928e12 −0.530106
\(652\) − 1.24402e12i − 0.269596i
\(653\) 1.54599e12i 0.332734i 0.986064 + 0.166367i \(0.0532037\pi\)
−0.986064 + 0.166367i \(0.946796\pi\)
\(654\) −3.86240e12 −0.825578
\(655\) 0 0
\(656\) 7.83398e11 0.165164
\(657\) − 2.96061e12i − 0.619921i
\(658\) 2.12064e12i 0.441011i
\(659\) −2.38624e12 −0.492868 −0.246434 0.969160i \(-0.579259\pi\)
−0.246434 + 0.969160i \(0.579259\pi\)
\(660\) 0 0
\(661\) −2.35488e12 −0.479802 −0.239901 0.970797i \(-0.577115\pi\)
−0.239901 + 0.970797i \(0.577115\pi\)
\(662\) 5.54958e12i 1.12305i
\(663\) − 9.08333e11i − 0.182572i
\(664\) 6.33443e12 1.26459
\(665\) 0 0
\(666\) 7.23326e12 1.42462
\(667\) − 1.02647e13i − 2.00807i
\(668\) 2.69781e11i 0.0524225i
\(669\) −1.17580e13 −2.26943
\(670\) 0 0
\(671\) 1.10736e12 0.210880
\(672\) 3.28149e12i 0.620740i
\(673\) 6.32709e12i 1.18887i 0.804142 + 0.594437i \(0.202625\pi\)
−0.804142 + 0.594437i \(0.797375\pi\)
\(674\) 4.98055e12 0.929625
\(675\) 0 0
\(676\) 2.89553e12 0.533296
\(677\) 3.16670e12i 0.579372i 0.957122 + 0.289686i \(0.0935510\pi\)
−0.957122 + 0.289686i \(0.906449\pi\)
\(678\) − 1.01513e13i − 1.84497i
\(679\) 3.51921e12 0.635376
\(680\) 0 0
\(681\) 1.64935e13 2.93868
\(682\) 1.03408e12i 0.183030i
\(683\) 6.06916e12i 1.06717i 0.845745 + 0.533587i \(0.179156\pi\)
−0.845745 + 0.533587i \(0.820844\pi\)
\(684\) −1.76305e12 −0.307973
\(685\) 0 0
\(686\) −2.05245e11 −0.0353845
\(687\) 7.39478e11i 0.126654i
\(688\) 9.66788e11i 0.164507i
\(689\) −6.08216e10 −0.0102818
\(690\) 0 0
\(691\) −1.36410e12 −0.227611 −0.113806 0.993503i \(-0.536304\pi\)
−0.113806 + 0.993503i \(0.536304\pi\)
\(692\) 1.39050e12i 0.230512i
\(693\) 1.49924e12i 0.246929i
\(694\) −5.39307e12 −0.882508
\(695\) 0 0
\(696\) 1.41481e13 2.28536
\(697\) 4.14033e12i 0.664489i
\(698\) 1.61244e12i 0.257119i
\(699\) −3.56349e12 −0.564584
\(700\) 0 0
\(701\) 4.27032e12 0.667927 0.333964 0.942586i \(-0.391614\pi\)
0.333964 + 0.942586i \(0.391614\pi\)
\(702\) 1.69361e12i 0.263207i
\(703\) − 2.06155e12i − 0.318343i
\(704\) 1.62735e12 0.249692
\(705\) 0 0
\(706\) 4.98605e12 0.755328
\(707\) 1.80971e12i 0.272410i
\(708\) 1.18108e13i 1.76656i
\(709\) −4.76449e12 −0.708122 −0.354061 0.935222i \(-0.615200\pi\)
−0.354061 + 0.935222i \(0.615200\pi\)
\(710\) 0 0
\(711\) −1.61347e13 −2.36781
\(712\) − 1.36132e12i − 0.198517i
\(713\) − 8.75284e12i − 1.26837i
\(714\) 1.22910e12 0.176989
\(715\) 0 0
\(716\) 2.76690e12 0.393446
\(717\) − 9.74323e12i − 1.37679i
\(718\) 8.15481e12i 1.14513i
\(719\) 2.64192e12 0.368671 0.184336 0.982863i \(-0.440987\pi\)
0.184336 + 0.982863i \(0.440987\pi\)
\(720\) 0 0
\(721\) −3.17276e12 −0.437248
\(722\) 4.40672e12i 0.603529i
\(723\) − 5.02963e12i − 0.684563i
\(724\) −2.29428e12 −0.310329
\(725\) 0 0
\(726\) −7.41167e12 −0.990150
\(727\) − 3.54861e12i − 0.471144i −0.971857 0.235572i \(-0.924304\pi\)
0.971857 0.235572i \(-0.0756963\pi\)
\(728\) − 7.53270e11i − 0.0993938i
\(729\) 9.26577e12 1.21509
\(730\) 0 0
\(731\) −5.10956e12 −0.661844
\(732\) − 4.69324e12i − 0.604189i
\(733\) 1.34909e13i 1.72613i 0.505095 + 0.863063i \(0.331457\pi\)
−0.505095 + 0.863063i \(0.668543\pi\)
\(734\) −1.96037e12 −0.249291
\(735\) 0 0
\(736\) −1.18234e13 −1.48523
\(737\) 2.58195e12i 0.322362i
\(738\) − 1.61115e13i − 1.99932i
\(739\) 1.33151e13 1.64227 0.821133 0.570736i \(-0.193342\pi\)
0.821133 + 0.570736i \(0.193342\pi\)
\(740\) 0 0
\(741\) 1.00741e12 0.122751
\(742\) − 8.23003e10i − 0.00996744i
\(743\) − 1.37811e13i − 1.65896i −0.558538 0.829479i \(-0.688637\pi\)
0.558538 0.829479i \(-0.311363\pi\)
\(744\) 1.20642e13 1.44352
\(745\) 0 0
\(746\) −7.23722e12 −0.855553
\(747\) − 2.00756e13i − 2.35899i
\(748\) 6.95075e11i 0.0811848i
\(749\) −2.57781e12 −0.299284
\(750\) 0 0
\(751\) −1.31166e12 −0.150467 −0.0752334 0.997166i \(-0.523970\pi\)
−0.0752334 + 0.997166i \(0.523970\pi\)
\(752\) − 1.62292e12i − 0.185062i
\(753\) − 2.38672e13i − 2.70535i
\(754\) −1.93103e12 −0.217580
\(755\) 0 0
\(756\) 3.04457e12 0.338983
\(757\) 1.31405e13i 1.45439i 0.686430 + 0.727196i \(0.259177\pi\)
−0.686430 + 0.727196i \(0.740823\pi\)
\(758\) 4.45093e12i 0.489711i
\(759\) −8.21543e12 −0.898551
\(760\) 0 0
\(761\) 4.85816e12 0.525099 0.262549 0.964919i \(-0.415437\pi\)
0.262549 + 0.964919i \(0.415437\pi\)
\(762\) − 1.37248e13i − 1.47472i
\(763\) − 2.60869e12i − 0.278652i
\(764\) 5.20584e12 0.552804
\(765\) 0 0
\(766\) −1.14802e13 −1.20481
\(767\) − 4.43743e12i − 0.462970i
\(768\) − 1.72735e13i − 1.79165i
\(769\) 1.57384e13 1.62290 0.811452 0.584420i \(-0.198678\pi\)
0.811452 + 0.584420i \(0.198678\pi\)
\(770\) 0 0
\(771\) 3.13528e13 3.19545
\(772\) 5.64081e11i 0.0571562i
\(773\) − 1.97088e12i − 0.198542i −0.995060 0.0992710i \(-0.968349\pi\)
0.995060 0.0992710i \(-0.0316511\pi\)
\(774\) 1.98831e13 1.99136
\(775\) 0 0
\(776\) −1.74770e13 −1.73017
\(777\) 7.42997e12i 0.731295i
\(778\) − 2.52271e12i − 0.246865i
\(779\) −4.59194e12 −0.446763
\(780\) 0 0
\(781\) −1.14850e12 −0.110459
\(782\) 4.42854e12i 0.423477i
\(783\) − 2.14846e13i − 2.04267i
\(784\) 1.57073e11 0.0148484
\(785\) 0 0
\(786\) 1.42871e12 0.133519
\(787\) − 1.29627e13i − 1.20451i −0.798306 0.602253i \(-0.794270\pi\)
0.798306 0.602253i \(-0.205730\pi\)
\(788\) 9.48207e12i 0.876063i
\(789\) −7.86182e12 −0.722232
\(790\) 0 0
\(791\) 6.85627e12 0.622721
\(792\) − 7.44551e12i − 0.672405i
\(793\) 1.76330e12i 0.158343i
\(794\) −8.11474e12 −0.724573
\(795\) 0 0
\(796\) 8.04675e12 0.710414
\(797\) 1.04429e13i 0.916762i 0.888756 + 0.458381i \(0.151571\pi\)
−0.888756 + 0.458381i \(0.848429\pi\)
\(798\) 1.36317e12i 0.118997i
\(799\) 8.57727e12 0.744541
\(800\) 0 0
\(801\) −4.31439e12 −0.370317
\(802\) 6.77917e12i 0.578618i
\(803\) − 1.29452e12i − 0.109872i
\(804\) 1.09429e13 0.923594
\(805\) 0 0
\(806\) −1.64662e12 −0.137431
\(807\) − 1.79248e12i − 0.148772i
\(808\) − 8.98737e12i − 0.741791i
\(809\) 6.99142e12 0.573848 0.286924 0.957953i \(-0.407367\pi\)
0.286924 + 0.957953i \(0.407367\pi\)
\(810\) 0 0
\(811\) −1.14380e13 −0.928442 −0.464221 0.885719i \(-0.653666\pi\)
−0.464221 + 0.885719i \(0.653666\pi\)
\(812\) 3.47137e12i 0.280220i
\(813\) 1.61278e12i 0.129470i
\(814\) 3.16273e12 0.252495
\(815\) 0 0
\(816\) −9.40631e11 −0.0742700
\(817\) − 5.66689e12i − 0.444985i
\(818\) 1.39831e12i 0.109198i
\(819\) −2.38733e12 −0.185410
\(820\) 0 0
\(821\) −4.42435e12 −0.339864 −0.169932 0.985456i \(-0.554355\pi\)
−0.169932 + 0.985456i \(0.554355\pi\)
\(822\) 1.08130e13i 0.826081i
\(823\) − 1.71948e13i − 1.30647i −0.757156 0.653234i \(-0.773412\pi\)
0.757156 0.653234i \(-0.226588\pi\)
\(824\) 1.57565e13 1.19066
\(825\) 0 0
\(826\) 6.00448e12 0.448813
\(827\) 3.04498e12i 0.226365i 0.993574 + 0.113182i \(0.0361045\pi\)
−0.993574 + 0.113182i \(0.963896\pi\)
\(828\) 2.28944e13i 1.69275i
\(829\) 8.03416e12 0.590806 0.295403 0.955373i \(-0.404546\pi\)
0.295403 + 0.955373i \(0.404546\pi\)
\(830\) 0 0
\(831\) 3.66017e13 2.66254
\(832\) 2.59132e12i 0.187485i
\(833\) 8.30146e11i 0.0597382i
\(834\) −2.97339e12 −0.212816
\(835\) 0 0
\(836\) −7.70891e11 −0.0545839
\(837\) − 1.83202e13i − 1.29022i
\(838\) 2.47448e12i 0.173335i
\(839\) −1.36209e13 −0.949020 −0.474510 0.880250i \(-0.657375\pi\)
−0.474510 + 0.880250i \(0.657375\pi\)
\(840\) 0 0
\(841\) 9.98921e12 0.688571
\(842\) 8.19684e12i 0.562007i
\(843\) 7.42689e12i 0.506504i
\(844\) 5.68023e12 0.385323
\(845\) 0 0
\(846\) −3.33772e13 −2.24018
\(847\) − 5.00589e12i − 0.334200i
\(848\) 6.29842e10i 0.00418264i
\(849\) −2.13862e13 −1.41270
\(850\) 0 0
\(851\) −2.67706e13 −1.74975
\(852\) 4.86762e12i 0.316474i
\(853\) − 3.64211e12i − 0.235549i −0.993040 0.117775i \(-0.962424\pi\)
0.993040 0.117775i \(-0.0375761\pi\)
\(854\) −2.38600e12 −0.153501
\(855\) 0 0
\(856\) 1.28019e13 0.814971
\(857\) 1.62518e13i 1.02917i 0.857438 + 0.514587i \(0.172055\pi\)
−0.857438 + 0.514587i \(0.827945\pi\)
\(858\) 1.54552e12i 0.0973602i
\(859\) −1.69063e13 −1.05944 −0.529722 0.848171i \(-0.677704\pi\)
−0.529722 + 0.848171i \(0.677704\pi\)
\(860\) 0 0
\(861\) 1.65496e13 1.02630
\(862\) 6.48608e12i 0.400128i
\(863\) 1.56857e13i 0.962619i 0.876551 + 0.481310i \(0.159839\pi\)
−0.876551 + 0.481310i \(0.840161\pi\)
\(864\) −2.47471e13 −1.51082
\(865\) 0 0
\(866\) −4.14955e12 −0.250709
\(867\) 2.34584e13i 1.40998i
\(868\) 2.96008e12i 0.176997i
\(869\) −7.05485e12 −0.419661
\(870\) 0 0
\(871\) −4.11138e12 −0.242050
\(872\) 1.29553e13i 0.758790i
\(873\) 5.53897e13i 3.22749i
\(874\) −4.91158e12 −0.284721
\(875\) 0 0
\(876\) −5.48649e12 −0.314794
\(877\) 2.37521e13i 1.35583i 0.735141 + 0.677914i \(0.237116\pi\)
−0.735141 + 0.677914i \(0.762884\pi\)
\(878\) 1.31550e13i 0.747079i
\(879\) 1.51055e13 0.853462
\(880\) 0 0
\(881\) 1.13698e13 0.635858 0.317929 0.948115i \(-0.397013\pi\)
0.317929 + 0.948115i \(0.397013\pi\)
\(882\) − 3.23039e12i − 0.179741i
\(883\) 1.21711e12i 0.0673762i 0.999432 + 0.0336881i \(0.0107253\pi\)
−0.999432 + 0.0336881i \(0.989275\pi\)
\(884\) −1.10681e12 −0.0609588
\(885\) 0 0
\(886\) 8.71692e12 0.475238
\(887\) 3.43743e13i 1.86457i 0.361730 + 0.932283i \(0.382186\pi\)
−0.361730 + 0.932283i \(0.617814\pi\)
\(888\) − 3.68986e13i − 1.99137i
\(889\) 9.26983e12 0.497753
\(890\) 0 0
\(891\) −4.90482e12 −0.260719
\(892\) 1.43272e13i 0.757738i
\(893\) 9.51284e12i 0.500586i
\(894\) 2.75937e13 1.44474
\(895\) 0 0
\(896\) 3.50183e12 0.181513
\(897\) − 1.30819e13i − 0.674690i
\(898\) − 7.70957e12i − 0.395627i
\(899\) 2.08884e13 1.06656
\(900\) 0 0
\(901\) −3.32877e11 −0.0168276
\(902\) − 7.04472e12i − 0.354352i
\(903\) 2.04238e13i 1.02222i
\(904\) −3.40495e13 −1.69571
\(905\) 0 0
\(906\) 2.97915e13 1.46898
\(907\) − 3.08586e13i − 1.51406i −0.653381 0.757030i \(-0.726650\pi\)
0.653381 0.757030i \(-0.273350\pi\)
\(908\) − 2.00974e13i − 0.981192i
\(909\) −2.84835e13 −1.38374
\(910\) 0 0
\(911\) −3.36006e13 −1.61627 −0.808136 0.588996i \(-0.799523\pi\)
−0.808136 + 0.588996i \(0.799523\pi\)
\(912\) − 1.04323e12i − 0.0499348i
\(913\) − 8.77802e12i − 0.418098i
\(914\) −1.52814e13 −0.724280
\(915\) 0 0
\(916\) 9.01056e11 0.0422885
\(917\) 9.64961e11i 0.0450659i
\(918\) 9.26917e12i 0.430773i
\(919\) 1.46200e13 0.676127 0.338063 0.941123i \(-0.390228\pi\)
0.338063 + 0.941123i \(0.390228\pi\)
\(920\) 0 0
\(921\) 2.93583e13 1.34450
\(922\) − 1.38945e13i − 0.633219i
\(923\) − 1.82882e12i − 0.0829398i
\(924\) 2.77834e12 0.125390
\(925\) 0 0
\(926\) −1.60563e13 −0.717625
\(927\) − 4.99367e13i − 2.22107i
\(928\) − 2.82162e13i − 1.24891i
\(929\) 1.36244e13 0.600130 0.300065 0.953919i \(-0.402992\pi\)
0.300065 + 0.953919i \(0.402992\pi\)
\(930\) 0 0
\(931\) −9.20694e11 −0.0401644
\(932\) 4.34213e12i 0.188508i
\(933\) 6.66287e13i 2.87868i
\(934\) 2.26013e12 0.0971790
\(935\) 0 0
\(936\) 1.18559e13 0.504885
\(937\) − 1.06580e13i − 0.451697i −0.974162 0.225848i \(-0.927485\pi\)
0.974162 0.225848i \(-0.0725154\pi\)
\(938\) − 5.56328e12i − 0.234649i
\(939\) 2.93658e13 1.23267
\(940\) 0 0
\(941\) 1.54253e13 0.641328 0.320664 0.947193i \(-0.396094\pi\)
0.320664 + 0.947193i \(0.396094\pi\)
\(942\) − 3.02059e13i − 1.24986i
\(943\) 5.96294e13i 2.45560i
\(944\) −4.59522e12 −0.188335
\(945\) 0 0
\(946\) 8.69386e12 0.352941
\(947\) 1.97267e13i 0.797039i 0.917160 + 0.398519i \(0.130476\pi\)
−0.917160 + 0.398519i \(0.869524\pi\)
\(948\) 2.99002e13i 1.20236i
\(949\) 2.06133e12 0.0824993
\(950\) 0 0
\(951\) −5.56186e13 −2.20500
\(952\) − 4.12265e12i − 0.162671i
\(953\) 1.39214e12i 0.0546721i 0.999626 + 0.0273361i \(0.00870242\pi\)
−0.999626 + 0.0273361i \(0.991298\pi\)
\(954\) 1.29534e12 0.0506311
\(955\) 0 0
\(956\) −1.18721e13 −0.459694
\(957\) − 1.96059e13i − 0.755583i
\(958\) − 2.99895e12i − 0.115034i
\(959\) −7.30317e12 −0.278822
\(960\) 0 0
\(961\) −8.62783e12 −0.326322
\(962\) 5.03619e12i 0.189589i
\(963\) − 4.05728e13i − 1.52026i
\(964\) −6.12861e12 −0.228568
\(965\) 0 0
\(966\) 1.77017e13 0.654059
\(967\) 5.29760e12i 0.194832i 0.995244 + 0.0974160i \(0.0310577\pi\)
−0.995244 + 0.0974160i \(0.968942\pi\)
\(968\) 2.48602e13i 0.910049i
\(969\) 5.51357e12 0.200898
\(970\) 0 0
\(971\) −7.97890e12 −0.288042 −0.144021 0.989575i \(-0.546003\pi\)
−0.144021 + 0.989575i \(0.546003\pi\)
\(972\) − 4.17108e12i − 0.149882i
\(973\) − 2.00825e12i − 0.0718306i
\(974\) 1.23902e13 0.441127
\(975\) 0 0
\(976\) 1.82600e12 0.0644135
\(977\) − 6.27831e12i − 0.220454i −0.993906 0.110227i \(-0.964842\pi\)
0.993906 0.110227i \(-0.0351577\pi\)
\(978\) − 1.51390e13i − 0.529141i
\(979\) −1.88646e12 −0.0656335
\(980\) 0 0
\(981\) 4.10589e13 1.41546
\(982\) 1.57540e13i 0.540616i
\(983\) − 1.25053e12i − 0.0427173i −0.999772 0.0213586i \(-0.993201\pi\)
0.999772 0.0213586i \(-0.00679918\pi\)
\(984\) −8.21886e13 −2.79469
\(985\) 0 0
\(986\) −1.05686e13 −0.356098
\(987\) − 3.42849e13i − 1.14994i
\(988\) − 1.22753e12i − 0.0409851i
\(989\) −7.35883e13 −2.44583
\(990\) 0 0
\(991\) 1.89095e13 0.622801 0.311400 0.950279i \(-0.399202\pi\)
0.311400 + 0.950279i \(0.399202\pi\)
\(992\) − 2.40603e13i − 0.788858i
\(993\) − 8.97216e13i − 2.92836i
\(994\) 2.47465e12 0.0804036
\(995\) 0 0
\(996\) −3.72034e13 −1.19788
\(997\) − 7.17482e12i − 0.229976i −0.993367 0.114988i \(-0.963317\pi\)
0.993367 0.114988i \(-0.0366830\pi\)
\(998\) − 4.95178e12i − 0.158006i
\(999\) −5.60324e13 −1.77989
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.10.b.c.99.1 4
5.2 odd 4 175.10.a.c.1.2 2
5.3 odd 4 35.10.a.b.1.1 2
5.4 even 2 inner 175.10.b.c.99.4 4
15.8 even 4 315.10.a.b.1.2 2
35.13 even 4 245.10.a.c.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.10.a.b.1.1 2 5.3 odd 4
175.10.a.c.1.2 2 5.2 odd 4
175.10.b.c.99.1 4 1.1 even 1 trivial
175.10.b.c.99.4 4 5.4 even 2 inner
245.10.a.c.1.1 2 35.13 even 4
315.10.a.b.1.2 2 15.8 even 4