Properties

Label 1740.2.a.g.1.1
Level $1740$
Weight $2$
Character 1740.1
Self dual yes
Analytic conductor $13.894$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1740,2,Mod(1,1740)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1740, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1740.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1740 = 2^{2} \cdot 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1740.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.8939699517\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1740.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +1.00000 q^{5} -3.00000 q^{7} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{3} +1.00000 q^{5} -3.00000 q^{7} +1.00000 q^{9} -3.00000 q^{11} +1.00000 q^{13} +1.00000 q^{15} -3.00000 q^{17} -6.00000 q^{19} -3.00000 q^{21} -4.00000 q^{23} +1.00000 q^{25} +1.00000 q^{27} +1.00000 q^{29} -4.00000 q^{31} -3.00000 q^{33} -3.00000 q^{35} -4.00000 q^{37} +1.00000 q^{39} +2.00000 q^{41} +4.00000 q^{43} +1.00000 q^{45} -3.00000 q^{47} +2.00000 q^{49} -3.00000 q^{51} +6.00000 q^{53} -3.00000 q^{55} -6.00000 q^{57} -10.0000 q^{59} -4.00000 q^{61} -3.00000 q^{63} +1.00000 q^{65} -9.00000 q^{67} -4.00000 q^{69} -12.0000 q^{71} +4.00000 q^{73} +1.00000 q^{75} +9.00000 q^{77} +14.0000 q^{79} +1.00000 q^{81} +6.00000 q^{83} -3.00000 q^{85} +1.00000 q^{87} +7.00000 q^{89} -3.00000 q^{91} -4.00000 q^{93} -6.00000 q^{95} -14.0000 q^{97} -3.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −3.00000 −1.13389 −0.566947 0.823754i \(-0.691875\pi\)
−0.566947 + 0.823754i \(0.691875\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −3.00000 −0.904534 −0.452267 0.891883i \(-0.649385\pi\)
−0.452267 + 0.891883i \(0.649385\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350 0.138675 0.990338i \(-0.455716\pi\)
0.138675 + 0.990338i \(0.455716\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) 0 0
\(17\) −3.00000 −0.727607 −0.363803 0.931476i \(-0.618522\pi\)
−0.363803 + 0.931476i \(0.618522\pi\)
\(18\) 0 0
\(19\) −6.00000 −1.37649 −0.688247 0.725476i \(-0.741620\pi\)
−0.688247 + 0.725476i \(0.741620\pi\)
\(20\) 0 0
\(21\) −3.00000 −0.654654
\(22\) 0 0
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 0 0
\(33\) −3.00000 −0.522233
\(34\) 0 0
\(35\) −3.00000 −0.507093
\(36\) 0 0
\(37\) −4.00000 −0.657596 −0.328798 0.944400i \(-0.606644\pi\)
−0.328798 + 0.944400i \(0.606644\pi\)
\(38\) 0 0
\(39\) 1.00000 0.160128
\(40\) 0 0
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) 1.00000 0.149071
\(46\) 0 0
\(47\) −3.00000 −0.437595 −0.218797 0.975770i \(-0.570213\pi\)
−0.218797 + 0.975770i \(0.570213\pi\)
\(48\) 0 0
\(49\) 2.00000 0.285714
\(50\) 0 0
\(51\) −3.00000 −0.420084
\(52\) 0 0
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) −3.00000 −0.404520
\(56\) 0 0
\(57\) −6.00000 −0.794719
\(58\) 0 0
\(59\) −10.0000 −1.30189 −0.650945 0.759125i \(-0.725627\pi\)
−0.650945 + 0.759125i \(0.725627\pi\)
\(60\) 0 0
\(61\) −4.00000 −0.512148 −0.256074 0.966657i \(-0.582429\pi\)
−0.256074 + 0.966657i \(0.582429\pi\)
\(62\) 0 0
\(63\) −3.00000 −0.377964
\(64\) 0 0
\(65\) 1.00000 0.124035
\(66\) 0 0
\(67\) −9.00000 −1.09952 −0.549762 0.835321i \(-0.685282\pi\)
−0.549762 + 0.835321i \(0.685282\pi\)
\(68\) 0 0
\(69\) −4.00000 −0.481543
\(70\) 0 0
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 0 0
\(73\) 4.00000 0.468165 0.234082 0.972217i \(-0.424791\pi\)
0.234082 + 0.972217i \(0.424791\pi\)
\(74\) 0 0
\(75\) 1.00000 0.115470
\(76\) 0 0
\(77\) 9.00000 1.02565
\(78\) 0 0
\(79\) 14.0000 1.57512 0.787562 0.616236i \(-0.211343\pi\)
0.787562 + 0.616236i \(0.211343\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) 0 0
\(85\) −3.00000 −0.325396
\(86\) 0 0
\(87\) 1.00000 0.107211
\(88\) 0 0
\(89\) 7.00000 0.741999 0.370999 0.928633i \(-0.379015\pi\)
0.370999 + 0.928633i \(0.379015\pi\)
\(90\) 0 0
\(91\) −3.00000 −0.314485
\(92\) 0 0
\(93\) −4.00000 −0.414781
\(94\) 0 0
\(95\) −6.00000 −0.615587
\(96\) 0 0
\(97\) −14.0000 −1.42148 −0.710742 0.703452i \(-0.751641\pi\)
−0.710742 + 0.703452i \(0.751641\pi\)
\(98\) 0 0
\(99\) −3.00000 −0.301511
\(100\) 0 0
\(101\) −7.00000 −0.696526 −0.348263 0.937397i \(-0.613228\pi\)
−0.348263 + 0.937397i \(0.613228\pi\)
\(102\) 0 0
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) 0 0
\(105\) −3.00000 −0.292770
\(106\) 0 0
\(107\) 10.0000 0.966736 0.483368 0.875417i \(-0.339413\pi\)
0.483368 + 0.875417i \(0.339413\pi\)
\(108\) 0 0
\(109\) −5.00000 −0.478913 −0.239457 0.970907i \(-0.576969\pi\)
−0.239457 + 0.970907i \(0.576969\pi\)
\(110\) 0 0
\(111\) −4.00000 −0.379663
\(112\) 0 0
\(113\) −7.00000 −0.658505 −0.329252 0.944242i \(-0.606797\pi\)
−0.329252 + 0.944242i \(0.606797\pi\)
\(114\) 0 0
\(115\) −4.00000 −0.373002
\(116\) 0 0
\(117\) 1.00000 0.0924500
\(118\) 0 0
\(119\) 9.00000 0.825029
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 0 0
\(123\) 2.00000 0.180334
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 10.0000 0.887357 0.443678 0.896186i \(-0.353673\pi\)
0.443678 + 0.896186i \(0.353673\pi\)
\(128\) 0 0
\(129\) 4.00000 0.352180
\(130\) 0 0
\(131\) 13.0000 1.13582 0.567908 0.823092i \(-0.307753\pi\)
0.567908 + 0.823092i \(0.307753\pi\)
\(132\) 0 0
\(133\) 18.0000 1.56080
\(134\) 0 0
\(135\) 1.00000 0.0860663
\(136\) 0 0
\(137\) 22.0000 1.87959 0.939793 0.341743i \(-0.111017\pi\)
0.939793 + 0.341743i \(0.111017\pi\)
\(138\) 0 0
\(139\) −19.0000 −1.61156 −0.805779 0.592216i \(-0.798253\pi\)
−0.805779 + 0.592216i \(0.798253\pi\)
\(140\) 0 0
\(141\) −3.00000 −0.252646
\(142\) 0 0
\(143\) −3.00000 −0.250873
\(144\) 0 0
\(145\) 1.00000 0.0830455
\(146\) 0 0
\(147\) 2.00000 0.164957
\(148\) 0 0
\(149\) 12.0000 0.983078 0.491539 0.870855i \(-0.336434\pi\)
0.491539 + 0.870855i \(0.336434\pi\)
\(150\) 0 0
\(151\) −20.0000 −1.62758 −0.813788 0.581161i \(-0.802599\pi\)
−0.813788 + 0.581161i \(0.802599\pi\)
\(152\) 0 0
\(153\) −3.00000 −0.242536
\(154\) 0 0
\(155\) −4.00000 −0.321288
\(156\) 0 0
\(157\) 6.00000 0.478852 0.239426 0.970915i \(-0.423041\pi\)
0.239426 + 0.970915i \(0.423041\pi\)
\(158\) 0 0
\(159\) 6.00000 0.475831
\(160\) 0 0
\(161\) 12.0000 0.945732
\(162\) 0 0
\(163\) 2.00000 0.156652 0.0783260 0.996928i \(-0.475042\pi\)
0.0783260 + 0.996928i \(0.475042\pi\)
\(164\) 0 0
\(165\) −3.00000 −0.233550
\(166\) 0 0
\(167\) −8.00000 −0.619059 −0.309529 0.950890i \(-0.600171\pi\)
−0.309529 + 0.950890i \(0.600171\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) −6.00000 −0.458831
\(172\) 0 0
\(173\) −16.0000 −1.21646 −0.608229 0.793762i \(-0.708120\pi\)
−0.608229 + 0.793762i \(0.708120\pi\)
\(174\) 0 0
\(175\) −3.00000 −0.226779
\(176\) 0 0
\(177\) −10.0000 −0.751646
\(178\) 0 0
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) −7.00000 −0.520306 −0.260153 0.965567i \(-0.583773\pi\)
−0.260153 + 0.965567i \(0.583773\pi\)
\(182\) 0 0
\(183\) −4.00000 −0.295689
\(184\) 0 0
\(185\) −4.00000 −0.294086
\(186\) 0 0
\(187\) 9.00000 0.658145
\(188\) 0 0
\(189\) −3.00000 −0.218218
\(190\) 0 0
\(191\) 16.0000 1.15772 0.578860 0.815427i \(-0.303498\pi\)
0.578860 + 0.815427i \(0.303498\pi\)
\(192\) 0 0
\(193\) −22.0000 −1.58359 −0.791797 0.610784i \(-0.790854\pi\)
−0.791797 + 0.610784i \(0.790854\pi\)
\(194\) 0 0
\(195\) 1.00000 0.0716115
\(196\) 0 0
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 0 0
\(199\) −1.00000 −0.0708881 −0.0354441 0.999372i \(-0.511285\pi\)
−0.0354441 + 0.999372i \(0.511285\pi\)
\(200\) 0 0
\(201\) −9.00000 −0.634811
\(202\) 0 0
\(203\) −3.00000 −0.210559
\(204\) 0 0
\(205\) 2.00000 0.139686
\(206\) 0 0
\(207\) −4.00000 −0.278019
\(208\) 0 0
\(209\) 18.0000 1.24509
\(210\) 0 0
\(211\) −26.0000 −1.78991 −0.894957 0.446153i \(-0.852794\pi\)
−0.894957 + 0.446153i \(0.852794\pi\)
\(212\) 0 0
\(213\) −12.0000 −0.822226
\(214\) 0 0
\(215\) 4.00000 0.272798
\(216\) 0 0
\(217\) 12.0000 0.814613
\(218\) 0 0
\(219\) 4.00000 0.270295
\(220\) 0 0
\(221\) −3.00000 −0.201802
\(222\) 0 0
\(223\) −9.00000 −0.602685 −0.301342 0.953516i \(-0.597435\pi\)
−0.301342 + 0.953516i \(0.597435\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) −6.00000 −0.398234 −0.199117 0.979976i \(-0.563807\pi\)
−0.199117 + 0.979976i \(0.563807\pi\)
\(228\) 0 0
\(229\) 2.00000 0.132164 0.0660819 0.997814i \(-0.478950\pi\)
0.0660819 + 0.997814i \(0.478950\pi\)
\(230\) 0 0
\(231\) 9.00000 0.592157
\(232\) 0 0
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) 0 0
\(235\) −3.00000 −0.195698
\(236\) 0 0
\(237\) 14.0000 0.909398
\(238\) 0 0
\(239\) 14.0000 0.905585 0.452792 0.891616i \(-0.350428\pi\)
0.452792 + 0.891616i \(0.350428\pi\)
\(240\) 0 0
\(241\) −21.0000 −1.35273 −0.676364 0.736567i \(-0.736446\pi\)
−0.676364 + 0.736567i \(0.736446\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 2.00000 0.127775
\(246\) 0 0
\(247\) −6.00000 −0.381771
\(248\) 0 0
\(249\) 6.00000 0.380235
\(250\) 0 0
\(251\) −15.0000 −0.946792 −0.473396 0.880850i \(-0.656972\pi\)
−0.473396 + 0.880850i \(0.656972\pi\)
\(252\) 0 0
\(253\) 12.0000 0.754434
\(254\) 0 0
\(255\) −3.00000 −0.187867
\(256\) 0 0
\(257\) 12.0000 0.748539 0.374270 0.927320i \(-0.377893\pi\)
0.374270 + 0.927320i \(0.377893\pi\)
\(258\) 0 0
\(259\) 12.0000 0.745644
\(260\) 0 0
\(261\) 1.00000 0.0618984
\(262\) 0 0
\(263\) 24.0000 1.47990 0.739952 0.672660i \(-0.234848\pi\)
0.739952 + 0.672660i \(0.234848\pi\)
\(264\) 0 0
\(265\) 6.00000 0.368577
\(266\) 0 0
\(267\) 7.00000 0.428393
\(268\) 0 0
\(269\) 25.0000 1.52428 0.762138 0.647414i \(-0.224150\pi\)
0.762138 + 0.647414i \(0.224150\pi\)
\(270\) 0 0
\(271\) 30.0000 1.82237 0.911185 0.411997i \(-0.135169\pi\)
0.911185 + 0.411997i \(0.135169\pi\)
\(272\) 0 0
\(273\) −3.00000 −0.181568
\(274\) 0 0
\(275\) −3.00000 −0.180907
\(276\) 0 0
\(277\) −1.00000 −0.0600842 −0.0300421 0.999549i \(-0.509564\pi\)
−0.0300421 + 0.999549i \(0.509564\pi\)
\(278\) 0 0
\(279\) −4.00000 −0.239474
\(280\) 0 0
\(281\) −2.00000 −0.119310 −0.0596550 0.998219i \(-0.519000\pi\)
−0.0596550 + 0.998219i \(0.519000\pi\)
\(282\) 0 0
\(283\) 8.00000 0.475551 0.237775 0.971320i \(-0.423582\pi\)
0.237775 + 0.971320i \(0.423582\pi\)
\(284\) 0 0
\(285\) −6.00000 −0.355409
\(286\) 0 0
\(287\) −6.00000 −0.354169
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) −14.0000 −0.820695
\(292\) 0 0
\(293\) −21.0000 −1.22683 −0.613417 0.789760i \(-0.710205\pi\)
−0.613417 + 0.789760i \(0.710205\pi\)
\(294\) 0 0
\(295\) −10.0000 −0.582223
\(296\) 0 0
\(297\) −3.00000 −0.174078
\(298\) 0 0
\(299\) −4.00000 −0.231326
\(300\) 0 0
\(301\) −12.0000 −0.691669
\(302\) 0 0
\(303\) −7.00000 −0.402139
\(304\) 0 0
\(305\) −4.00000 −0.229039
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 8.00000 0.455104
\(310\) 0 0
\(311\) 13.0000 0.737162 0.368581 0.929596i \(-0.379844\pi\)
0.368581 + 0.929596i \(0.379844\pi\)
\(312\) 0 0
\(313\) 1.00000 0.0565233 0.0282617 0.999601i \(-0.491003\pi\)
0.0282617 + 0.999601i \(0.491003\pi\)
\(314\) 0 0
\(315\) −3.00000 −0.169031
\(316\) 0 0
\(317\) 27.0000 1.51647 0.758236 0.651981i \(-0.226062\pi\)
0.758236 + 0.651981i \(0.226062\pi\)
\(318\) 0 0
\(319\) −3.00000 −0.167968
\(320\) 0 0
\(321\) 10.0000 0.558146
\(322\) 0 0
\(323\) 18.0000 1.00155
\(324\) 0 0
\(325\) 1.00000 0.0554700
\(326\) 0 0
\(327\) −5.00000 −0.276501
\(328\) 0 0
\(329\) 9.00000 0.496186
\(330\) 0 0
\(331\) −26.0000 −1.42909 −0.714545 0.699590i \(-0.753366\pi\)
−0.714545 + 0.699590i \(0.753366\pi\)
\(332\) 0 0
\(333\) −4.00000 −0.219199
\(334\) 0 0
\(335\) −9.00000 −0.491723
\(336\) 0 0
\(337\) 22.0000 1.19842 0.599208 0.800593i \(-0.295482\pi\)
0.599208 + 0.800593i \(0.295482\pi\)
\(338\) 0 0
\(339\) −7.00000 −0.380188
\(340\) 0 0
\(341\) 12.0000 0.649836
\(342\) 0 0
\(343\) 15.0000 0.809924
\(344\) 0 0
\(345\) −4.00000 −0.215353
\(346\) 0 0
\(347\) −4.00000 −0.214731 −0.107366 0.994220i \(-0.534242\pi\)
−0.107366 + 0.994220i \(0.534242\pi\)
\(348\) 0 0
\(349\) 6.00000 0.321173 0.160586 0.987022i \(-0.448662\pi\)
0.160586 + 0.987022i \(0.448662\pi\)
\(350\) 0 0
\(351\) 1.00000 0.0533761
\(352\) 0 0
\(353\) −2.00000 −0.106449 −0.0532246 0.998583i \(-0.516950\pi\)
−0.0532246 + 0.998583i \(0.516950\pi\)
\(354\) 0 0
\(355\) −12.0000 −0.636894
\(356\) 0 0
\(357\) 9.00000 0.476331
\(358\) 0 0
\(359\) −4.00000 −0.211112 −0.105556 0.994413i \(-0.533662\pi\)
−0.105556 + 0.994413i \(0.533662\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 0 0
\(363\) −2.00000 −0.104973
\(364\) 0 0
\(365\) 4.00000 0.209370
\(366\) 0 0
\(367\) −4.00000 −0.208798 −0.104399 0.994535i \(-0.533292\pi\)
−0.104399 + 0.994535i \(0.533292\pi\)
\(368\) 0 0
\(369\) 2.00000 0.104116
\(370\) 0 0
\(371\) −18.0000 −0.934513
\(372\) 0 0
\(373\) 6.00000 0.310668 0.155334 0.987862i \(-0.450355\pi\)
0.155334 + 0.987862i \(0.450355\pi\)
\(374\) 0 0
\(375\) 1.00000 0.0516398
\(376\) 0 0
\(377\) 1.00000 0.0515026
\(378\) 0 0
\(379\) −2.00000 −0.102733 −0.0513665 0.998680i \(-0.516358\pi\)
−0.0513665 + 0.998680i \(0.516358\pi\)
\(380\) 0 0
\(381\) 10.0000 0.512316
\(382\) 0 0
\(383\) −6.00000 −0.306586 −0.153293 0.988181i \(-0.548988\pi\)
−0.153293 + 0.988181i \(0.548988\pi\)
\(384\) 0 0
\(385\) 9.00000 0.458682
\(386\) 0 0
\(387\) 4.00000 0.203331
\(388\) 0 0
\(389\) 3.00000 0.152106 0.0760530 0.997104i \(-0.475768\pi\)
0.0760530 + 0.997104i \(0.475768\pi\)
\(390\) 0 0
\(391\) 12.0000 0.606866
\(392\) 0 0
\(393\) 13.0000 0.655763
\(394\) 0 0
\(395\) 14.0000 0.704416
\(396\) 0 0
\(397\) 26.0000 1.30490 0.652451 0.757831i \(-0.273741\pi\)
0.652451 + 0.757831i \(0.273741\pi\)
\(398\) 0 0
\(399\) 18.0000 0.901127
\(400\) 0 0
\(401\) −10.0000 −0.499376 −0.249688 0.968326i \(-0.580328\pi\)
−0.249688 + 0.968326i \(0.580328\pi\)
\(402\) 0 0
\(403\) −4.00000 −0.199254
\(404\) 0 0
\(405\) 1.00000 0.0496904
\(406\) 0 0
\(407\) 12.0000 0.594818
\(408\) 0 0
\(409\) −2.00000 −0.0988936 −0.0494468 0.998777i \(-0.515746\pi\)
−0.0494468 + 0.998777i \(0.515746\pi\)
\(410\) 0 0
\(411\) 22.0000 1.08518
\(412\) 0 0
\(413\) 30.0000 1.47620
\(414\) 0 0
\(415\) 6.00000 0.294528
\(416\) 0 0
\(417\) −19.0000 −0.930434
\(418\) 0 0
\(419\) −26.0000 −1.27018 −0.635092 0.772437i \(-0.719038\pi\)
−0.635092 + 0.772437i \(0.719038\pi\)
\(420\) 0 0
\(421\) 2.00000 0.0974740 0.0487370 0.998812i \(-0.484480\pi\)
0.0487370 + 0.998812i \(0.484480\pi\)
\(422\) 0 0
\(423\) −3.00000 −0.145865
\(424\) 0 0
\(425\) −3.00000 −0.145521
\(426\) 0 0
\(427\) 12.0000 0.580721
\(428\) 0 0
\(429\) −3.00000 −0.144841
\(430\) 0 0
\(431\) −20.0000 −0.963366 −0.481683 0.876346i \(-0.659974\pi\)
−0.481683 + 0.876346i \(0.659974\pi\)
\(432\) 0 0
\(433\) 22.0000 1.05725 0.528626 0.848855i \(-0.322707\pi\)
0.528626 + 0.848855i \(0.322707\pi\)
\(434\) 0 0
\(435\) 1.00000 0.0479463
\(436\) 0 0
\(437\) 24.0000 1.14808
\(438\) 0 0
\(439\) 3.00000 0.143182 0.0715911 0.997434i \(-0.477192\pi\)
0.0715911 + 0.997434i \(0.477192\pi\)
\(440\) 0 0
\(441\) 2.00000 0.0952381
\(442\) 0 0
\(443\) −25.0000 −1.18779 −0.593893 0.804544i \(-0.702410\pi\)
−0.593893 + 0.804544i \(0.702410\pi\)
\(444\) 0 0
\(445\) 7.00000 0.331832
\(446\) 0 0
\(447\) 12.0000 0.567581
\(448\) 0 0
\(449\) 17.0000 0.802280 0.401140 0.916017i \(-0.368614\pi\)
0.401140 + 0.916017i \(0.368614\pi\)
\(450\) 0 0
\(451\) −6.00000 −0.282529
\(452\) 0 0
\(453\) −20.0000 −0.939682
\(454\) 0 0
\(455\) −3.00000 −0.140642
\(456\) 0 0
\(457\) 1.00000 0.0467780 0.0233890 0.999726i \(-0.492554\pi\)
0.0233890 + 0.999726i \(0.492554\pi\)
\(458\) 0 0
\(459\) −3.00000 −0.140028
\(460\) 0 0
\(461\) 26.0000 1.21094 0.605470 0.795868i \(-0.292985\pi\)
0.605470 + 0.795868i \(0.292985\pi\)
\(462\) 0 0
\(463\) 31.0000 1.44069 0.720346 0.693615i \(-0.243983\pi\)
0.720346 + 0.693615i \(0.243983\pi\)
\(464\) 0 0
\(465\) −4.00000 −0.185496
\(466\) 0 0
\(467\) −28.0000 −1.29569 −0.647843 0.761774i \(-0.724329\pi\)
−0.647843 + 0.761774i \(0.724329\pi\)
\(468\) 0 0
\(469\) 27.0000 1.24674
\(470\) 0 0
\(471\) 6.00000 0.276465
\(472\) 0 0
\(473\) −12.0000 −0.551761
\(474\) 0 0
\(475\) −6.00000 −0.275299
\(476\) 0 0
\(477\) 6.00000 0.274721
\(478\) 0 0
\(479\) −12.0000 −0.548294 −0.274147 0.961688i \(-0.588395\pi\)
−0.274147 + 0.961688i \(0.588395\pi\)
\(480\) 0 0
\(481\) −4.00000 −0.182384
\(482\) 0 0
\(483\) 12.0000 0.546019
\(484\) 0 0
\(485\) −14.0000 −0.635707
\(486\) 0 0
\(487\) 16.0000 0.725029 0.362515 0.931978i \(-0.381918\pi\)
0.362515 + 0.931978i \(0.381918\pi\)
\(488\) 0 0
\(489\) 2.00000 0.0904431
\(490\) 0 0
\(491\) −12.0000 −0.541552 −0.270776 0.962642i \(-0.587280\pi\)
−0.270776 + 0.962642i \(0.587280\pi\)
\(492\) 0 0
\(493\) −3.00000 −0.135113
\(494\) 0 0
\(495\) −3.00000 −0.134840
\(496\) 0 0
\(497\) 36.0000 1.61482
\(498\) 0 0
\(499\) −27.0000 −1.20869 −0.604343 0.796724i \(-0.706564\pi\)
−0.604343 + 0.796724i \(0.706564\pi\)
\(500\) 0 0
\(501\) −8.00000 −0.357414
\(502\) 0 0
\(503\) 1.00000 0.0445878 0.0222939 0.999751i \(-0.492903\pi\)
0.0222939 + 0.999751i \(0.492903\pi\)
\(504\) 0 0
\(505\) −7.00000 −0.311496
\(506\) 0 0
\(507\) −12.0000 −0.532939
\(508\) 0 0
\(509\) 6.00000 0.265945 0.132973 0.991120i \(-0.457548\pi\)
0.132973 + 0.991120i \(0.457548\pi\)
\(510\) 0 0
\(511\) −12.0000 −0.530849
\(512\) 0 0
\(513\) −6.00000 −0.264906
\(514\) 0 0
\(515\) 8.00000 0.352522
\(516\) 0 0
\(517\) 9.00000 0.395820
\(518\) 0 0
\(519\) −16.0000 −0.702322
\(520\) 0 0
\(521\) 8.00000 0.350486 0.175243 0.984525i \(-0.443929\pi\)
0.175243 + 0.984525i \(0.443929\pi\)
\(522\) 0 0
\(523\) 41.0000 1.79280 0.896402 0.443241i \(-0.146171\pi\)
0.896402 + 0.443241i \(0.146171\pi\)
\(524\) 0 0
\(525\) −3.00000 −0.130931
\(526\) 0 0
\(527\) 12.0000 0.522728
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) −10.0000 −0.433963
\(532\) 0 0
\(533\) 2.00000 0.0866296
\(534\) 0 0
\(535\) 10.0000 0.432338
\(536\) 0 0
\(537\) 12.0000 0.517838
\(538\) 0 0
\(539\) −6.00000 −0.258438
\(540\) 0 0
\(541\) 2.00000 0.0859867 0.0429934 0.999075i \(-0.486311\pi\)
0.0429934 + 0.999075i \(0.486311\pi\)
\(542\) 0 0
\(543\) −7.00000 −0.300399
\(544\) 0 0
\(545\) −5.00000 −0.214176
\(546\) 0 0
\(547\) −3.00000 −0.128271 −0.0641354 0.997941i \(-0.520429\pi\)
−0.0641354 + 0.997941i \(0.520429\pi\)
\(548\) 0 0
\(549\) −4.00000 −0.170716
\(550\) 0 0
\(551\) −6.00000 −0.255609
\(552\) 0 0
\(553\) −42.0000 −1.78602
\(554\) 0 0
\(555\) −4.00000 −0.169791
\(556\) 0 0
\(557\) 18.0000 0.762684 0.381342 0.924434i \(-0.375462\pi\)
0.381342 + 0.924434i \(0.375462\pi\)
\(558\) 0 0
\(559\) 4.00000 0.169182
\(560\) 0 0
\(561\) 9.00000 0.379980
\(562\) 0 0
\(563\) 23.0000 0.969334 0.484667 0.874699i \(-0.338941\pi\)
0.484667 + 0.874699i \(0.338941\pi\)
\(564\) 0 0
\(565\) −7.00000 −0.294492
\(566\) 0 0
\(567\) −3.00000 −0.125988
\(568\) 0 0
\(569\) −13.0000 −0.544988 −0.272494 0.962157i \(-0.587849\pi\)
−0.272494 + 0.962157i \(0.587849\pi\)
\(570\) 0 0
\(571\) −16.0000 −0.669579 −0.334790 0.942293i \(-0.608665\pi\)
−0.334790 + 0.942293i \(0.608665\pi\)
\(572\) 0 0
\(573\) 16.0000 0.668410
\(574\) 0 0
\(575\) −4.00000 −0.166812
\(576\) 0 0
\(577\) −32.0000 −1.33218 −0.666089 0.745873i \(-0.732033\pi\)
−0.666089 + 0.745873i \(0.732033\pi\)
\(578\) 0 0
\(579\) −22.0000 −0.914289
\(580\) 0 0
\(581\) −18.0000 −0.746766
\(582\) 0 0
\(583\) −18.0000 −0.745484
\(584\) 0 0
\(585\) 1.00000 0.0413449
\(586\) 0 0
\(587\) −2.00000 −0.0825488 −0.0412744 0.999148i \(-0.513142\pi\)
−0.0412744 + 0.999148i \(0.513142\pi\)
\(588\) 0 0
\(589\) 24.0000 0.988903
\(590\) 0 0
\(591\) 6.00000 0.246807
\(592\) 0 0
\(593\) 14.0000 0.574911 0.287456 0.957794i \(-0.407191\pi\)
0.287456 + 0.957794i \(0.407191\pi\)
\(594\) 0 0
\(595\) 9.00000 0.368964
\(596\) 0 0
\(597\) −1.00000 −0.0409273
\(598\) 0 0
\(599\) −15.0000 −0.612883 −0.306442 0.951889i \(-0.599138\pi\)
−0.306442 + 0.951889i \(0.599138\pi\)
\(600\) 0 0
\(601\) −10.0000 −0.407909 −0.203954 0.978980i \(-0.565379\pi\)
−0.203954 + 0.978980i \(0.565379\pi\)
\(602\) 0 0
\(603\) −9.00000 −0.366508
\(604\) 0 0
\(605\) −2.00000 −0.0813116
\(606\) 0 0
\(607\) 6.00000 0.243532 0.121766 0.992559i \(-0.461144\pi\)
0.121766 + 0.992559i \(0.461144\pi\)
\(608\) 0 0
\(609\) −3.00000 −0.121566
\(610\) 0 0
\(611\) −3.00000 −0.121367
\(612\) 0 0
\(613\) −7.00000 −0.282727 −0.141364 0.989958i \(-0.545149\pi\)
−0.141364 + 0.989958i \(0.545149\pi\)
\(614\) 0 0
\(615\) 2.00000 0.0806478
\(616\) 0 0
\(617\) −6.00000 −0.241551 −0.120775 0.992680i \(-0.538538\pi\)
−0.120775 + 0.992680i \(0.538538\pi\)
\(618\) 0 0
\(619\) −22.0000 −0.884255 −0.442127 0.896952i \(-0.645776\pi\)
−0.442127 + 0.896952i \(0.645776\pi\)
\(620\) 0 0
\(621\) −4.00000 −0.160514
\(622\) 0 0
\(623\) −21.0000 −0.841347
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 18.0000 0.718851
\(628\) 0 0
\(629\) 12.0000 0.478471
\(630\) 0 0
\(631\) −29.0000 −1.15447 −0.577236 0.816577i \(-0.695869\pi\)
−0.577236 + 0.816577i \(0.695869\pi\)
\(632\) 0 0
\(633\) −26.0000 −1.03341
\(634\) 0 0
\(635\) 10.0000 0.396838
\(636\) 0 0
\(637\) 2.00000 0.0792429
\(638\) 0 0
\(639\) −12.0000 −0.474713
\(640\) 0 0
\(641\) −29.0000 −1.14543 −0.572716 0.819754i \(-0.694110\pi\)
−0.572716 + 0.819754i \(0.694110\pi\)
\(642\) 0 0
\(643\) 23.0000 0.907031 0.453516 0.891248i \(-0.350170\pi\)
0.453516 + 0.891248i \(0.350170\pi\)
\(644\) 0 0
\(645\) 4.00000 0.157500
\(646\) 0 0
\(647\) −12.0000 −0.471769 −0.235884 0.971781i \(-0.575799\pi\)
−0.235884 + 0.971781i \(0.575799\pi\)
\(648\) 0 0
\(649\) 30.0000 1.17760
\(650\) 0 0
\(651\) 12.0000 0.470317
\(652\) 0 0
\(653\) 3.00000 0.117399 0.0586995 0.998276i \(-0.481305\pi\)
0.0586995 + 0.998276i \(0.481305\pi\)
\(654\) 0 0
\(655\) 13.0000 0.507952
\(656\) 0 0
\(657\) 4.00000 0.156055
\(658\) 0 0
\(659\) 35.0000 1.36341 0.681703 0.731629i \(-0.261240\pi\)
0.681703 + 0.731629i \(0.261240\pi\)
\(660\) 0 0
\(661\) −47.0000 −1.82809 −0.914044 0.405615i \(-0.867057\pi\)
−0.914044 + 0.405615i \(0.867057\pi\)
\(662\) 0 0
\(663\) −3.00000 −0.116510
\(664\) 0 0
\(665\) 18.0000 0.698010
\(666\) 0 0
\(667\) −4.00000 −0.154881
\(668\) 0 0
\(669\) −9.00000 −0.347960
\(670\) 0 0
\(671\) 12.0000 0.463255
\(672\) 0 0
\(673\) 1.00000 0.0385472 0.0192736 0.999814i \(-0.493865\pi\)
0.0192736 + 0.999814i \(0.493865\pi\)
\(674\) 0 0
\(675\) 1.00000 0.0384900
\(676\) 0 0
\(677\) 37.0000 1.42203 0.711013 0.703179i \(-0.248237\pi\)
0.711013 + 0.703179i \(0.248237\pi\)
\(678\) 0 0
\(679\) 42.0000 1.61181
\(680\) 0 0
\(681\) −6.00000 −0.229920
\(682\) 0 0
\(683\) 12.0000 0.459167 0.229584 0.973289i \(-0.426264\pi\)
0.229584 + 0.973289i \(0.426264\pi\)
\(684\) 0 0
\(685\) 22.0000 0.840577
\(686\) 0 0
\(687\) 2.00000 0.0763048
\(688\) 0 0
\(689\) 6.00000 0.228582
\(690\) 0 0
\(691\) −49.0000 −1.86405 −0.932024 0.362397i \(-0.881959\pi\)
−0.932024 + 0.362397i \(0.881959\pi\)
\(692\) 0 0
\(693\) 9.00000 0.341882
\(694\) 0 0
\(695\) −19.0000 −0.720711
\(696\) 0 0
\(697\) −6.00000 −0.227266
\(698\) 0 0
\(699\) 6.00000 0.226941
\(700\) 0 0
\(701\) −20.0000 −0.755390 −0.377695 0.925930i \(-0.623283\pi\)
−0.377695 + 0.925930i \(0.623283\pi\)
\(702\) 0 0
\(703\) 24.0000 0.905177
\(704\) 0 0
\(705\) −3.00000 −0.112987
\(706\) 0 0
\(707\) 21.0000 0.789786
\(708\) 0 0
\(709\) 6.00000 0.225335 0.112667 0.993633i \(-0.464061\pi\)
0.112667 + 0.993633i \(0.464061\pi\)
\(710\) 0 0
\(711\) 14.0000 0.525041
\(712\) 0 0
\(713\) 16.0000 0.599205
\(714\) 0 0
\(715\) −3.00000 −0.112194
\(716\) 0 0
\(717\) 14.0000 0.522840
\(718\) 0 0
\(719\) −36.0000 −1.34257 −0.671287 0.741198i \(-0.734258\pi\)
−0.671287 + 0.741198i \(0.734258\pi\)
\(720\) 0 0
\(721\) −24.0000 −0.893807
\(722\) 0 0
\(723\) −21.0000 −0.780998
\(724\) 0 0
\(725\) 1.00000 0.0371391
\(726\) 0 0
\(727\) −32.0000 −1.18681 −0.593407 0.804902i \(-0.702218\pi\)
−0.593407 + 0.804902i \(0.702218\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −12.0000 −0.443836
\(732\) 0 0
\(733\) 16.0000 0.590973 0.295487 0.955347i \(-0.404518\pi\)
0.295487 + 0.955347i \(0.404518\pi\)
\(734\) 0 0
\(735\) 2.00000 0.0737711
\(736\) 0 0
\(737\) 27.0000 0.994558
\(738\) 0 0
\(739\) 16.0000 0.588570 0.294285 0.955718i \(-0.404919\pi\)
0.294285 + 0.955718i \(0.404919\pi\)
\(740\) 0 0
\(741\) −6.00000 −0.220416
\(742\) 0 0
\(743\) 9.00000 0.330178 0.165089 0.986279i \(-0.447209\pi\)
0.165089 + 0.986279i \(0.447209\pi\)
\(744\) 0 0
\(745\) 12.0000 0.439646
\(746\) 0 0
\(747\) 6.00000 0.219529
\(748\) 0 0
\(749\) −30.0000 −1.09618
\(750\) 0 0
\(751\) −32.0000 −1.16770 −0.583848 0.811863i \(-0.698454\pi\)
−0.583848 + 0.811863i \(0.698454\pi\)
\(752\) 0 0
\(753\) −15.0000 −0.546630
\(754\) 0 0
\(755\) −20.0000 −0.727875
\(756\) 0 0
\(757\) −28.0000 −1.01768 −0.508839 0.860862i \(-0.669925\pi\)
−0.508839 + 0.860862i \(0.669925\pi\)
\(758\) 0 0
\(759\) 12.0000 0.435572
\(760\) 0 0
\(761\) 6.00000 0.217500 0.108750 0.994069i \(-0.465315\pi\)
0.108750 + 0.994069i \(0.465315\pi\)
\(762\) 0 0
\(763\) 15.0000 0.543036
\(764\) 0 0
\(765\) −3.00000 −0.108465
\(766\) 0 0
\(767\) −10.0000 −0.361079
\(768\) 0 0
\(769\) −28.0000 −1.00971 −0.504853 0.863205i \(-0.668453\pi\)
−0.504853 + 0.863205i \(0.668453\pi\)
\(770\) 0 0
\(771\) 12.0000 0.432169
\(772\) 0 0
\(773\) −6.00000 −0.215805 −0.107903 0.994161i \(-0.534413\pi\)
−0.107903 + 0.994161i \(0.534413\pi\)
\(774\) 0 0
\(775\) −4.00000 −0.143684
\(776\) 0 0
\(777\) 12.0000 0.430498
\(778\) 0 0
\(779\) −12.0000 −0.429945
\(780\) 0 0
\(781\) 36.0000 1.28818
\(782\) 0 0
\(783\) 1.00000 0.0357371
\(784\) 0 0
\(785\) 6.00000 0.214149
\(786\) 0 0
\(787\) 52.0000 1.85360 0.926800 0.375555i \(-0.122548\pi\)
0.926800 + 0.375555i \(0.122548\pi\)
\(788\) 0 0
\(789\) 24.0000 0.854423
\(790\) 0 0
\(791\) 21.0000 0.746674
\(792\) 0 0
\(793\) −4.00000 −0.142044
\(794\) 0 0
\(795\) 6.00000 0.212798
\(796\) 0 0
\(797\) −42.0000 −1.48772 −0.743858 0.668338i \(-0.767006\pi\)
−0.743858 + 0.668338i \(0.767006\pi\)
\(798\) 0 0
\(799\) 9.00000 0.318397
\(800\) 0 0
\(801\) 7.00000 0.247333
\(802\) 0 0
\(803\) −12.0000 −0.423471
\(804\) 0 0
\(805\) 12.0000 0.422944
\(806\) 0 0
\(807\) 25.0000 0.880042
\(808\) 0 0
\(809\) −11.0000 −0.386739 −0.193370 0.981126i \(-0.561942\pi\)
−0.193370 + 0.981126i \(0.561942\pi\)
\(810\) 0 0
\(811\) −5.00000 −0.175574 −0.0877869 0.996139i \(-0.527979\pi\)
−0.0877869 + 0.996139i \(0.527979\pi\)
\(812\) 0 0
\(813\) 30.0000 1.05215
\(814\) 0 0
\(815\) 2.00000 0.0700569
\(816\) 0 0
\(817\) −24.0000 −0.839654
\(818\) 0 0
\(819\) −3.00000 −0.104828
\(820\) 0 0
\(821\) −22.0000 −0.767805 −0.383903 0.923374i \(-0.625420\pi\)
−0.383903 + 0.923374i \(0.625420\pi\)
\(822\) 0 0
\(823\) −12.0000 −0.418294 −0.209147 0.977884i \(-0.567069\pi\)
−0.209147 + 0.977884i \(0.567069\pi\)
\(824\) 0 0
\(825\) −3.00000 −0.104447
\(826\) 0 0
\(827\) 12.0000 0.417281 0.208640 0.977992i \(-0.433096\pi\)
0.208640 + 0.977992i \(0.433096\pi\)
\(828\) 0 0
\(829\) 20.0000 0.694629 0.347314 0.937749i \(-0.387094\pi\)
0.347314 + 0.937749i \(0.387094\pi\)
\(830\) 0 0
\(831\) −1.00000 −0.0346896
\(832\) 0 0
\(833\) −6.00000 −0.207888
\(834\) 0 0
\(835\) −8.00000 −0.276851
\(836\) 0 0
\(837\) −4.00000 −0.138260
\(838\) 0 0
\(839\) −15.0000 −0.517858 −0.258929 0.965896i \(-0.583369\pi\)
−0.258929 + 0.965896i \(0.583369\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 0 0
\(843\) −2.00000 −0.0688837
\(844\) 0 0
\(845\) −12.0000 −0.412813
\(846\) 0 0
\(847\) 6.00000 0.206162
\(848\) 0 0
\(849\) 8.00000 0.274559
\(850\) 0 0
\(851\) 16.0000 0.548473
\(852\) 0 0
\(853\) −16.0000 −0.547830 −0.273915 0.961754i \(-0.588319\pi\)
−0.273915 + 0.961754i \(0.588319\pi\)
\(854\) 0 0
\(855\) −6.00000 −0.205196
\(856\) 0 0
\(857\) −26.0000 −0.888143 −0.444072 0.895991i \(-0.646466\pi\)
−0.444072 + 0.895991i \(0.646466\pi\)
\(858\) 0 0
\(859\) 26.0000 0.887109 0.443554 0.896248i \(-0.353717\pi\)
0.443554 + 0.896248i \(0.353717\pi\)
\(860\) 0 0
\(861\) −6.00000 −0.204479
\(862\) 0 0
\(863\) −56.0000 −1.90626 −0.953131 0.302558i \(-0.902160\pi\)
−0.953131 + 0.302558i \(0.902160\pi\)
\(864\) 0 0
\(865\) −16.0000 −0.544016
\(866\) 0 0
\(867\) −8.00000 −0.271694
\(868\) 0 0
\(869\) −42.0000 −1.42475
\(870\) 0 0
\(871\) −9.00000 −0.304953
\(872\) 0 0
\(873\) −14.0000 −0.473828
\(874\) 0 0
\(875\) −3.00000 −0.101419
\(876\) 0 0
\(877\) −14.0000 −0.472746 −0.236373 0.971662i \(-0.575959\pi\)
−0.236373 + 0.971662i \(0.575959\pi\)
\(878\) 0 0
\(879\) −21.0000 −0.708312
\(880\) 0 0
\(881\) −25.0000 −0.842271 −0.421136 0.906998i \(-0.638368\pi\)
−0.421136 + 0.906998i \(0.638368\pi\)
\(882\) 0 0
\(883\) 4.00000 0.134611 0.0673054 0.997732i \(-0.478560\pi\)
0.0673054 + 0.997732i \(0.478560\pi\)
\(884\) 0 0
\(885\) −10.0000 −0.336146
\(886\) 0 0
\(887\) −21.0000 −0.705111 −0.352555 0.935791i \(-0.614687\pi\)
−0.352555 + 0.935791i \(0.614687\pi\)
\(888\) 0 0
\(889\) −30.0000 −1.00617
\(890\) 0 0
\(891\) −3.00000 −0.100504
\(892\) 0 0
\(893\) 18.0000 0.602347
\(894\) 0 0
\(895\) 12.0000 0.401116
\(896\) 0 0
\(897\) −4.00000 −0.133556
\(898\) 0 0
\(899\) −4.00000 −0.133407
\(900\) 0 0
\(901\) −18.0000 −0.599667
\(902\) 0 0
\(903\) −12.0000 −0.399335
\(904\) 0 0
\(905\) −7.00000 −0.232688
\(906\) 0 0
\(907\) −54.0000 −1.79304 −0.896520 0.443003i \(-0.853913\pi\)
−0.896520 + 0.443003i \(0.853913\pi\)
\(908\) 0 0
\(909\) −7.00000 −0.232175
\(910\) 0 0
\(911\) −15.0000 −0.496972 −0.248486 0.968635i \(-0.579933\pi\)
−0.248486 + 0.968635i \(0.579933\pi\)
\(912\) 0 0
\(913\) −18.0000 −0.595713
\(914\) 0 0
\(915\) −4.00000 −0.132236
\(916\) 0 0
\(917\) −39.0000 −1.28789
\(918\) 0 0
\(919\) 11.0000 0.362857 0.181428 0.983404i \(-0.441928\pi\)
0.181428 + 0.983404i \(0.441928\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −12.0000 −0.394985
\(924\) 0 0
\(925\) −4.00000 −0.131519
\(926\) 0 0
\(927\) 8.00000 0.262754
\(928\) 0 0
\(929\) 22.0000 0.721797 0.360898 0.932605i \(-0.382470\pi\)
0.360898 + 0.932605i \(0.382470\pi\)
\(930\) 0 0
\(931\) −12.0000 −0.393284
\(932\) 0 0
\(933\) 13.0000 0.425601
\(934\) 0 0
\(935\) 9.00000 0.294331
\(936\) 0 0
\(937\) −41.0000 −1.33941 −0.669706 0.742627i \(-0.733580\pi\)
−0.669706 + 0.742627i \(0.733580\pi\)
\(938\) 0 0
\(939\) 1.00000 0.0326338
\(940\) 0 0
\(941\) 52.0000 1.69515 0.847576 0.530674i \(-0.178061\pi\)
0.847576 + 0.530674i \(0.178061\pi\)
\(942\) 0 0
\(943\) −8.00000 −0.260516
\(944\) 0 0
\(945\) −3.00000 −0.0975900
\(946\) 0 0
\(947\) 49.0000 1.59229 0.796143 0.605108i \(-0.206870\pi\)
0.796143 + 0.605108i \(0.206870\pi\)
\(948\) 0 0
\(949\) 4.00000 0.129845
\(950\) 0 0
\(951\) 27.0000 0.875535
\(952\) 0 0
\(953\) −40.0000 −1.29573 −0.647864 0.761756i \(-0.724337\pi\)
−0.647864 + 0.761756i \(0.724337\pi\)
\(954\) 0 0
\(955\) 16.0000 0.517748
\(956\) 0 0
\(957\) −3.00000 −0.0969762
\(958\) 0 0
\(959\) −66.0000 −2.13125
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 10.0000 0.322245
\(964\) 0 0
\(965\) −22.0000 −0.708205
\(966\) 0 0
\(967\) 42.0000 1.35063 0.675314 0.737530i \(-0.264008\pi\)
0.675314 + 0.737530i \(0.264008\pi\)
\(968\) 0 0
\(969\) 18.0000 0.578243
\(970\) 0 0
\(971\) −52.0000 −1.66876 −0.834380 0.551190i \(-0.814174\pi\)
−0.834380 + 0.551190i \(0.814174\pi\)
\(972\) 0 0
\(973\) 57.0000 1.82734
\(974\) 0 0
\(975\) 1.00000 0.0320256
\(976\) 0 0
\(977\) −28.0000 −0.895799 −0.447900 0.894084i \(-0.647828\pi\)
−0.447900 + 0.894084i \(0.647828\pi\)
\(978\) 0 0
\(979\) −21.0000 −0.671163
\(980\) 0 0
\(981\) −5.00000 −0.159638
\(982\) 0 0
\(983\) −4.00000 −0.127580 −0.0637901 0.997963i \(-0.520319\pi\)
−0.0637901 + 0.997963i \(0.520319\pi\)
\(984\) 0 0
\(985\) 6.00000 0.191176
\(986\) 0 0
\(987\) 9.00000 0.286473
\(988\) 0 0
\(989\) −16.0000 −0.508770
\(990\) 0 0
\(991\) −31.0000 −0.984747 −0.492374 0.870384i \(-0.663871\pi\)
−0.492374 + 0.870384i \(0.663871\pi\)
\(992\) 0 0
\(993\) −26.0000 −0.825085
\(994\) 0 0
\(995\) −1.00000 −0.0317021
\(996\) 0 0
\(997\) −28.0000 −0.886769 −0.443384 0.896332i \(-0.646222\pi\)
−0.443384 + 0.896332i \(0.646222\pi\)
\(998\) 0 0
\(999\) −4.00000 −0.126554
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1740.2.a.g.1.1 1
3.2 odd 2 5220.2.a.b.1.1 1
4.3 odd 2 6960.2.a.u.1.1 1
5.2 odd 4 8700.2.g.f.349.1 2
5.3 odd 4 8700.2.g.f.349.2 2
5.4 even 2 8700.2.a.h.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1740.2.a.g.1.1 1 1.1 even 1 trivial
5220.2.a.b.1.1 1 3.2 odd 2
6960.2.a.u.1.1 1 4.3 odd 2
8700.2.a.h.1.1 1 5.4 even 2
8700.2.g.f.349.1 2 5.2 odd 4
8700.2.g.f.349.2 2 5.3 odd 4