Properties

Label 175.10.a.a.1.1
Level $175$
Weight $10$
Character 175.1
Self dual yes
Analytic conductor $90.131$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,10,Mod(1,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(90.1312713287\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-28.0000 q^{2} +116.000 q^{3} +272.000 q^{4} -3248.00 q^{6} -2401.00 q^{7} +6720.00 q^{8} -6227.00 q^{9} +O(q^{10})\) \(q-28.0000 q^{2} +116.000 q^{3} +272.000 q^{4} -3248.00 q^{6} -2401.00 q^{7} +6720.00 q^{8} -6227.00 q^{9} -25548.0 q^{11} +31552.0 q^{12} +42306.0 q^{13} +67228.0 q^{14} -327424. q^{16} +526342. q^{17} +174356. q^{18} -350060. q^{19} -278516. q^{21} +715344. q^{22} +621976. q^{23} +779520. q^{24} -1.18457e6 q^{26} -3.00556e6 q^{27} -653072. q^{28} +6.72043e6 q^{29} -6.41221e6 q^{31} +5.72723e6 q^{32} -2.96357e6 q^{33} -1.47376e7 q^{34} -1.69374e6 q^{36} +2.31768e6 q^{37} +9.80168e6 q^{38} +4.90750e6 q^{39} -1.02247e7 q^{41} +7.79845e6 q^{42} -3.01140e7 q^{43} -6.94906e6 q^{44} -1.74153e7 q^{46} +2.36449e7 q^{47} -3.79812e7 q^{48} +5.76480e6 q^{49} +6.10557e7 q^{51} +1.15072e7 q^{52} -5.72927e7 q^{53} +8.41557e7 q^{54} -1.61347e7 q^{56} -4.06070e7 q^{57} -1.88172e8 q^{58} +8.49348e7 q^{59} +1.46778e7 q^{61} +1.79542e8 q^{62} +1.49510e7 q^{63} +7.27859e6 q^{64} +8.29799e7 q^{66} +2.44558e8 q^{67} +1.43165e8 q^{68} +7.21492e7 q^{69} +6.19020e7 q^{71} -4.18454e7 q^{72} +2.83764e8 q^{73} -6.48951e7 q^{74} -9.52163e7 q^{76} +6.13407e7 q^{77} -1.37410e8 q^{78} +2.76107e8 q^{79} -2.26079e8 q^{81} +2.86291e8 q^{82} +7.29960e7 q^{83} -7.57564e7 q^{84} +8.43192e8 q^{86} +7.79570e8 q^{87} -1.71683e8 q^{88} -8.96368e8 q^{89} -1.01577e8 q^{91} +1.69177e8 q^{92} -7.43816e8 q^{93} -6.62058e8 q^{94} +6.64359e8 q^{96} -1.20581e9 q^{97} -1.61414e8 q^{98} +1.59087e8 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −28.0000 −1.23744 −0.618718 0.785613i \(-0.712348\pi\)
−0.618718 + 0.785613i \(0.712348\pi\)
\(3\) 116.000 0.826823 0.413411 0.910544i \(-0.364337\pi\)
0.413411 + 0.910544i \(0.364337\pi\)
\(4\) 272.000 0.531250
\(5\) 0 0
\(6\) −3248.00 −1.02314
\(7\) −2401.00 −0.377964
\(8\) 6720.00 0.580049
\(9\) −6227.00 −0.316364
\(10\) 0 0
\(11\) −25548.0 −0.526126 −0.263063 0.964779i \(-0.584733\pi\)
−0.263063 + 0.964779i \(0.584733\pi\)
\(12\) 31552.0 0.439250
\(13\) 42306.0 0.410825 0.205413 0.978675i \(-0.434146\pi\)
0.205413 + 0.978675i \(0.434146\pi\)
\(14\) 67228.0 0.467707
\(15\) 0 0
\(16\) −327424. −1.24902
\(17\) 526342. 1.52844 0.764219 0.644957i \(-0.223125\pi\)
0.764219 + 0.644957i \(0.223125\pi\)
\(18\) 174356. 0.391481
\(19\) −350060. −0.616242 −0.308121 0.951347i \(-0.599700\pi\)
−0.308121 + 0.951347i \(0.599700\pi\)
\(20\) 0 0
\(21\) −278516. −0.312510
\(22\) 715344. 0.651048
\(23\) 621976. 0.463445 0.231723 0.972782i \(-0.425564\pi\)
0.231723 + 0.972782i \(0.425564\pi\)
\(24\) 779520. 0.479597
\(25\) 0 0
\(26\) −1.18457e6 −0.508370
\(27\) −3.00556e6 −1.08840
\(28\) −653072. −0.200794
\(29\) 6.72043e6 1.76444 0.882218 0.470841i \(-0.156049\pi\)
0.882218 + 0.470841i \(0.156049\pi\)
\(30\) 0 0
\(31\) −6.41221e6 −1.24704 −0.623519 0.781808i \(-0.714298\pi\)
−0.623519 + 0.781808i \(0.714298\pi\)
\(32\) 5.72723e6 0.965539
\(33\) −2.96357e6 −0.435013
\(34\) −1.47376e7 −1.89135
\(35\) 0 0
\(36\) −1.69374e6 −0.168069
\(37\) 2.31768e6 0.203304 0.101652 0.994820i \(-0.467587\pi\)
0.101652 + 0.994820i \(0.467587\pi\)
\(38\) 9.80168e6 0.762561
\(39\) 4.90750e6 0.339679
\(40\) 0 0
\(41\) −1.02247e7 −0.565096 −0.282548 0.959253i \(-0.591180\pi\)
−0.282548 + 0.959253i \(0.591180\pi\)
\(42\) 7.79845e6 0.386711
\(43\) −3.01140e7 −1.34326 −0.671631 0.740886i \(-0.734406\pi\)
−0.671631 + 0.740886i \(0.734406\pi\)
\(44\) −6.94906e6 −0.279504
\(45\) 0 0
\(46\) −1.74153e7 −0.573484
\(47\) 2.36449e7 0.706801 0.353401 0.935472i \(-0.385025\pi\)
0.353401 + 0.935472i \(0.385025\pi\)
\(48\) −3.79812e7 −1.03272
\(49\) 5.76480e6 0.142857
\(50\) 0 0
\(51\) 6.10557e7 1.26375
\(52\) 1.15072e7 0.218251
\(53\) −5.72927e7 −0.997373 −0.498686 0.866782i \(-0.666184\pi\)
−0.498686 + 0.866782i \(0.666184\pi\)
\(54\) 8.41557e7 1.34683
\(55\) 0 0
\(56\) −1.61347e7 −0.219238
\(57\) −4.06070e7 −0.509523
\(58\) −1.88172e8 −2.18338
\(59\) 8.49348e7 0.912539 0.456270 0.889842i \(-0.349185\pi\)
0.456270 + 0.889842i \(0.349185\pi\)
\(60\) 0 0
\(61\) 1.46778e7 0.135730 0.0678652 0.997694i \(-0.478381\pi\)
0.0678652 + 0.997694i \(0.478381\pi\)
\(62\) 1.79542e8 1.54313
\(63\) 1.49510e7 0.119574
\(64\) 7.27859e6 0.0542297
\(65\) 0 0
\(66\) 8.29799e7 0.538301
\(67\) 2.44558e8 1.48267 0.741336 0.671134i \(-0.234193\pi\)
0.741336 + 0.671134i \(0.234193\pi\)
\(68\) 1.43165e8 0.811983
\(69\) 7.21492e7 0.383187
\(70\) 0 0
\(71\) 6.19020e7 0.289096 0.144548 0.989498i \(-0.453827\pi\)
0.144548 + 0.989498i \(0.453827\pi\)
\(72\) −4.18454e7 −0.183507
\(73\) 2.83764e8 1.16951 0.584755 0.811210i \(-0.301191\pi\)
0.584755 + 0.811210i \(0.301191\pi\)
\(74\) −6.48951e7 −0.251576
\(75\) 0 0
\(76\) −9.52163e7 −0.327379
\(77\) 6.13407e7 0.198857
\(78\) −1.37410e8 −0.420332
\(79\) 2.76107e8 0.797547 0.398773 0.917049i \(-0.369436\pi\)
0.398773 + 0.917049i \(0.369436\pi\)
\(80\) 0 0
\(81\) −2.26079e8 −0.583549
\(82\) 2.86291e8 0.699271
\(83\) 7.29960e7 0.168829 0.0844146 0.996431i \(-0.473098\pi\)
0.0844146 + 0.996431i \(0.473098\pi\)
\(84\) −7.57564e7 −0.166021
\(85\) 0 0
\(86\) 8.43192e8 1.66220
\(87\) 7.79570e8 1.45888
\(88\) −1.71683e8 −0.305179
\(89\) −8.96368e8 −1.51437 −0.757184 0.653201i \(-0.773425\pi\)
−0.757184 + 0.653201i \(0.773425\pi\)
\(90\) 0 0
\(91\) −1.01577e8 −0.155277
\(92\) 1.69177e8 0.246205
\(93\) −7.43816e8 −1.03108
\(94\) −6.62058e8 −0.874622
\(95\) 0 0
\(96\) 6.64359e8 0.798330
\(97\) −1.20581e9 −1.38295 −0.691474 0.722401i \(-0.743038\pi\)
−0.691474 + 0.722401i \(0.743038\pi\)
\(98\) −1.61414e8 −0.176777
\(99\) 1.59087e8 0.166448
\(100\) 0 0
\(101\) −1.46021e9 −1.39627 −0.698136 0.715965i \(-0.745987\pi\)
−0.698136 + 0.715965i \(0.745987\pi\)
\(102\) −1.70956e9 −1.56381
\(103\) −1.08009e9 −0.945563 −0.472782 0.881180i \(-0.656750\pi\)
−0.472782 + 0.881180i \(0.656750\pi\)
\(104\) 2.84296e8 0.238298
\(105\) 0 0
\(106\) 1.60419e9 1.23419
\(107\) −3.35949e8 −0.247769 −0.123884 0.992297i \(-0.539535\pi\)
−0.123884 + 0.992297i \(0.539535\pi\)
\(108\) −8.17512e8 −0.578212
\(109\) −1.42521e9 −0.967072 −0.483536 0.875324i \(-0.660648\pi\)
−0.483536 + 0.875324i \(0.660648\pi\)
\(110\) 0 0
\(111\) 2.68851e8 0.168096
\(112\) 7.86145e8 0.472086
\(113\) 2.84178e9 1.63960 0.819799 0.572651i \(-0.194085\pi\)
0.819799 + 0.572651i \(0.194085\pi\)
\(114\) 1.13699e9 0.630502
\(115\) 0 0
\(116\) 1.82796e9 0.937357
\(117\) −2.63439e8 −0.129970
\(118\) −2.37817e9 −1.12921
\(119\) −1.26375e9 −0.577695
\(120\) 0 0
\(121\) −1.70525e9 −0.723191
\(122\) −4.10979e8 −0.167958
\(123\) −1.18606e9 −0.467234
\(124\) −1.74412e9 −0.662489
\(125\) 0 0
\(126\) −4.18629e8 −0.147966
\(127\) −3.49339e9 −1.19160 −0.595800 0.803133i \(-0.703165\pi\)
−0.595800 + 0.803133i \(0.703165\pi\)
\(128\) −3.13614e9 −1.03264
\(129\) −3.49322e9 −1.11064
\(130\) 0 0
\(131\) −1.84697e9 −0.547946 −0.273973 0.961737i \(-0.588338\pi\)
−0.273973 + 0.961737i \(0.588338\pi\)
\(132\) −8.06090e8 −0.231101
\(133\) 8.40494e8 0.232918
\(134\) −6.84762e9 −1.83471
\(135\) 0 0
\(136\) 3.53702e9 0.886568
\(137\) −1.17238e9 −0.284331 −0.142166 0.989843i \(-0.545407\pi\)
−0.142166 + 0.989843i \(0.545407\pi\)
\(138\) −2.02018e9 −0.474170
\(139\) −4.89001e9 −1.11108 −0.555538 0.831491i \(-0.687488\pi\)
−0.555538 + 0.831491i \(0.687488\pi\)
\(140\) 0 0
\(141\) 2.74281e9 0.584399
\(142\) −1.73325e9 −0.357738
\(143\) −1.08083e9 −0.216146
\(144\) 2.03887e9 0.395147
\(145\) 0 0
\(146\) −7.94538e9 −1.44720
\(147\) 6.68717e8 0.118118
\(148\) 6.30410e8 0.108005
\(149\) −8.61488e9 −1.43189 −0.715947 0.698155i \(-0.754005\pi\)
−0.715947 + 0.698155i \(0.754005\pi\)
\(150\) 0 0
\(151\) 5.48905e9 0.859213 0.429607 0.903016i \(-0.358652\pi\)
0.429607 + 0.903016i \(0.358652\pi\)
\(152\) −2.35240e9 −0.357450
\(153\) −3.27753e9 −0.483543
\(154\) −1.71754e9 −0.246073
\(155\) 0 0
\(156\) 1.33484e9 0.180455
\(157\) 1.33110e9 0.174849 0.0874246 0.996171i \(-0.472136\pi\)
0.0874246 + 0.996171i \(0.472136\pi\)
\(158\) −7.73101e9 −0.986914
\(159\) −6.64595e9 −0.824650
\(160\) 0 0
\(161\) −1.49336e9 −0.175166
\(162\) 6.33021e9 0.722105
\(163\) −1.41097e9 −0.156557 −0.0782786 0.996932i \(-0.524942\pi\)
−0.0782786 + 0.996932i \(0.524942\pi\)
\(164\) −2.78111e9 −0.300207
\(165\) 0 0
\(166\) −2.04389e9 −0.208915
\(167\) −2.48555e8 −0.0247285 −0.0123642 0.999924i \(-0.503936\pi\)
−0.0123642 + 0.999924i \(0.503936\pi\)
\(168\) −1.87163e9 −0.181271
\(169\) −8.81470e9 −0.831223
\(170\) 0 0
\(171\) 2.17982e9 0.194957
\(172\) −8.19101e9 −0.713607
\(173\) −1.66522e10 −1.41340 −0.706699 0.707515i \(-0.749816\pi\)
−0.706699 + 0.707515i \(0.749816\pi\)
\(174\) −2.18280e10 −1.80527
\(175\) 0 0
\(176\) 8.36503e9 0.657144
\(177\) 9.85243e9 0.754508
\(178\) 2.50983e10 1.87394
\(179\) 2.02956e10 1.47762 0.738811 0.673913i \(-0.235388\pi\)
0.738811 + 0.673913i \(0.235388\pi\)
\(180\) 0 0
\(181\) −1.36159e10 −0.942960 −0.471480 0.881877i \(-0.656280\pi\)
−0.471480 + 0.881877i \(0.656280\pi\)
\(182\) 2.84415e9 0.192146
\(183\) 1.70263e9 0.112225
\(184\) 4.17968e9 0.268821
\(185\) 0 0
\(186\) 2.08269e10 1.27590
\(187\) −1.34470e10 −0.804151
\(188\) 6.43142e9 0.375488
\(189\) 7.21635e9 0.411376
\(190\) 0 0
\(191\) 1.82357e9 0.0991453 0.0495726 0.998771i \(-0.484214\pi\)
0.0495726 + 0.998771i \(0.484214\pi\)
\(192\) 8.44317e8 0.0448384
\(193\) −1.23747e10 −0.641989 −0.320995 0.947081i \(-0.604017\pi\)
−0.320995 + 0.947081i \(0.604017\pi\)
\(194\) 3.37627e10 1.71131
\(195\) 0 0
\(196\) 1.56803e9 0.0758929
\(197\) −1.93137e10 −0.913626 −0.456813 0.889563i \(-0.651009\pi\)
−0.456813 + 0.889563i \(0.651009\pi\)
\(198\) −4.45445e9 −0.205968
\(199\) 1.52145e10 0.687733 0.343867 0.939019i \(-0.388263\pi\)
0.343867 + 0.939019i \(0.388263\pi\)
\(200\) 0 0
\(201\) 2.83687e10 1.22591
\(202\) 4.08860e10 1.72780
\(203\) −1.61358e10 −0.666894
\(204\) 1.66071e10 0.671366
\(205\) 0 0
\(206\) 3.02424e10 1.17007
\(207\) −3.87304e9 −0.146618
\(208\) −1.38520e10 −0.513130
\(209\) 8.94333e9 0.324221
\(210\) 0 0
\(211\) −3.89626e10 −1.35325 −0.676624 0.736329i \(-0.736558\pi\)
−0.676624 + 0.736329i \(0.736558\pi\)
\(212\) −1.55836e10 −0.529854
\(213\) 7.18063e9 0.239031
\(214\) 9.40658e9 0.306598
\(215\) 0 0
\(216\) −2.01974e10 −0.631325
\(217\) 1.53957e10 0.471336
\(218\) 3.99058e10 1.19669
\(219\) 3.29166e10 0.966977
\(220\) 0 0
\(221\) 2.22674e10 0.627921
\(222\) −7.52783e9 −0.208009
\(223\) −1.08324e9 −0.0293328 −0.0146664 0.999892i \(-0.504669\pi\)
−0.0146664 + 0.999892i \(0.504669\pi\)
\(224\) −1.37511e10 −0.364939
\(225\) 0 0
\(226\) −7.95698e10 −2.02890
\(227\) 4.94618e10 1.23639 0.618193 0.786027i \(-0.287865\pi\)
0.618193 + 0.786027i \(0.287865\pi\)
\(228\) −1.10451e10 −0.270684
\(229\) −4.32776e10 −1.03993 −0.519965 0.854188i \(-0.674055\pi\)
−0.519965 + 0.854188i \(0.674055\pi\)
\(230\) 0 0
\(231\) 7.11553e9 0.164419
\(232\) 4.51613e10 1.02346
\(233\) 7.55367e9 0.167902 0.0839511 0.996470i \(-0.473246\pi\)
0.0839511 + 0.996470i \(0.473246\pi\)
\(234\) 7.37630e9 0.160830
\(235\) 0 0
\(236\) 2.31023e10 0.484786
\(237\) 3.20285e10 0.659430
\(238\) 3.53849e10 0.714862
\(239\) −2.76516e10 −0.548188 −0.274094 0.961703i \(-0.588378\pi\)
−0.274094 + 0.961703i \(0.588378\pi\)
\(240\) 0 0
\(241\) −8.26006e10 −1.57727 −0.788635 0.614861i \(-0.789212\pi\)
−0.788635 + 0.614861i \(0.789212\pi\)
\(242\) 4.77469e10 0.894904
\(243\) 3.29333e10 0.605908
\(244\) 3.99237e9 0.0721068
\(245\) 0 0
\(246\) 3.32098e10 0.578173
\(247\) −1.48096e10 −0.253168
\(248\) −4.30900e10 −0.723343
\(249\) 8.46753e9 0.139592
\(250\) 0 0
\(251\) 2.01817e10 0.320942 0.160471 0.987041i \(-0.448699\pi\)
0.160471 + 0.987041i \(0.448699\pi\)
\(252\) 4.06668e9 0.0635240
\(253\) −1.58902e10 −0.243831
\(254\) 9.78150e10 1.47453
\(255\) 0 0
\(256\) 8.40854e10 1.22360
\(257\) −2.82781e10 −0.404344 −0.202172 0.979350i \(-0.564800\pi\)
−0.202172 + 0.979350i \(0.564800\pi\)
\(258\) 9.78103e10 1.37435
\(259\) −5.56475e9 −0.0768417
\(260\) 0 0
\(261\) −4.18481e10 −0.558205
\(262\) 5.17150e10 0.678049
\(263\) −1.39139e11 −1.79328 −0.896642 0.442756i \(-0.854001\pi\)
−0.896642 + 0.442756i \(0.854001\pi\)
\(264\) −1.99152e10 −0.252329
\(265\) 0 0
\(266\) −2.35338e10 −0.288221
\(267\) −1.03979e11 −1.25211
\(268\) 6.65197e10 0.787669
\(269\) 5.78883e9 0.0674071 0.0337035 0.999432i \(-0.489270\pi\)
0.0337035 + 0.999432i \(0.489270\pi\)
\(270\) 0 0
\(271\) −7.46910e10 −0.841214 −0.420607 0.907243i \(-0.638183\pi\)
−0.420607 + 0.907243i \(0.638183\pi\)
\(272\) −1.72337e11 −1.90906
\(273\) −1.17829e10 −0.128387
\(274\) 3.28265e10 0.351842
\(275\) 0 0
\(276\) 1.96246e10 0.203568
\(277\) −2.22355e10 −0.226928 −0.113464 0.993542i \(-0.536195\pi\)
−0.113464 + 0.993542i \(0.536195\pi\)
\(278\) 1.36920e11 1.37489
\(279\) 3.99288e10 0.394519
\(280\) 0 0
\(281\) −1.36058e11 −1.30180 −0.650901 0.759162i \(-0.725609\pi\)
−0.650901 + 0.759162i \(0.725609\pi\)
\(282\) −7.67987e10 −0.723157
\(283\) 1.71084e11 1.58551 0.792757 0.609538i \(-0.208645\pi\)
0.792757 + 0.609538i \(0.208645\pi\)
\(284\) 1.68373e10 0.153582
\(285\) 0 0
\(286\) 3.02633e10 0.267467
\(287\) 2.45495e10 0.213586
\(288\) −3.56635e10 −0.305462
\(289\) 1.58448e11 1.33612
\(290\) 0 0
\(291\) −1.39874e11 −1.14345
\(292\) 7.71837e10 0.621302
\(293\) −1.05732e11 −0.838115 −0.419058 0.907960i \(-0.637639\pi\)
−0.419058 + 0.907960i \(0.637639\pi\)
\(294\) −1.87241e10 −0.146163
\(295\) 0 0
\(296\) 1.55748e10 0.117926
\(297\) 7.67860e10 0.572636
\(298\) 2.41217e11 1.77188
\(299\) 2.63133e10 0.190395
\(300\) 0 0
\(301\) 7.23037e10 0.507705
\(302\) −1.53693e11 −1.06322
\(303\) −1.69385e11 −1.15447
\(304\) 1.14618e11 0.769701
\(305\) 0 0
\(306\) 9.17709e10 0.598354
\(307\) −1.74144e11 −1.11889 −0.559443 0.828869i \(-0.688985\pi\)
−0.559443 + 0.828869i \(0.688985\pi\)
\(308\) 1.66847e10 0.105643
\(309\) −1.25290e11 −0.781813
\(310\) 0 0
\(311\) −1.05907e11 −0.641954 −0.320977 0.947087i \(-0.604011\pi\)
−0.320977 + 0.947087i \(0.604011\pi\)
\(312\) 3.29784e10 0.197031
\(313\) 2.43558e11 1.43434 0.717171 0.696897i \(-0.245437\pi\)
0.717171 + 0.696897i \(0.245437\pi\)
\(314\) −3.72709e10 −0.216365
\(315\) 0 0
\(316\) 7.51012e10 0.423697
\(317\) −1.83776e11 −1.02217 −0.511083 0.859531i \(-0.670755\pi\)
−0.511083 + 0.859531i \(0.670755\pi\)
\(318\) 1.86087e11 1.02045
\(319\) −1.71694e11 −0.928316
\(320\) 0 0
\(321\) −3.89701e10 −0.204861
\(322\) 4.18142e10 0.216757
\(323\) −1.84251e11 −0.941888
\(324\) −6.14935e10 −0.310011
\(325\) 0 0
\(326\) 3.95071e10 0.193730
\(327\) −1.65324e11 −0.799597
\(328\) −6.87098e10 −0.327783
\(329\) −5.67714e10 −0.267146
\(330\) 0 0
\(331\) −5.81760e10 −0.266390 −0.133195 0.991090i \(-0.542524\pi\)
−0.133195 + 0.991090i \(0.542524\pi\)
\(332\) 1.98549e10 0.0896905
\(333\) −1.44322e10 −0.0643182
\(334\) 6.95953e9 0.0305999
\(335\) 0 0
\(336\) 9.11928e10 0.390332
\(337\) 3.40267e11 1.43709 0.718547 0.695478i \(-0.244807\pi\)
0.718547 + 0.695478i \(0.244807\pi\)
\(338\) 2.46812e11 1.02859
\(339\) 3.29646e11 1.35566
\(340\) 0 0
\(341\) 1.63819e11 0.656100
\(342\) −6.10351e10 −0.241247
\(343\) −1.38413e10 −0.0539949
\(344\) −2.02366e11 −0.779157
\(345\) 0 0
\(346\) 4.66262e11 1.74899
\(347\) 5.02625e11 1.86107 0.930533 0.366208i \(-0.119344\pi\)
0.930533 + 0.366208i \(0.119344\pi\)
\(348\) 2.12043e11 0.775028
\(349\) 7.14710e10 0.257879 0.128939 0.991652i \(-0.458843\pi\)
0.128939 + 0.991652i \(0.458843\pi\)
\(350\) 0 0
\(351\) −1.27153e11 −0.447142
\(352\) −1.46319e11 −0.507995
\(353\) 2.55096e10 0.0874414 0.0437207 0.999044i \(-0.486079\pi\)
0.0437207 + 0.999044i \(0.486079\pi\)
\(354\) −2.75868e11 −0.933656
\(355\) 0 0
\(356\) −2.43812e11 −0.804508
\(357\) −1.46595e11 −0.477652
\(358\) −5.68277e11 −1.82846
\(359\) 1.49816e11 0.476029 0.238014 0.971262i \(-0.423503\pi\)
0.238014 + 0.971262i \(0.423503\pi\)
\(360\) 0 0
\(361\) −2.00146e11 −0.620246
\(362\) 3.81246e11 1.16685
\(363\) −1.97809e11 −0.597951
\(364\) −2.76289e10 −0.0824910
\(365\) 0 0
\(366\) −4.76736e10 −0.138871
\(367\) 4.59514e11 1.32221 0.661107 0.750291i \(-0.270087\pi\)
0.661107 + 0.750291i \(0.270087\pi\)
\(368\) −2.03650e11 −0.578854
\(369\) 6.36691e10 0.178776
\(370\) 0 0
\(371\) 1.37560e11 0.376971
\(372\) −2.02318e11 −0.547761
\(373\) 5.04230e11 1.34877 0.674386 0.738379i \(-0.264408\pi\)
0.674386 + 0.738379i \(0.264408\pi\)
\(374\) 3.76516e11 0.995086
\(375\) 0 0
\(376\) 1.58894e11 0.409979
\(377\) 2.84315e11 0.724875
\(378\) −2.02058e11 −0.509052
\(379\) −9.63136e10 −0.239779 −0.119889 0.992787i \(-0.538254\pi\)
−0.119889 + 0.992787i \(0.538254\pi\)
\(380\) 0 0
\(381\) −4.05234e11 −0.985242
\(382\) −5.10599e10 −0.122686
\(383\) −6.10835e11 −1.45054 −0.725269 0.688465i \(-0.758285\pi\)
−0.725269 + 0.688465i \(0.758285\pi\)
\(384\) −3.63793e11 −0.853814
\(385\) 0 0
\(386\) 3.46492e11 0.794421
\(387\) 1.87520e11 0.424960
\(388\) −3.27980e11 −0.734691
\(389\) −6.49908e11 −1.43906 −0.719530 0.694461i \(-0.755643\pi\)
−0.719530 + 0.694461i \(0.755643\pi\)
\(390\) 0 0
\(391\) 3.27372e11 0.708347
\(392\) 3.87395e10 0.0828641
\(393\) −2.14248e11 −0.453054
\(394\) 5.40785e11 1.13055
\(395\) 0 0
\(396\) 4.32718e10 0.0884253
\(397\) 3.67168e11 0.741836 0.370918 0.928666i \(-0.379043\pi\)
0.370918 + 0.928666i \(0.379043\pi\)
\(398\) −4.26007e11 −0.851026
\(399\) 9.74973e10 0.192582
\(400\) 0 0
\(401\) −9.73985e11 −1.88106 −0.940530 0.339712i \(-0.889670\pi\)
−0.940530 + 0.339712i \(0.889670\pi\)
\(402\) −7.94324e11 −1.51698
\(403\) −2.71275e11 −0.512315
\(404\) −3.97178e11 −0.741770
\(405\) 0 0
\(406\) 4.51801e11 0.825240
\(407\) −5.92121e10 −0.106964
\(408\) 4.10294e11 0.733035
\(409\) 3.58196e11 0.632944 0.316472 0.948602i \(-0.397502\pi\)
0.316472 + 0.948602i \(0.397502\pi\)
\(410\) 0 0
\(411\) −1.35996e11 −0.235091
\(412\) −2.93783e11 −0.502330
\(413\) −2.03928e11 −0.344907
\(414\) 1.08445e11 0.181430
\(415\) 0 0
\(416\) 2.42296e11 0.396668
\(417\) −5.67242e11 −0.918662
\(418\) −2.50413e11 −0.401203
\(419\) 4.84712e11 0.768283 0.384141 0.923274i \(-0.374498\pi\)
0.384141 + 0.923274i \(0.374498\pi\)
\(420\) 0 0
\(421\) 7.18298e11 1.11438 0.557192 0.830384i \(-0.311879\pi\)
0.557192 + 0.830384i \(0.311879\pi\)
\(422\) 1.09095e12 1.67456
\(423\) −1.47237e11 −0.223607
\(424\) −3.85007e11 −0.578525
\(425\) 0 0
\(426\) −2.01058e11 −0.295786
\(427\) −3.52415e10 −0.0513013
\(428\) −9.13782e10 −0.131627
\(429\) −1.25377e11 −0.178714
\(430\) 0 0
\(431\) 8.27297e11 1.15482 0.577409 0.816455i \(-0.304064\pi\)
0.577409 + 0.816455i \(0.304064\pi\)
\(432\) 9.84092e11 1.35944
\(433\) −8.73032e11 −1.19353 −0.596767 0.802415i \(-0.703548\pi\)
−0.596767 + 0.802415i \(0.703548\pi\)
\(434\) −4.31080e11 −0.583249
\(435\) 0 0
\(436\) −3.87657e11 −0.513757
\(437\) −2.17729e11 −0.285594
\(438\) −9.21665e11 −1.19657
\(439\) 7.15061e11 0.918867 0.459433 0.888212i \(-0.348053\pi\)
0.459433 + 0.888212i \(0.348053\pi\)
\(440\) 0 0
\(441\) −3.58974e10 −0.0451949
\(442\) −6.23488e11 −0.777012
\(443\) −5.89691e11 −0.727457 −0.363729 0.931505i \(-0.618496\pi\)
−0.363729 + 0.931505i \(0.618496\pi\)
\(444\) 7.31275e10 0.0893012
\(445\) 0 0
\(446\) 3.03308e10 0.0362975
\(447\) −9.99326e11 −1.18392
\(448\) −1.74759e10 −0.0204969
\(449\) −1.06477e12 −1.23636 −0.618181 0.786036i \(-0.712130\pi\)
−0.618181 + 0.786036i \(0.712130\pi\)
\(450\) 0 0
\(451\) 2.61220e11 0.297312
\(452\) 7.72964e11 0.871037
\(453\) 6.36730e11 0.710417
\(454\) −1.38493e12 −1.52995
\(455\) 0 0
\(456\) −2.72879e11 −0.295548
\(457\) −1.54296e12 −1.65475 −0.827374 0.561651i \(-0.810166\pi\)
−0.827374 + 0.561651i \(0.810166\pi\)
\(458\) 1.21177e12 1.28685
\(459\) −1.58195e12 −1.66355
\(460\) 0 0
\(461\) −8.38680e11 −0.864852 −0.432426 0.901669i \(-0.642342\pi\)
−0.432426 + 0.901669i \(0.642342\pi\)
\(462\) −1.99235e11 −0.203459
\(463\) 8.61819e11 0.871569 0.435784 0.900051i \(-0.356471\pi\)
0.435784 + 0.900051i \(0.356471\pi\)
\(464\) −2.20043e12 −2.20382
\(465\) 0 0
\(466\) −2.11503e11 −0.207768
\(467\) −1.46986e12 −1.43005 −0.715023 0.699101i \(-0.753584\pi\)
−0.715023 + 0.699101i \(0.753584\pi\)
\(468\) −7.16555e10 −0.0690468
\(469\) −5.87183e11 −0.560397
\(470\) 0 0
\(471\) 1.54408e11 0.144569
\(472\) 5.70762e11 0.529317
\(473\) 7.69353e11 0.706725
\(474\) −8.96797e11 −0.816003
\(475\) 0 0
\(476\) −3.43739e11 −0.306901
\(477\) 3.56761e11 0.315533
\(478\) 7.74245e11 0.678348
\(479\) 2.20227e12 1.91144 0.955721 0.294275i \(-0.0950782\pi\)
0.955721 + 0.294275i \(0.0950782\pi\)
\(480\) 0 0
\(481\) 9.80519e10 0.0835224
\(482\) 2.31282e12 1.95177
\(483\) −1.73230e11 −0.144831
\(484\) −4.63827e11 −0.384195
\(485\) 0 0
\(486\) −9.22132e11 −0.749773
\(487\) −1.30073e12 −1.04786 −0.523932 0.851760i \(-0.675536\pi\)
−0.523932 + 0.851760i \(0.675536\pi\)
\(488\) 9.86350e10 0.0787303
\(489\) −1.63672e11 −0.129445
\(490\) 0 0
\(491\) 6.88947e11 0.534957 0.267479 0.963564i \(-0.413810\pi\)
0.267479 + 0.963564i \(0.413810\pi\)
\(492\) −3.22609e11 −0.248218
\(493\) 3.53724e12 2.69683
\(494\) 4.14670e11 0.313279
\(495\) 0 0
\(496\) 2.09951e12 1.55758
\(497\) −1.48627e11 −0.109268
\(498\) −2.37091e11 −0.172736
\(499\) 1.76710e12 1.27588 0.637939 0.770087i \(-0.279787\pi\)
0.637939 + 0.770087i \(0.279787\pi\)
\(500\) 0 0
\(501\) −2.88323e10 −0.0204461
\(502\) −5.65088e11 −0.397145
\(503\) −2.63527e12 −1.83556 −0.917780 0.397089i \(-0.870020\pi\)
−0.917780 + 0.397089i \(0.870020\pi\)
\(504\) 1.00471e11 0.0693590
\(505\) 0 0
\(506\) 4.44927e11 0.301725
\(507\) −1.02251e12 −0.687274
\(508\) −9.50203e11 −0.633038
\(509\) 2.22151e12 1.46696 0.733479 0.679712i \(-0.237895\pi\)
0.733479 + 0.679712i \(0.237895\pi\)
\(510\) 0 0
\(511\) −6.81317e11 −0.442033
\(512\) −7.48685e11 −0.481487
\(513\) 1.05213e12 0.670718
\(514\) 7.91786e11 0.500350
\(515\) 0 0
\(516\) −9.50157e11 −0.590027
\(517\) −6.04080e11 −0.371867
\(518\) 1.55813e11 0.0950868
\(519\) −1.93166e12 −1.16863
\(520\) 0 0
\(521\) −1.87441e12 −1.11454 −0.557269 0.830332i \(-0.688151\pi\)
−0.557269 + 0.830332i \(0.688151\pi\)
\(522\) 1.17175e12 0.690743
\(523\) 1.58412e12 0.925828 0.462914 0.886403i \(-0.346804\pi\)
0.462914 + 0.886403i \(0.346804\pi\)
\(524\) −5.02375e11 −0.291096
\(525\) 0 0
\(526\) 3.89590e12 2.21908
\(527\) −3.37501e12 −1.90602
\(528\) 9.70343e11 0.543341
\(529\) −1.41430e12 −0.785219
\(530\) 0 0
\(531\) −5.28889e11 −0.288695
\(532\) 2.28614e11 0.123737
\(533\) −4.32565e11 −0.232156
\(534\) 2.91140e12 1.54941
\(535\) 0 0
\(536\) 1.64343e12 0.860021
\(537\) 2.35429e12 1.22173
\(538\) −1.62087e11 −0.0834120
\(539\) −1.47279e11 −0.0751609
\(540\) 0 0
\(541\) 2.79888e12 1.40474 0.702370 0.711812i \(-0.252125\pi\)
0.702370 + 0.711812i \(0.252125\pi\)
\(542\) 2.09135e12 1.04095
\(543\) −1.57945e12 −0.779660
\(544\) 3.01448e12 1.47577
\(545\) 0 0
\(546\) 3.29921e11 0.158870
\(547\) −1.16606e12 −0.556901 −0.278451 0.960451i \(-0.589821\pi\)
−0.278451 + 0.960451i \(0.589821\pi\)
\(548\) −3.18886e11 −0.151051
\(549\) −9.13988e10 −0.0429403
\(550\) 0 0
\(551\) −2.35255e12 −1.08732
\(552\) 4.84843e11 0.222267
\(553\) −6.62934e11 −0.301444
\(554\) 6.22594e11 0.280809
\(555\) 0 0
\(556\) −1.33008e12 −0.590259
\(557\) −3.29033e12 −1.44841 −0.724204 0.689586i \(-0.757793\pi\)
−0.724204 + 0.689586i \(0.757793\pi\)
\(558\) −1.11801e12 −0.488192
\(559\) −1.27400e12 −0.551845
\(560\) 0 0
\(561\) −1.55985e12 −0.664890
\(562\) 3.80962e12 1.61090
\(563\) 3.63871e12 1.52637 0.763186 0.646179i \(-0.223634\pi\)
0.763186 + 0.646179i \(0.223634\pi\)
\(564\) 7.46044e11 0.310462
\(565\) 0 0
\(566\) −4.79035e12 −1.96197
\(567\) 5.42815e11 0.220561
\(568\) 4.15981e11 0.167690
\(569\) 4.35009e12 1.73978 0.869888 0.493250i \(-0.164191\pi\)
0.869888 + 0.493250i \(0.164191\pi\)
\(570\) 0 0
\(571\) −4.91136e12 −1.93348 −0.966739 0.255767i \(-0.917672\pi\)
−0.966739 + 0.255767i \(0.917672\pi\)
\(572\) −2.93987e11 −0.114827
\(573\) 2.11534e11 0.0819756
\(574\) −6.87385e11 −0.264299
\(575\) 0 0
\(576\) −4.53238e10 −0.0171564
\(577\) 1.68758e12 0.633830 0.316915 0.948454i \(-0.397353\pi\)
0.316915 + 0.948454i \(0.397353\pi\)
\(578\) −4.43654e12 −1.65337
\(579\) −1.43547e12 −0.530811
\(580\) 0 0
\(581\) −1.75263e11 −0.0638114
\(582\) 3.91647e12 1.41495
\(583\) 1.46371e12 0.524744
\(584\) 1.90689e12 0.678373
\(585\) 0 0
\(586\) 2.96051e12 1.03711
\(587\) 4.82739e12 1.67819 0.839094 0.543987i \(-0.183086\pi\)
0.839094 + 0.543987i \(0.183086\pi\)
\(588\) 1.81891e11 0.0627499
\(589\) 2.24466e12 0.768478
\(590\) 0 0
\(591\) −2.24039e12 −0.755407
\(592\) −7.58865e11 −0.253932
\(593\) 1.12076e12 0.372193 0.186096 0.982532i \(-0.440416\pi\)
0.186096 + 0.982532i \(0.440416\pi\)
\(594\) −2.15001e12 −0.708600
\(595\) 0 0
\(596\) −2.34325e12 −0.760694
\(597\) 1.76489e12 0.568633
\(598\) −7.36773e11 −0.235602
\(599\) 1.35944e12 0.431460 0.215730 0.976453i \(-0.430787\pi\)
0.215730 + 0.976453i \(0.430787\pi\)
\(600\) 0 0
\(601\) 9.50421e11 0.297153 0.148577 0.988901i \(-0.452531\pi\)
0.148577 + 0.988901i \(0.452531\pi\)
\(602\) −2.02450e12 −0.628253
\(603\) −1.52286e12 −0.469064
\(604\) 1.49302e12 0.456457
\(605\) 0 0
\(606\) 4.74277e12 1.42858
\(607\) −3.35939e12 −1.00441 −0.502205 0.864749i \(-0.667478\pi\)
−0.502205 + 0.864749i \(0.667478\pi\)
\(608\) −2.00487e12 −0.595006
\(609\) −1.87175e12 −0.551403
\(610\) 0 0
\(611\) 1.00032e12 0.290372
\(612\) −8.91489e11 −0.256882
\(613\) 2.62257e12 0.750162 0.375081 0.926992i \(-0.377615\pi\)
0.375081 + 0.926992i \(0.377615\pi\)
\(614\) 4.87603e12 1.38455
\(615\) 0 0
\(616\) 4.12210e11 0.115347
\(617\) 3.35285e10 0.00931388 0.00465694 0.999989i \(-0.498518\pi\)
0.00465694 + 0.999989i \(0.498518\pi\)
\(618\) 3.50812e12 0.967444
\(619\) 5.51587e12 1.51010 0.755051 0.655666i \(-0.227612\pi\)
0.755051 + 0.655666i \(0.227612\pi\)
\(620\) 0 0
\(621\) −1.86939e12 −0.504414
\(622\) 2.96540e12 0.794377
\(623\) 2.15218e12 0.572377
\(624\) −1.60683e12 −0.424268
\(625\) 0 0
\(626\) −6.81962e12 −1.77491
\(627\) 1.03743e12 0.268073
\(628\) 3.62060e11 0.0928886
\(629\) 1.21989e12 0.310738
\(630\) 0 0
\(631\) 2.72456e12 0.684170 0.342085 0.939669i \(-0.388867\pi\)
0.342085 + 0.939669i \(0.388867\pi\)
\(632\) 1.85544e12 0.462616
\(633\) −4.51966e12 −1.11890
\(634\) 5.14572e12 1.26487
\(635\) 0 0
\(636\) −1.80770e12 −0.438096
\(637\) 2.43886e11 0.0586893
\(638\) 4.80742e12 1.14873
\(639\) −3.85463e11 −0.0914596
\(640\) 0 0
\(641\) 3.79136e11 0.0887022 0.0443511 0.999016i \(-0.485878\pi\)
0.0443511 + 0.999016i \(0.485878\pi\)
\(642\) 1.09116e12 0.253502
\(643\) 5.15446e12 1.18914 0.594571 0.804043i \(-0.297322\pi\)
0.594571 + 0.804043i \(0.297322\pi\)
\(644\) −4.06195e11 −0.0930568
\(645\) 0 0
\(646\) 5.15904e12 1.16553
\(647\) 2.68059e12 0.601397 0.300699 0.953719i \(-0.402780\pi\)
0.300699 + 0.953719i \(0.402780\pi\)
\(648\) −1.51925e12 −0.338487
\(649\) −2.16991e12 −0.480111
\(650\) 0 0
\(651\) 1.78590e12 0.389712
\(652\) −3.83783e11 −0.0831710
\(653\) 6.44986e12 1.38816 0.694082 0.719896i \(-0.255810\pi\)
0.694082 + 0.719896i \(0.255810\pi\)
\(654\) 4.62908e12 0.989451
\(655\) 0 0
\(656\) 3.34780e12 0.705818
\(657\) −1.76700e12 −0.369991
\(658\) 1.58960e12 0.330576
\(659\) −2.79549e12 −0.577396 −0.288698 0.957420i \(-0.593222\pi\)
−0.288698 + 0.957420i \(0.593222\pi\)
\(660\) 0 0
\(661\) −4.93691e11 −0.100589 −0.0502943 0.998734i \(-0.516016\pi\)
−0.0502943 + 0.998734i \(0.516016\pi\)
\(662\) 1.62893e12 0.329641
\(663\) 2.58302e12 0.519179
\(664\) 4.90533e11 0.0979291
\(665\) 0 0
\(666\) 4.04102e11 0.0795897
\(667\) 4.17995e12 0.817720
\(668\) −6.76068e10 −0.0131370
\(669\) −1.25656e11 −0.0242530
\(670\) 0 0
\(671\) −3.74989e11 −0.0714113
\(672\) −1.59513e12 −0.301740
\(673\) −2.83805e12 −0.533277 −0.266638 0.963797i \(-0.585913\pi\)
−0.266638 + 0.963797i \(0.585913\pi\)
\(674\) −9.52747e12 −1.77831
\(675\) 0 0
\(676\) −2.39760e12 −0.441587
\(677\) −7.71236e12 −1.41104 −0.705519 0.708691i \(-0.749286\pi\)
−0.705519 + 0.708691i \(0.749286\pi\)
\(678\) −9.23010e12 −1.67754
\(679\) 2.89515e12 0.522705
\(680\) 0 0
\(681\) 5.73757e12 1.02227
\(682\) −4.58693e12 −0.811882
\(683\) −1.07677e13 −1.89334 −0.946670 0.322204i \(-0.895576\pi\)
−0.946670 + 0.322204i \(0.895576\pi\)
\(684\) 5.92912e11 0.103571
\(685\) 0 0
\(686\) 3.87556e11 0.0668153
\(687\) −5.02021e12 −0.859837
\(688\) 9.86005e12 1.67776
\(689\) −2.42382e12 −0.409746
\(690\) 0 0
\(691\) 2.02298e12 0.337552 0.168776 0.985654i \(-0.446019\pi\)
0.168776 + 0.985654i \(0.446019\pi\)
\(692\) −4.52940e12 −0.750867
\(693\) −3.81969e11 −0.0629113
\(694\) −1.40735e13 −2.30295
\(695\) 0 0
\(696\) 5.23871e12 0.846219
\(697\) −5.38168e12 −0.863714
\(698\) −2.00119e12 −0.319109
\(699\) 8.76226e11 0.138825
\(700\) 0 0
\(701\) 8.66031e11 0.135457 0.0677286 0.997704i \(-0.478425\pi\)
0.0677286 + 0.997704i \(0.478425\pi\)
\(702\) 3.56029e12 0.553310
\(703\) −8.11328e11 −0.125285
\(704\) −1.85953e11 −0.0285317
\(705\) 0 0
\(706\) −7.14268e11 −0.108203
\(707\) 3.50597e12 0.527741
\(708\) 2.67986e12 0.400832
\(709\) −3.78834e12 −0.563042 −0.281521 0.959555i \(-0.590839\pi\)
−0.281521 + 0.959555i \(0.590839\pi\)
\(710\) 0 0
\(711\) −1.71932e12 −0.252315
\(712\) −6.02360e12 −0.878407
\(713\) −3.98824e12 −0.577934
\(714\) 4.10465e12 0.591064
\(715\) 0 0
\(716\) 5.52040e12 0.784986
\(717\) −3.20758e12 −0.453254
\(718\) −4.19485e12 −0.589056
\(719\) 8.16972e11 0.114006 0.0570029 0.998374i \(-0.481846\pi\)
0.0570029 + 0.998374i \(0.481846\pi\)
\(720\) 0 0
\(721\) 2.59328e12 0.357389
\(722\) 5.60408e12 0.767515
\(723\) −9.58166e12 −1.30412
\(724\) −3.70353e12 −0.500947
\(725\) 0 0
\(726\) 5.53864e12 0.739927
\(727\) −3.13227e12 −0.415867 −0.207933 0.978143i \(-0.566674\pi\)
−0.207933 + 0.978143i \(0.566674\pi\)
\(728\) −6.82595e11 −0.0900683
\(729\) 8.27017e12 1.08453
\(730\) 0 0
\(731\) −1.58503e13 −2.05309
\(732\) 4.63115e11 0.0596195
\(733\) 1.33197e13 1.70422 0.852112 0.523360i \(-0.175322\pi\)
0.852112 + 0.523360i \(0.175322\pi\)
\(734\) −1.28664e13 −1.63616
\(735\) 0 0
\(736\) 3.56220e12 0.447474
\(737\) −6.24796e12 −0.780072
\(738\) −1.78273e12 −0.221224
\(739\) −1.56702e13 −1.93274 −0.966371 0.257154i \(-0.917215\pi\)
−0.966371 + 0.257154i \(0.917215\pi\)
\(740\) 0 0
\(741\) −1.71792e12 −0.209325
\(742\) −3.85167e12 −0.466478
\(743\) −7.91108e12 −0.952327 −0.476164 0.879357i \(-0.657973\pi\)
−0.476164 + 0.879357i \(0.657973\pi\)
\(744\) −4.99844e12 −0.598076
\(745\) 0 0
\(746\) −1.41184e13 −1.66902
\(747\) −4.54546e11 −0.0534115
\(748\) −3.65758e12 −0.427205
\(749\) 8.06614e11 0.0936478
\(750\) 0 0
\(751\) −4.01514e12 −0.460597 −0.230299 0.973120i \(-0.573970\pi\)
−0.230299 + 0.973120i \(0.573970\pi\)
\(752\) −7.74191e12 −0.882811
\(753\) 2.34108e12 0.265362
\(754\) −7.96081e12 −0.896987
\(755\) 0 0
\(756\) 1.96285e12 0.218544
\(757\) −2.84075e12 −0.314414 −0.157207 0.987566i \(-0.550249\pi\)
−0.157207 + 0.987566i \(0.550249\pi\)
\(758\) 2.69678e12 0.296711
\(759\) −1.84327e12 −0.201605
\(760\) 0 0
\(761\) −7.10439e12 −0.767884 −0.383942 0.923357i \(-0.625434\pi\)
−0.383942 + 0.923357i \(0.625434\pi\)
\(762\) 1.13465e13 1.21918
\(763\) 3.42192e12 0.365519
\(764\) 4.96011e11 0.0526709
\(765\) 0 0
\(766\) 1.71034e13 1.79495
\(767\) 3.59325e12 0.374894
\(768\) 9.75390e12 1.01170
\(769\) −4.97052e12 −0.512546 −0.256273 0.966604i \(-0.582495\pi\)
−0.256273 + 0.966604i \(0.582495\pi\)
\(770\) 0 0
\(771\) −3.28026e12 −0.334321
\(772\) −3.36593e12 −0.341057
\(773\) −1.11565e13 −1.12388 −0.561939 0.827179i \(-0.689944\pi\)
−0.561939 + 0.827179i \(0.689944\pi\)
\(774\) −5.25056e12 −0.525861
\(775\) 0 0
\(776\) −8.10304e12 −0.802177
\(777\) −6.45512e11 −0.0635345
\(778\) 1.81974e13 1.78075
\(779\) 3.57925e12 0.348236
\(780\) 0 0
\(781\) −1.58147e12 −0.152101
\(782\) −9.16642e12 −0.876535
\(783\) −2.01987e13 −1.92041
\(784\) −1.88753e12 −0.178432
\(785\) 0 0
\(786\) 5.99894e12 0.560626
\(787\) 6.23763e12 0.579607 0.289803 0.957086i \(-0.406410\pi\)
0.289803 + 0.957086i \(0.406410\pi\)
\(788\) −5.25334e12 −0.485364
\(789\) −1.61402e13 −1.48273
\(790\) 0 0
\(791\) −6.82311e12 −0.619710
\(792\) 1.06907e12 0.0965477
\(793\) 6.20960e11 0.0557615
\(794\) −1.02807e13 −0.917975
\(795\) 0 0
\(796\) 4.13835e12 0.365358
\(797\) 1.83799e12 0.161355 0.0806773 0.996740i \(-0.474292\pi\)
0.0806773 + 0.996740i \(0.474292\pi\)
\(798\) −2.72992e12 −0.238307
\(799\) 1.24453e13 1.08030
\(800\) 0 0
\(801\) 5.58169e12 0.479092
\(802\) 2.72716e13 2.32769
\(803\) −7.24960e12 −0.615310
\(804\) 7.71629e12 0.651263
\(805\) 0 0
\(806\) 7.59570e12 0.633957
\(807\) 6.71504e11 0.0557337
\(808\) −9.81263e12 −0.809906
\(809\) 1.92205e13 1.57760 0.788801 0.614649i \(-0.210702\pi\)
0.788801 + 0.614649i \(0.210702\pi\)
\(810\) 0 0
\(811\) −1.70316e13 −1.38249 −0.691246 0.722620i \(-0.742938\pi\)
−0.691246 + 0.722620i \(0.742938\pi\)
\(812\) −4.38892e12 −0.354288
\(813\) −8.66416e12 −0.695535
\(814\) 1.65794e12 0.132361
\(815\) 0 0
\(816\) −1.99911e13 −1.57845
\(817\) 1.05417e13 0.827774
\(818\) −1.00295e13 −0.783228
\(819\) 6.32518e11 0.0491242
\(820\) 0 0
\(821\) 1.33485e13 1.02539 0.512694 0.858572i \(-0.328648\pi\)
0.512694 + 0.858572i \(0.328648\pi\)
\(822\) 3.80788e12 0.290911
\(823\) 1.72858e13 1.31338 0.656689 0.754161i \(-0.271956\pi\)
0.656689 + 0.754161i \(0.271956\pi\)
\(824\) −7.25817e12 −0.548473
\(825\) 0 0
\(826\) 5.71000e12 0.426801
\(827\) −1.64651e13 −1.22402 −0.612012 0.790849i \(-0.709639\pi\)
−0.612012 + 0.790849i \(0.709639\pi\)
\(828\) −1.05347e12 −0.0778906
\(829\) −5.91786e12 −0.435181 −0.217590 0.976040i \(-0.569820\pi\)
−0.217590 + 0.976040i \(0.569820\pi\)
\(830\) 0 0
\(831\) −2.57932e12 −0.187629
\(832\) 3.07928e11 0.0222789
\(833\) 3.03426e12 0.218348
\(834\) 1.58828e13 1.13679
\(835\) 0 0
\(836\) 2.43259e12 0.172242
\(837\) 1.92723e13 1.35728
\(838\) −1.35719e13 −0.950701
\(839\) 2.40380e13 1.67483 0.837414 0.546569i \(-0.184066\pi\)
0.837414 + 0.546569i \(0.184066\pi\)
\(840\) 0 0
\(841\) 3.06570e13 2.11324
\(842\) −2.01123e13 −1.37898
\(843\) −1.57827e13 −1.07636
\(844\) −1.05978e13 −0.718913
\(845\) 0 0
\(846\) 4.12263e12 0.276699
\(847\) 4.09430e12 0.273341
\(848\) 1.87590e13 1.24574
\(849\) 1.98457e13 1.31094
\(850\) 0 0
\(851\) 1.44154e12 0.0942203
\(852\) 1.95313e12 0.126985
\(853\) −2.26446e13 −1.46452 −0.732258 0.681027i \(-0.761534\pi\)
−0.732258 + 0.681027i \(0.761534\pi\)
\(854\) 9.86761e11 0.0634821
\(855\) 0 0
\(856\) −2.25758e12 −0.143718
\(857\) 1.20223e13 0.761334 0.380667 0.924712i \(-0.375694\pi\)
0.380667 + 0.924712i \(0.375694\pi\)
\(858\) 3.51055e12 0.221148
\(859\) −9.44258e12 −0.591727 −0.295864 0.955230i \(-0.595607\pi\)
−0.295864 + 0.955230i \(0.595607\pi\)
\(860\) 0 0
\(861\) 2.84774e12 0.176598
\(862\) −2.31643e13 −1.42901
\(863\) −8.80380e12 −0.540283 −0.270142 0.962821i \(-0.587071\pi\)
−0.270142 + 0.962821i \(0.587071\pi\)
\(864\) −1.72135e13 −1.05089
\(865\) 0 0
\(866\) 2.44449e13 1.47692
\(867\) 1.83800e13 1.10474
\(868\) 4.18763e12 0.250397
\(869\) −7.05399e12 −0.419610
\(870\) 0 0
\(871\) 1.03463e13 0.609119
\(872\) −9.57740e12 −0.560949
\(873\) 7.50858e12 0.437516
\(874\) 6.09641e12 0.353405
\(875\) 0 0
\(876\) 8.95331e12 0.513707
\(877\) −6.73513e12 −0.384457 −0.192229 0.981350i \(-0.561571\pi\)
−0.192229 + 0.981350i \(0.561571\pi\)
\(878\) −2.00217e13 −1.13704
\(879\) −1.22650e13 −0.692973
\(880\) 0 0
\(881\) −7.58474e12 −0.424179 −0.212089 0.977250i \(-0.568027\pi\)
−0.212089 + 0.977250i \(0.568027\pi\)
\(882\) 1.00513e12 0.0559258
\(883\) 1.78234e13 0.986662 0.493331 0.869842i \(-0.335779\pi\)
0.493331 + 0.869842i \(0.335779\pi\)
\(884\) 6.05674e12 0.333583
\(885\) 0 0
\(886\) 1.65113e13 0.900182
\(887\) 2.45177e13 1.32991 0.664956 0.746882i \(-0.268450\pi\)
0.664956 + 0.746882i \(0.268450\pi\)
\(888\) 1.80668e12 0.0975041
\(889\) 8.38764e12 0.450383
\(890\) 0 0
\(891\) 5.77586e12 0.307020
\(892\) −2.94642e11 −0.0155830
\(893\) −8.27714e12 −0.435561
\(894\) 2.79811e13 1.46503
\(895\) 0 0
\(896\) 7.52988e12 0.390303
\(897\) 3.05234e12 0.157423
\(898\) 2.98134e13 1.52992
\(899\) −4.30928e13 −2.20032
\(900\) 0 0
\(901\) −3.01555e13 −1.52442
\(902\) −7.31416e12 −0.367905
\(903\) 8.38723e12 0.419782
\(904\) 1.90968e13 0.951047
\(905\) 0 0
\(906\) −1.78284e13 −0.879096
\(907\) 8.14231e12 0.399498 0.199749 0.979847i \(-0.435987\pi\)
0.199749 + 0.979847i \(0.435987\pi\)
\(908\) 1.34536e13 0.656830
\(909\) 9.09275e12 0.441731
\(910\) 0 0
\(911\) −1.26965e13 −0.610733 −0.305367 0.952235i \(-0.598779\pi\)
−0.305367 + 0.952235i \(0.598779\pi\)
\(912\) 1.32957e13 0.636406
\(913\) −1.86490e12 −0.0888254
\(914\) 4.32029e13 2.04765
\(915\) 0 0
\(916\) −1.17715e13 −0.552463
\(917\) 4.43456e12 0.207104
\(918\) 4.42947e13 2.05854
\(919\) −2.53575e13 −1.17270 −0.586350 0.810058i \(-0.699436\pi\)
−0.586350 + 0.810058i \(0.699436\pi\)
\(920\) 0 0
\(921\) −2.02007e13 −0.925120
\(922\) 2.34830e13 1.07020
\(923\) 2.61882e12 0.118768
\(924\) 1.93542e12 0.0873478
\(925\) 0 0
\(926\) −2.41309e13 −1.07851
\(927\) 6.72569e12 0.299143
\(928\) 3.84895e13 1.70363
\(929\) 1.89611e13 0.835203 0.417602 0.908630i \(-0.362871\pi\)
0.417602 + 0.908630i \(0.362871\pi\)
\(930\) 0 0
\(931\) −2.01803e12 −0.0880346
\(932\) 2.05460e12 0.0891980
\(933\) −1.22852e13 −0.530782
\(934\) 4.11561e13 1.76959
\(935\) 0 0
\(936\) −1.77031e12 −0.0753891
\(937\) −8.65559e12 −0.366833 −0.183416 0.983035i \(-0.558716\pi\)
−0.183416 + 0.983035i \(0.558716\pi\)
\(938\) 1.64411e13 0.693456
\(939\) 2.82527e13 1.18595
\(940\) 0 0
\(941\) 3.42336e13 1.42331 0.711654 0.702530i \(-0.247946\pi\)
0.711654 + 0.702530i \(0.247946\pi\)
\(942\) −4.32343e12 −0.178895
\(943\) −6.35950e12 −0.261891
\(944\) −2.78097e13 −1.13978
\(945\) 0 0
\(946\) −2.15419e13 −0.874527
\(947\) −2.38597e13 −0.964030 −0.482015 0.876163i \(-0.660095\pi\)
−0.482015 + 0.876163i \(0.660095\pi\)
\(948\) 8.71174e12 0.350322
\(949\) 1.20049e13 0.480464
\(950\) 0 0
\(951\) −2.13180e13 −0.845150
\(952\) −8.49238e12 −0.335091
\(953\) 4.83481e13 1.89872 0.949360 0.314189i \(-0.101733\pi\)
0.949360 + 0.314189i \(0.101733\pi\)
\(954\) −9.98932e12 −0.390452
\(955\) 0 0
\(956\) −7.52123e12 −0.291225
\(957\) −1.99165e13 −0.767553
\(958\) −6.16636e13 −2.36529
\(959\) 2.81488e12 0.107467
\(960\) 0 0
\(961\) 1.46768e13 0.555106
\(962\) −2.74545e12 −0.103354
\(963\) 2.09196e12 0.0783852
\(964\) −2.24674e13 −0.837925
\(965\) 0 0
\(966\) 4.85045e12 0.179219
\(967\) 2.28025e13 0.838617 0.419308 0.907844i \(-0.362273\pi\)
0.419308 + 0.907844i \(0.362273\pi\)
\(968\) −1.14593e13 −0.419486
\(969\) −2.13731e13 −0.778774
\(970\) 0 0
\(971\) 7.62385e12 0.275225 0.137612 0.990486i \(-0.456057\pi\)
0.137612 + 0.990486i \(0.456057\pi\)
\(972\) 8.95785e12 0.321889
\(973\) 1.17409e13 0.419947
\(974\) 3.64203e13 1.29667
\(975\) 0 0
\(976\) −4.80587e12 −0.169531
\(977\) −2.97018e13 −1.04293 −0.521467 0.853272i \(-0.674615\pi\)
−0.521467 + 0.853272i \(0.674615\pi\)
\(978\) 4.58282e12 0.160180
\(979\) 2.29004e13 0.796749
\(980\) 0 0
\(981\) 8.87477e12 0.305947
\(982\) −1.92905e13 −0.661976
\(983\) 1.08292e13 0.369917 0.184958 0.982746i \(-0.440785\pi\)
0.184958 + 0.982746i \(0.440785\pi\)
\(984\) −7.97034e12 −0.271019
\(985\) 0 0
\(986\) −9.90428e13 −3.33716
\(987\) −6.58549e12 −0.220882
\(988\) −4.02822e12 −0.134495
\(989\) −1.87302e13 −0.622528
\(990\) 0 0
\(991\) 5.29514e12 0.174400 0.0871999 0.996191i \(-0.472208\pi\)
0.0871999 + 0.996191i \(0.472208\pi\)
\(992\) −3.67242e13 −1.20406
\(993\) −6.74842e12 −0.220257
\(994\) 4.16154e12 0.135212
\(995\) 0 0
\(996\) 2.30317e12 0.0741581
\(997\) −1.64214e13 −0.526360 −0.263180 0.964747i \(-0.584771\pi\)
−0.263180 + 0.964747i \(0.584771\pi\)
\(998\) −4.94788e13 −1.57882
\(999\) −6.96593e12 −0.221276
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.10.a.a.1.1 1
5.2 odd 4 175.10.b.a.99.1 2
5.3 odd 4 175.10.b.a.99.2 2
5.4 even 2 35.10.a.a.1.1 1
15.14 odd 2 315.10.a.a.1.1 1
35.34 odd 2 245.10.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.10.a.a.1.1 1 5.4 even 2
175.10.a.a.1.1 1 1.1 even 1 trivial
175.10.b.a.99.1 2 5.2 odd 4
175.10.b.a.99.2 2 5.3 odd 4
245.10.a.b.1.1 1 35.34 odd 2
315.10.a.a.1.1 1 15.14 odd 2