Properties

Label 175.1.c.a
Level $175$
Weight $1$
Character orbit 175.c
Analytic conductor $0.087$
Analytic rank $0$
Dimension $2$
Projective image $D_{3}$
CM discriminant -7
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,1,Mod(174,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.174");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 175.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.0873363772108\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - i q^{2} + i q^{7} - i q^{8} - q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q - i q^{2} + i q^{7} - i q^{8} - q^{9} - q^{11} + q^{14} - q^{16} + i q^{18} + i q^{22} + i q^{23} + q^{29} - i q^{37} + i q^{43} + q^{46} - q^{49} - 2 i q^{53} + q^{56} - i q^{58} - i q^{63} - q^{64} - i q^{67} - q^{71} + i q^{72} - q^{74} - i q^{77} + q^{79} + q^{81} + q^{86} + i q^{88} + i q^{98} + q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{9} - 2 q^{11} + 2 q^{14} - 2 q^{16} + 2 q^{29} + 2 q^{46} - 2 q^{49} + 2 q^{56} - 2 q^{64} - 2 q^{71} - 2 q^{74} + 2 q^{79} + 2 q^{81} + 2 q^{86} + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
174.1
1.00000i
1.00000i
1.00000i 0 0 0 0 1.00000i 1.00000i −1.00000 0
174.2 1.00000i 0 0 0 0 1.00000i 1.00000i −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by \(\Q(\sqrt{-7}) \)
5.b even 2 1 inner
35.c odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 175.1.c.a 2
3.b odd 2 1 1575.1.e.a 2
4.b odd 2 1 2800.1.p.a 2
5.b even 2 1 inner 175.1.c.a 2
5.c odd 4 1 175.1.d.a 1
5.c odd 4 1 175.1.d.b yes 1
7.b odd 2 1 CM 175.1.c.a 2
7.c even 3 2 1225.1.j.a 4
7.d odd 6 2 1225.1.j.a 4
15.d odd 2 1 1575.1.e.a 2
15.e even 4 1 1575.1.h.a 1
15.e even 4 1 1575.1.h.c 1
20.d odd 2 1 2800.1.p.a 2
20.e even 4 1 2800.1.f.a 1
20.e even 4 1 2800.1.f.b 1
21.c even 2 1 1575.1.e.a 2
28.d even 2 1 2800.1.p.a 2
35.c odd 2 1 inner 175.1.c.a 2
35.f even 4 1 175.1.d.a 1
35.f even 4 1 175.1.d.b yes 1
35.i odd 6 2 1225.1.j.a 4
35.j even 6 2 1225.1.j.a 4
35.k even 12 2 1225.1.i.a 2
35.k even 12 2 1225.1.i.b 2
35.l odd 12 2 1225.1.i.a 2
35.l odd 12 2 1225.1.i.b 2
105.g even 2 1 1575.1.e.a 2
105.k odd 4 1 1575.1.h.a 1
105.k odd 4 1 1575.1.h.c 1
140.c even 2 1 2800.1.p.a 2
140.j odd 4 1 2800.1.f.a 1
140.j odd 4 1 2800.1.f.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
175.1.c.a 2 1.a even 1 1 trivial
175.1.c.a 2 5.b even 2 1 inner
175.1.c.a 2 7.b odd 2 1 CM
175.1.c.a 2 35.c odd 2 1 inner
175.1.d.a 1 5.c odd 4 1
175.1.d.a 1 35.f even 4 1
175.1.d.b yes 1 5.c odd 4 1
175.1.d.b yes 1 35.f even 4 1
1225.1.i.a 2 35.k even 12 2
1225.1.i.a 2 35.l odd 12 2
1225.1.i.b 2 35.k even 12 2
1225.1.i.b 2 35.l odd 12 2
1225.1.j.a 4 7.c even 3 2
1225.1.j.a 4 7.d odd 6 2
1225.1.j.a 4 35.i odd 6 2
1225.1.j.a 4 35.j even 6 2
1575.1.e.a 2 3.b odd 2 1
1575.1.e.a 2 15.d odd 2 1
1575.1.e.a 2 21.c even 2 1
1575.1.e.a 2 105.g even 2 1
1575.1.h.a 1 15.e even 4 1
1575.1.h.a 1 105.k odd 4 1
1575.1.h.c 1 15.e even 4 1
1575.1.h.c 1 105.k odd 4 1
2800.1.f.a 1 20.e even 4 1
2800.1.f.a 1 140.j odd 4 1
2800.1.f.b 1 20.e even 4 1
2800.1.f.b 1 140.j odd 4 1
2800.1.p.a 2 4.b odd 2 1
2800.1.p.a 2 20.d odd 2 1
2800.1.p.a 2 28.d even 2 1
2800.1.p.a 2 140.c even 2 1

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(175, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 1 \) Copy content Toggle raw display
$11$ \( (T + 1)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 1 \) Copy content Toggle raw display
$29$ \( (T - 1)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 1 \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 1 \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 4 \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 1 \) Copy content Toggle raw display
$71$ \( (T + 1)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( (T - 1)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less