Properties

Label 175.10.a.a
Level $175$
Weight $10$
Character orbit 175.a
Self dual yes
Analytic conductor $90.131$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,10,Mod(1,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(90.1312713287\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 28 q^{2} + 116 q^{3} + 272 q^{4} - 3248 q^{6} - 2401 q^{7} + 6720 q^{8} - 6227 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 28 q^{2} + 116 q^{3} + 272 q^{4} - 3248 q^{6} - 2401 q^{7} + 6720 q^{8} - 6227 q^{9} - 25548 q^{11} + 31552 q^{12} + 42306 q^{13} + 67228 q^{14} - 327424 q^{16} + 526342 q^{17} + 174356 q^{18} - 350060 q^{19} - 278516 q^{21} + 715344 q^{22} + 621976 q^{23} + 779520 q^{24} - 1184568 q^{26} - 3005560 q^{27} - 653072 q^{28} + 6720430 q^{29} - 6412208 q^{31} + 5727232 q^{32} - 2963568 q^{33} - 14737576 q^{34} - 1693744 q^{36} + 2317682 q^{37} + 9801680 q^{38} + 4907496 q^{39} - 10224678 q^{41} + 7798448 q^{42} - 30114004 q^{43} - 6949056 q^{44} - 17415328 q^{46} + 23644912 q^{47} - 37981184 q^{48} + 5764801 q^{49} + 61055672 q^{51} + 11507232 q^{52} - 57292654 q^{53} + 84155680 q^{54} - 16134720 q^{56} - 40606960 q^{57} - 188172040 q^{58} + 84934780 q^{59} + 14677822 q^{61} + 179541824 q^{62} + 14951027 q^{63} + 7278592 q^{64} + 82979904 q^{66} + 244557812 q^{67} + 143165024 q^{68} + 72149216 q^{69} + 61901952 q^{71} - 41845440 q^{72} + 283763726 q^{73} - 64895096 q^{74} - 95216320 q^{76} + 61340748 q^{77} - 137409888 q^{78} + 276107480 q^{79} - 226078919 q^{81} + 286290984 q^{82} + 72995956 q^{83} - 75756352 q^{84} + 843192112 q^{86} + 779569880 q^{87} - 171682560 q^{88} - 896368470 q^{89} - 101576706 q^{91} + 169177472 q^{92} - 743816128 q^{93} - 662057536 q^{94} + 664358912 q^{96} - 1205809578 q^{97} - 161414428 q^{98} + 159087396 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−28.0000 116.000 272.000 0 −3248.00 −2401.00 6720.00 −6227.00 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 175.10.a.a 1
5.b even 2 1 35.10.a.a 1
5.c odd 4 2 175.10.b.a 2
15.d odd 2 1 315.10.a.a 1
35.c odd 2 1 245.10.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.10.a.a 1 5.b even 2 1
175.10.a.a 1 1.a even 1 1 trivial
175.10.b.a 2 5.c odd 4 2
245.10.a.b 1 35.c odd 2 1
315.10.a.a 1 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} + 28 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(175))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 28 \) Copy content Toggle raw display
$3$ \( T - 116 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T + 2401 \) Copy content Toggle raw display
$11$ \( T + 25548 \) Copy content Toggle raw display
$13$ \( T - 42306 \) Copy content Toggle raw display
$17$ \( T - 526342 \) Copy content Toggle raw display
$19$ \( T + 350060 \) Copy content Toggle raw display
$23$ \( T - 621976 \) Copy content Toggle raw display
$29$ \( T - 6720430 \) Copy content Toggle raw display
$31$ \( T + 6412208 \) Copy content Toggle raw display
$37$ \( T - 2317682 \) Copy content Toggle raw display
$41$ \( T + 10224678 \) Copy content Toggle raw display
$43$ \( T + 30114004 \) Copy content Toggle raw display
$47$ \( T - 23644912 \) Copy content Toggle raw display
$53$ \( T + 57292654 \) Copy content Toggle raw display
$59$ \( T - 84934780 \) Copy content Toggle raw display
$61$ \( T - 14677822 \) Copy content Toggle raw display
$67$ \( T - 244557812 \) Copy content Toggle raw display
$71$ \( T - 61901952 \) Copy content Toggle raw display
$73$ \( T - 283763726 \) Copy content Toggle raw display
$79$ \( T - 276107480 \) Copy content Toggle raw display
$83$ \( T - 72995956 \) Copy content Toggle raw display
$89$ \( T + 896368470 \) Copy content Toggle raw display
$97$ \( T + 1205809578 \) Copy content Toggle raw display
show more
show less