Properties

Label 1734.2.f.g.829.1
Level $1734$
Weight $2$
Character 1734.829
Analytic conductor $13.846$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1734,2,Mod(829,1734)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1734, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1734.829");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1734 = 2 \cdot 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1734.f (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.8460597105\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 102)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 829.1
Root \(0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1734.829
Dual form 1734.2.f.g.1483.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +(-0.707107 - 0.707107i) q^{3} -1.00000 q^{4} +(2.82843 + 2.82843i) q^{5} +(0.707107 - 0.707107i) q^{6} +(1.41421 - 1.41421i) q^{7} -1.00000i q^{8} +1.00000i q^{9} +O(q^{10})\) \(q+1.00000i q^{2} +(-0.707107 - 0.707107i) q^{3} -1.00000 q^{4} +(2.82843 + 2.82843i) q^{5} +(0.707107 - 0.707107i) q^{6} +(1.41421 - 1.41421i) q^{7} -1.00000i q^{8} +1.00000i q^{9} +(-2.82843 + 2.82843i) q^{10} +(0.707107 + 0.707107i) q^{12} +6.00000 q^{13} +(1.41421 + 1.41421i) q^{14} -4.00000i q^{15} +1.00000 q^{16} -1.00000 q^{18} -4.00000i q^{19} +(-2.82843 - 2.82843i) q^{20} -2.00000 q^{21} +(4.24264 - 4.24264i) q^{23} +(-0.707107 + 0.707107i) q^{24} +11.0000i q^{25} +6.00000i q^{26} +(0.707107 - 0.707107i) q^{27} +(-1.41421 + 1.41421i) q^{28} +(2.82843 + 2.82843i) q^{29} +4.00000 q^{30} +(-4.24264 - 4.24264i) q^{31} +1.00000i q^{32} +8.00000 q^{35} -1.00000i q^{36} +(-2.82843 - 2.82843i) q^{37} +4.00000 q^{38} +(-4.24264 - 4.24264i) q^{39} +(2.82843 - 2.82843i) q^{40} +(7.07107 - 7.07107i) q^{41} -2.00000i q^{42} -4.00000i q^{43} +(-2.82843 + 2.82843i) q^{45} +(4.24264 + 4.24264i) q^{46} -4.00000 q^{47} +(-0.707107 - 0.707107i) q^{48} +3.00000i q^{49} -11.0000 q^{50} -6.00000 q^{52} +2.00000i q^{53} +(0.707107 + 0.707107i) q^{54} +(-1.41421 - 1.41421i) q^{56} +(-2.82843 + 2.82843i) q^{57} +(-2.82843 + 2.82843i) q^{58} +12.0000i q^{59} +4.00000i q^{60} +(2.82843 - 2.82843i) q^{61} +(4.24264 - 4.24264i) q^{62} +(1.41421 + 1.41421i) q^{63} -1.00000 q^{64} +(16.9706 + 16.9706i) q^{65} -12.0000 q^{67} -6.00000 q^{69} +8.00000i q^{70} +(-4.24264 - 4.24264i) q^{71} +1.00000 q^{72} +(-1.41421 - 1.41421i) q^{73} +(2.82843 - 2.82843i) q^{74} +(7.77817 - 7.77817i) q^{75} +4.00000i q^{76} +(4.24264 - 4.24264i) q^{78} +(7.07107 - 7.07107i) q^{79} +(2.82843 + 2.82843i) q^{80} -1.00000 q^{81} +(7.07107 + 7.07107i) q^{82} +12.0000i q^{83} +2.00000 q^{84} +4.00000 q^{86} -4.00000i q^{87} +2.00000 q^{89} +(-2.82843 - 2.82843i) q^{90} +(8.48528 - 8.48528i) q^{91} +(-4.24264 + 4.24264i) q^{92} +6.00000i q^{93} -4.00000i q^{94} +(11.3137 - 11.3137i) q^{95} +(0.707107 - 0.707107i) q^{96} +(-4.24264 - 4.24264i) q^{97} -3.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{4} + 24 q^{13} + 4 q^{16} - 4 q^{18} - 8 q^{21} + 16 q^{30} + 32 q^{35} + 16 q^{38} - 16 q^{47} - 44 q^{50} - 24 q^{52} - 4 q^{64} - 48 q^{67} - 24 q^{69} + 4 q^{72} - 4 q^{81} + 8 q^{84} + 16 q^{86} + 8 q^{89} - 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1734\mathbb{Z}\right)^\times\).

\(n\) \(1157\) \(1159\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) −0.707107 0.707107i −0.408248 0.408248i
\(4\) −1.00000 −0.500000
\(5\) 2.82843 + 2.82843i 1.26491 + 1.26491i 0.948683 + 0.316228i \(0.102416\pi\)
0.316228 + 0.948683i \(0.397584\pi\)
\(6\) 0.707107 0.707107i 0.288675 0.288675i
\(7\) 1.41421 1.41421i 0.534522 0.534522i −0.387392 0.921915i \(-0.626624\pi\)
0.921915 + 0.387392i \(0.126624\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 1.00000i 0.333333i
\(10\) −2.82843 + 2.82843i −0.894427 + 0.894427i
\(11\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(12\) 0.707107 + 0.707107i 0.204124 + 0.204124i
\(13\) 6.00000 1.66410 0.832050 0.554700i \(-0.187167\pi\)
0.832050 + 0.554700i \(0.187167\pi\)
\(14\) 1.41421 + 1.41421i 0.377964 + 0.377964i
\(15\) 4.00000i 1.03280i
\(16\) 1.00000 0.250000
\(17\) 0 0
\(18\) −1.00000 −0.235702
\(19\) 4.00000i 0.917663i −0.888523 0.458831i \(-0.848268\pi\)
0.888523 0.458831i \(-0.151732\pi\)
\(20\) −2.82843 2.82843i −0.632456 0.632456i
\(21\) −2.00000 −0.436436
\(22\) 0 0
\(23\) 4.24264 4.24264i 0.884652 0.884652i −0.109351 0.994003i \(-0.534877\pi\)
0.994003 + 0.109351i \(0.0348774\pi\)
\(24\) −0.707107 + 0.707107i −0.144338 + 0.144338i
\(25\) 11.0000i 2.20000i
\(26\) 6.00000i 1.17670i
\(27\) 0.707107 0.707107i 0.136083 0.136083i
\(28\) −1.41421 + 1.41421i −0.267261 + 0.267261i
\(29\) 2.82843 + 2.82843i 0.525226 + 0.525226i 0.919145 0.393919i \(-0.128881\pi\)
−0.393919 + 0.919145i \(0.628881\pi\)
\(30\) 4.00000 0.730297
\(31\) −4.24264 4.24264i −0.762001 0.762001i 0.214683 0.976684i \(-0.431128\pi\)
−0.976684 + 0.214683i \(0.931128\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 0 0
\(35\) 8.00000 1.35225
\(36\) 1.00000i 0.166667i
\(37\) −2.82843 2.82843i −0.464991 0.464991i 0.435297 0.900287i \(-0.356644\pi\)
−0.900287 + 0.435297i \(0.856644\pi\)
\(38\) 4.00000 0.648886
\(39\) −4.24264 4.24264i −0.679366 0.679366i
\(40\) 2.82843 2.82843i 0.447214 0.447214i
\(41\) 7.07107 7.07107i 1.10432 1.10432i 0.110432 0.993884i \(-0.464777\pi\)
0.993884 0.110432i \(-0.0352233\pi\)
\(42\) 2.00000i 0.308607i
\(43\) 4.00000i 0.609994i −0.952353 0.304997i \(-0.901344\pi\)
0.952353 0.304997i \(-0.0986555\pi\)
\(44\) 0 0
\(45\) −2.82843 + 2.82843i −0.421637 + 0.421637i
\(46\) 4.24264 + 4.24264i 0.625543 + 0.625543i
\(47\) −4.00000 −0.583460 −0.291730 0.956501i \(-0.594231\pi\)
−0.291730 + 0.956501i \(0.594231\pi\)
\(48\) −0.707107 0.707107i −0.102062 0.102062i
\(49\) 3.00000i 0.428571i
\(50\) −11.0000 −1.55563
\(51\) 0 0
\(52\) −6.00000 −0.832050
\(53\) 2.00000i 0.274721i 0.990521 + 0.137361i \(0.0438619\pi\)
−0.990521 + 0.137361i \(0.956138\pi\)
\(54\) 0.707107 + 0.707107i 0.0962250 + 0.0962250i
\(55\) 0 0
\(56\) −1.41421 1.41421i −0.188982 0.188982i
\(57\) −2.82843 + 2.82843i −0.374634 + 0.374634i
\(58\) −2.82843 + 2.82843i −0.371391 + 0.371391i
\(59\) 12.0000i 1.56227i 0.624364 + 0.781133i \(0.285358\pi\)
−0.624364 + 0.781133i \(0.714642\pi\)
\(60\) 4.00000i 0.516398i
\(61\) 2.82843 2.82843i 0.362143 0.362143i −0.502458 0.864601i \(-0.667571\pi\)
0.864601 + 0.502458i \(0.167571\pi\)
\(62\) 4.24264 4.24264i 0.538816 0.538816i
\(63\) 1.41421 + 1.41421i 0.178174 + 0.178174i
\(64\) −1.00000 −0.125000
\(65\) 16.9706 + 16.9706i 2.10494 + 2.10494i
\(66\) 0 0
\(67\) −12.0000 −1.46603 −0.733017 0.680211i \(-0.761888\pi\)
−0.733017 + 0.680211i \(0.761888\pi\)
\(68\) 0 0
\(69\) −6.00000 −0.722315
\(70\) 8.00000i 0.956183i
\(71\) −4.24264 4.24264i −0.503509 0.503509i 0.409018 0.912526i \(-0.365871\pi\)
−0.912526 + 0.409018i \(0.865871\pi\)
\(72\) 1.00000 0.117851
\(73\) −1.41421 1.41421i −0.165521 0.165521i 0.619486 0.785007i \(-0.287341\pi\)
−0.785007 + 0.619486i \(0.787341\pi\)
\(74\) 2.82843 2.82843i 0.328798 0.328798i
\(75\) 7.77817 7.77817i 0.898146 0.898146i
\(76\) 4.00000i 0.458831i
\(77\) 0 0
\(78\) 4.24264 4.24264i 0.480384 0.480384i
\(79\) 7.07107 7.07107i 0.795557 0.795557i −0.186834 0.982391i \(-0.559823\pi\)
0.982391 + 0.186834i \(0.0598227\pi\)
\(80\) 2.82843 + 2.82843i 0.316228 + 0.316228i
\(81\) −1.00000 −0.111111
\(82\) 7.07107 + 7.07107i 0.780869 + 0.780869i
\(83\) 12.0000i 1.31717i 0.752506 + 0.658586i \(0.228845\pi\)
−0.752506 + 0.658586i \(0.771155\pi\)
\(84\) 2.00000 0.218218
\(85\) 0 0
\(86\) 4.00000 0.431331
\(87\) 4.00000i 0.428845i
\(88\) 0 0
\(89\) 2.00000 0.212000 0.106000 0.994366i \(-0.466196\pi\)
0.106000 + 0.994366i \(0.466196\pi\)
\(90\) −2.82843 2.82843i −0.298142 0.298142i
\(91\) 8.48528 8.48528i 0.889499 0.889499i
\(92\) −4.24264 + 4.24264i −0.442326 + 0.442326i
\(93\) 6.00000i 0.622171i
\(94\) 4.00000i 0.412568i
\(95\) 11.3137 11.3137i 1.16076 1.16076i
\(96\) 0.707107 0.707107i 0.0721688 0.0721688i
\(97\) −4.24264 4.24264i −0.430775 0.430775i 0.458117 0.888892i \(-0.348524\pi\)
−0.888892 + 0.458117i \(0.848524\pi\)
\(98\) −3.00000 −0.303046
\(99\) 0 0
\(100\) 11.0000i 1.10000i
\(101\) 14.0000 1.39305 0.696526 0.717532i \(-0.254728\pi\)
0.696526 + 0.717532i \(0.254728\pi\)
\(102\) 0 0
\(103\) 4.00000 0.394132 0.197066 0.980390i \(-0.436859\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) 6.00000i 0.588348i
\(105\) −5.65685 5.65685i −0.552052 0.552052i
\(106\) −2.00000 −0.194257
\(107\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(108\) −0.707107 + 0.707107i −0.0680414 + 0.0680414i
\(109\) −11.3137 + 11.3137i −1.08366 + 1.08366i −0.0874915 + 0.996165i \(0.527885\pi\)
−0.996165 + 0.0874915i \(0.972115\pi\)
\(110\) 0 0
\(111\) 4.00000i 0.379663i
\(112\) 1.41421 1.41421i 0.133631 0.133631i
\(113\) 1.41421 1.41421i 0.133038 0.133038i −0.637452 0.770490i \(-0.720012\pi\)
0.770490 + 0.637452i \(0.220012\pi\)
\(114\) −2.82843 2.82843i −0.264906 0.264906i
\(115\) 24.0000 2.23801
\(116\) −2.82843 2.82843i −0.262613 0.262613i
\(117\) 6.00000i 0.554700i
\(118\) −12.0000 −1.10469
\(119\) 0 0
\(120\) −4.00000 −0.365148
\(121\) 11.0000i 1.00000i
\(122\) 2.82843 + 2.82843i 0.256074 + 0.256074i
\(123\) −10.0000 −0.901670
\(124\) 4.24264 + 4.24264i 0.381000 + 0.381000i
\(125\) −16.9706 + 16.9706i −1.51789 + 1.51789i
\(126\) −1.41421 + 1.41421i −0.125988 + 0.125988i
\(127\) 8.00000i 0.709885i 0.934888 + 0.354943i \(0.115500\pi\)
−0.934888 + 0.354943i \(0.884500\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) −2.82843 + 2.82843i −0.249029 + 0.249029i
\(130\) −16.9706 + 16.9706i −1.48842 + 1.48842i
\(131\) 11.3137 + 11.3137i 0.988483 + 0.988483i 0.999934 0.0114511i \(-0.00364509\pi\)
−0.0114511 + 0.999934i \(0.503645\pi\)
\(132\) 0 0
\(133\) −5.65685 5.65685i −0.490511 0.490511i
\(134\) 12.0000i 1.03664i
\(135\) 4.00000 0.344265
\(136\) 0 0
\(137\) −6.00000 −0.512615 −0.256307 0.966595i \(-0.582506\pi\)
−0.256307 + 0.966595i \(0.582506\pi\)
\(138\) 6.00000i 0.510754i
\(139\) 5.65685 + 5.65685i 0.479808 + 0.479808i 0.905070 0.425262i \(-0.139818\pi\)
−0.425262 + 0.905070i \(0.639818\pi\)
\(140\) −8.00000 −0.676123
\(141\) 2.82843 + 2.82843i 0.238197 + 0.238197i
\(142\) 4.24264 4.24264i 0.356034 0.356034i
\(143\) 0 0
\(144\) 1.00000i 0.0833333i
\(145\) 16.0000i 1.32873i
\(146\) 1.41421 1.41421i 0.117041 0.117041i
\(147\) 2.12132 2.12132i 0.174964 0.174964i
\(148\) 2.82843 + 2.82843i 0.232495 + 0.232495i
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 7.77817 + 7.77817i 0.635085 + 0.635085i
\(151\) 24.0000i 1.95309i 0.215308 + 0.976546i \(0.430924\pi\)
−0.215308 + 0.976546i \(0.569076\pi\)
\(152\) −4.00000 −0.324443
\(153\) 0 0
\(154\) 0 0
\(155\) 24.0000i 1.92773i
\(156\) 4.24264 + 4.24264i 0.339683 + 0.339683i
\(157\) −6.00000 −0.478852 −0.239426 0.970915i \(-0.576959\pi\)
−0.239426 + 0.970915i \(0.576959\pi\)
\(158\) 7.07107 + 7.07107i 0.562544 + 0.562544i
\(159\) 1.41421 1.41421i 0.112154 0.112154i
\(160\) −2.82843 + 2.82843i −0.223607 + 0.223607i
\(161\) 12.0000i 0.945732i
\(162\) 1.00000i 0.0785674i
\(163\) −8.48528 + 8.48528i −0.664619 + 0.664619i −0.956465 0.291847i \(-0.905730\pi\)
0.291847 + 0.956465i \(0.405730\pi\)
\(164\) −7.07107 + 7.07107i −0.552158 + 0.552158i
\(165\) 0 0
\(166\) −12.0000 −0.931381
\(167\) −1.41421 1.41421i −0.109435 0.109435i 0.650269 0.759704i \(-0.274656\pi\)
−0.759704 + 0.650269i \(0.774656\pi\)
\(168\) 2.00000i 0.154303i
\(169\) 23.0000 1.76923
\(170\) 0 0
\(171\) 4.00000 0.305888
\(172\) 4.00000i 0.304997i
\(173\) −2.82843 2.82843i −0.215041 0.215041i 0.591364 0.806405i \(-0.298590\pi\)
−0.806405 + 0.591364i \(0.798590\pi\)
\(174\) 4.00000 0.303239
\(175\) 15.5563 + 15.5563i 1.17595 + 1.17595i
\(176\) 0 0
\(177\) 8.48528 8.48528i 0.637793 0.637793i
\(178\) 2.00000i 0.149906i
\(179\) 12.0000i 0.896922i −0.893802 0.448461i \(-0.851972\pi\)
0.893802 0.448461i \(-0.148028\pi\)
\(180\) 2.82843 2.82843i 0.210819 0.210819i
\(181\) −14.1421 + 14.1421i −1.05118 + 1.05118i −0.0525588 + 0.998618i \(0.516738\pi\)
−0.998618 + 0.0525588i \(0.983262\pi\)
\(182\) 8.48528 + 8.48528i 0.628971 + 0.628971i
\(183\) −4.00000 −0.295689
\(184\) −4.24264 4.24264i −0.312772 0.312772i
\(185\) 16.0000i 1.17634i
\(186\) −6.00000 −0.439941
\(187\) 0 0
\(188\) 4.00000 0.291730
\(189\) 2.00000i 0.145479i
\(190\) 11.3137 + 11.3137i 0.820783 + 0.820783i
\(191\) 4.00000 0.289430 0.144715 0.989473i \(-0.453773\pi\)
0.144715 + 0.989473i \(0.453773\pi\)
\(192\) 0.707107 + 0.707107i 0.0510310 + 0.0510310i
\(193\) 4.24264 4.24264i 0.305392 0.305392i −0.537727 0.843119i \(-0.680717\pi\)
0.843119 + 0.537727i \(0.180717\pi\)
\(194\) 4.24264 4.24264i 0.304604 0.304604i
\(195\) 24.0000i 1.71868i
\(196\) 3.00000i 0.214286i
\(197\) −5.65685 + 5.65685i −0.403034 + 0.403034i −0.879301 0.476267i \(-0.841990\pi\)
0.476267 + 0.879301i \(0.341990\pi\)
\(198\) 0 0
\(199\) −9.89949 9.89949i −0.701757 0.701757i 0.263031 0.964787i \(-0.415278\pi\)
−0.964787 + 0.263031i \(0.915278\pi\)
\(200\) 11.0000 0.777817
\(201\) 8.48528 + 8.48528i 0.598506 + 0.598506i
\(202\) 14.0000i 0.985037i
\(203\) 8.00000 0.561490
\(204\) 0 0
\(205\) 40.0000 2.79372
\(206\) 4.00000i 0.278693i
\(207\) 4.24264 + 4.24264i 0.294884 + 0.294884i
\(208\) 6.00000 0.416025
\(209\) 0 0
\(210\) 5.65685 5.65685i 0.390360 0.390360i
\(211\) −5.65685 + 5.65685i −0.389434 + 0.389434i −0.874486 0.485052i \(-0.838801\pi\)
0.485052 + 0.874486i \(0.338801\pi\)
\(212\) 2.00000i 0.137361i
\(213\) 6.00000i 0.411113i
\(214\) 0 0
\(215\) 11.3137 11.3137i 0.771589 0.771589i
\(216\) −0.707107 0.707107i −0.0481125 0.0481125i
\(217\) −12.0000 −0.814613
\(218\) −11.3137 11.3137i −0.766261 0.766261i
\(219\) 2.00000i 0.135147i
\(220\) 0 0
\(221\) 0 0
\(222\) −4.00000 −0.268462
\(223\) 4.00000i 0.267860i 0.990991 + 0.133930i \(0.0427597\pi\)
−0.990991 + 0.133930i \(0.957240\pi\)
\(224\) 1.41421 + 1.41421i 0.0944911 + 0.0944911i
\(225\) −11.0000 −0.733333
\(226\) 1.41421 + 1.41421i 0.0940721 + 0.0940721i
\(227\) 2.82843 2.82843i 0.187729 0.187729i −0.606984 0.794714i \(-0.707621\pi\)
0.794714 + 0.606984i \(0.207621\pi\)
\(228\) 2.82843 2.82843i 0.187317 0.187317i
\(229\) 2.00000i 0.132164i −0.997814 0.0660819i \(-0.978950\pi\)
0.997814 0.0660819i \(-0.0210498\pi\)
\(230\) 24.0000i 1.58251i
\(231\) 0 0
\(232\) 2.82843 2.82843i 0.185695 0.185695i
\(233\) 4.24264 + 4.24264i 0.277945 + 0.277945i 0.832288 0.554343i \(-0.187031\pi\)
−0.554343 + 0.832288i \(0.687031\pi\)
\(234\) −6.00000 −0.392232
\(235\) −11.3137 11.3137i −0.738025 0.738025i
\(236\) 12.0000i 0.781133i
\(237\) −10.0000 −0.649570
\(238\) 0 0
\(239\) −20.0000 −1.29369 −0.646846 0.762620i \(-0.723912\pi\)
−0.646846 + 0.762620i \(0.723912\pi\)
\(240\) 4.00000i 0.258199i
\(241\) −12.7279 12.7279i −0.819878 0.819878i 0.166212 0.986090i \(-0.446846\pi\)
−0.986090 + 0.166212i \(0.946846\pi\)
\(242\) −11.0000 −0.707107
\(243\) 0.707107 + 0.707107i 0.0453609 + 0.0453609i
\(244\) −2.82843 + 2.82843i −0.181071 + 0.181071i
\(245\) −8.48528 + 8.48528i −0.542105 + 0.542105i
\(246\) 10.0000i 0.637577i
\(247\) 24.0000i 1.52708i
\(248\) −4.24264 + 4.24264i −0.269408 + 0.269408i
\(249\) 8.48528 8.48528i 0.537733 0.537733i
\(250\) −16.9706 16.9706i −1.07331 1.07331i
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) −1.41421 1.41421i −0.0890871 0.0890871i
\(253\) 0 0
\(254\) −8.00000 −0.501965
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 18.0000i 1.12281i −0.827541 0.561405i \(-0.810261\pi\)
0.827541 0.561405i \(-0.189739\pi\)
\(258\) −2.82843 2.82843i −0.176090 0.176090i
\(259\) −8.00000 −0.497096
\(260\) −16.9706 16.9706i −1.05247 1.05247i
\(261\) −2.82843 + 2.82843i −0.175075 + 0.175075i
\(262\) −11.3137 + 11.3137i −0.698963 + 0.698963i
\(263\) 12.0000i 0.739952i −0.929041 0.369976i \(-0.879366\pi\)
0.929041 0.369976i \(-0.120634\pi\)
\(264\) 0 0
\(265\) −5.65685 + 5.65685i −0.347498 + 0.347498i
\(266\) 5.65685 5.65685i 0.346844 0.346844i
\(267\) −1.41421 1.41421i −0.0865485 0.0865485i
\(268\) 12.0000 0.733017
\(269\) −8.48528 8.48528i −0.517357 0.517357i 0.399414 0.916771i \(-0.369214\pi\)
−0.916771 + 0.399414i \(0.869214\pi\)
\(270\) 4.00000i 0.243432i
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) 0 0
\(273\) −12.0000 −0.726273
\(274\) 6.00000i 0.362473i
\(275\) 0 0
\(276\) 6.00000 0.361158
\(277\) 5.65685 + 5.65685i 0.339887 + 0.339887i 0.856325 0.516437i \(-0.172742\pi\)
−0.516437 + 0.856325i \(0.672742\pi\)
\(278\) −5.65685 + 5.65685i −0.339276 + 0.339276i
\(279\) 4.24264 4.24264i 0.254000 0.254000i
\(280\) 8.00000i 0.478091i
\(281\) 18.0000i 1.07379i −0.843649 0.536895i \(-0.819597\pi\)
0.843649 0.536895i \(-0.180403\pi\)
\(282\) −2.82843 + 2.82843i −0.168430 + 0.168430i
\(283\) 22.6274 22.6274i 1.34506 1.34506i 0.454120 0.890941i \(-0.349954\pi\)
0.890941 0.454120i \(-0.150046\pi\)
\(284\) 4.24264 + 4.24264i 0.251754 + 0.251754i
\(285\) −16.0000 −0.947758
\(286\) 0 0
\(287\) 20.0000i 1.18056i
\(288\) −1.00000 −0.0589256
\(289\) 0 0
\(290\) −16.0000 −0.939552
\(291\) 6.00000i 0.351726i
\(292\) 1.41421 + 1.41421i 0.0827606 + 0.0827606i
\(293\) −2.00000 −0.116841 −0.0584206 0.998292i \(-0.518606\pi\)
−0.0584206 + 0.998292i \(0.518606\pi\)
\(294\) 2.12132 + 2.12132i 0.123718 + 0.123718i
\(295\) −33.9411 + 33.9411i −1.97613 + 1.97613i
\(296\) −2.82843 + 2.82843i −0.164399 + 0.164399i
\(297\) 0 0
\(298\) 6.00000i 0.347571i
\(299\) 25.4558 25.4558i 1.47215 1.47215i
\(300\) −7.77817 + 7.77817i −0.449073 + 0.449073i
\(301\) −5.65685 5.65685i −0.326056 0.326056i
\(302\) −24.0000 −1.38104
\(303\) −9.89949 9.89949i −0.568711 0.568711i
\(304\) 4.00000i 0.229416i
\(305\) 16.0000 0.916157
\(306\) 0 0
\(307\) −12.0000 −0.684876 −0.342438 0.939540i \(-0.611253\pi\)
−0.342438 + 0.939540i \(0.611253\pi\)
\(308\) 0 0
\(309\) −2.82843 2.82843i −0.160904 0.160904i
\(310\) 24.0000 1.36311
\(311\) −21.2132 21.2132i −1.20289 1.20289i −0.973283 0.229607i \(-0.926256\pi\)
−0.229607 0.973283i \(-0.573744\pi\)
\(312\) −4.24264 + 4.24264i −0.240192 + 0.240192i
\(313\) 18.3848 18.3848i 1.03917 1.03917i 0.0399680 0.999201i \(-0.487274\pi\)
0.999201 0.0399680i \(-0.0127256\pi\)
\(314\) 6.00000i 0.338600i
\(315\) 8.00000i 0.450749i
\(316\) −7.07107 + 7.07107i −0.397779 + 0.397779i
\(317\) −11.3137 + 11.3137i −0.635441 + 0.635441i −0.949428 0.313986i \(-0.898335\pi\)
0.313986 + 0.949428i \(0.398335\pi\)
\(318\) 1.41421 + 1.41421i 0.0793052 + 0.0793052i
\(319\) 0 0
\(320\) −2.82843 2.82843i −0.158114 0.158114i
\(321\) 0 0
\(322\) 12.0000 0.668734
\(323\) 0 0
\(324\) 1.00000 0.0555556
\(325\) 66.0000i 3.66102i
\(326\) −8.48528 8.48528i −0.469956 0.469956i
\(327\) 16.0000 0.884802
\(328\) −7.07107 7.07107i −0.390434 0.390434i
\(329\) −5.65685 + 5.65685i −0.311872 + 0.311872i
\(330\) 0 0
\(331\) 20.0000i 1.09930i 0.835395 + 0.549650i \(0.185239\pi\)
−0.835395 + 0.549650i \(0.814761\pi\)
\(332\) 12.0000i 0.658586i
\(333\) 2.82843 2.82843i 0.154997 0.154997i
\(334\) 1.41421 1.41421i 0.0773823 0.0773823i
\(335\) −33.9411 33.9411i −1.85440 1.85440i
\(336\) −2.00000 −0.109109
\(337\) −4.24264 4.24264i −0.231111 0.231111i 0.582045 0.813156i \(-0.302253\pi\)
−0.813156 + 0.582045i \(0.802253\pi\)
\(338\) 23.0000i 1.25104i
\(339\) −2.00000 −0.108625
\(340\) 0 0
\(341\) 0 0
\(342\) 4.00000i 0.216295i
\(343\) 14.1421 + 14.1421i 0.763604 + 0.763604i
\(344\) −4.00000 −0.215666
\(345\) −16.9706 16.9706i −0.913664 0.913664i
\(346\) 2.82843 2.82843i 0.152057 0.152057i
\(347\) 2.82843 2.82843i 0.151838 0.151838i −0.627100 0.778938i \(-0.715758\pi\)
0.778938 + 0.627100i \(0.215758\pi\)
\(348\) 4.00000i 0.214423i
\(349\) 30.0000i 1.60586i −0.596071 0.802932i \(-0.703272\pi\)
0.596071 0.802932i \(-0.296728\pi\)
\(350\) −15.5563 + 15.5563i −0.831522 + 0.831522i
\(351\) 4.24264 4.24264i 0.226455 0.226455i
\(352\) 0 0
\(353\) −14.0000 −0.745145 −0.372572 0.928003i \(-0.621524\pi\)
−0.372572 + 0.928003i \(0.621524\pi\)
\(354\) 8.48528 + 8.48528i 0.450988 + 0.450988i
\(355\) 24.0000i 1.27379i
\(356\) −2.00000 −0.106000
\(357\) 0 0
\(358\) 12.0000 0.634220
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 2.82843 + 2.82843i 0.149071 + 0.149071i
\(361\) 3.00000 0.157895
\(362\) −14.1421 14.1421i −0.743294 0.743294i
\(363\) 7.77817 7.77817i 0.408248 0.408248i
\(364\) −8.48528 + 8.48528i −0.444750 + 0.444750i
\(365\) 8.00000i 0.418739i
\(366\) 4.00000i 0.209083i
\(367\) −7.07107 + 7.07107i −0.369107 + 0.369107i −0.867151 0.498045i \(-0.834052\pi\)
0.498045 + 0.867151i \(0.334052\pi\)
\(368\) 4.24264 4.24264i 0.221163 0.221163i
\(369\) 7.07107 + 7.07107i 0.368105 + 0.368105i
\(370\) 16.0000 0.831800
\(371\) 2.82843 + 2.82843i 0.146845 + 0.146845i
\(372\) 6.00000i 0.311086i
\(373\) −14.0000 −0.724893 −0.362446 0.932005i \(-0.618058\pi\)
−0.362446 + 0.932005i \(0.618058\pi\)
\(374\) 0 0
\(375\) 24.0000 1.23935
\(376\) 4.00000i 0.206284i
\(377\) 16.9706 + 16.9706i 0.874028 + 0.874028i
\(378\) 2.00000 0.102869
\(379\) 2.82843 + 2.82843i 0.145287 + 0.145287i 0.776009 0.630722i \(-0.217241\pi\)
−0.630722 + 0.776009i \(0.717241\pi\)
\(380\) −11.3137 + 11.3137i −0.580381 + 0.580381i
\(381\) 5.65685 5.65685i 0.289809 0.289809i
\(382\) 4.00000i 0.204658i
\(383\) 28.0000i 1.43073i 0.698749 + 0.715367i \(0.253740\pi\)
−0.698749 + 0.715367i \(0.746260\pi\)
\(384\) −0.707107 + 0.707107i −0.0360844 + 0.0360844i
\(385\) 0 0
\(386\) 4.24264 + 4.24264i 0.215945 + 0.215945i
\(387\) 4.00000 0.203331
\(388\) 4.24264 + 4.24264i 0.215387 + 0.215387i
\(389\) 14.0000i 0.709828i 0.934899 + 0.354914i \(0.115490\pi\)
−0.934899 + 0.354914i \(0.884510\pi\)
\(390\) 24.0000 1.21529
\(391\) 0 0
\(392\) 3.00000 0.151523
\(393\) 16.0000i 0.807093i
\(394\) −5.65685 5.65685i −0.284988 0.284988i
\(395\) 40.0000 2.01262
\(396\) 0 0
\(397\) 14.1421 14.1421i 0.709773 0.709773i −0.256714 0.966487i \(-0.582640\pi\)
0.966487 + 0.256714i \(0.0826398\pi\)
\(398\) 9.89949 9.89949i 0.496217 0.496217i
\(399\) 8.00000i 0.400501i
\(400\) 11.0000i 0.550000i
\(401\) −21.2132 + 21.2132i −1.05934 + 1.05934i −0.0612120 + 0.998125i \(0.519497\pi\)
−0.998125 + 0.0612120i \(0.980503\pi\)
\(402\) −8.48528 + 8.48528i −0.423207 + 0.423207i
\(403\) −25.4558 25.4558i −1.26805 1.26805i
\(404\) −14.0000 −0.696526
\(405\) −2.82843 2.82843i −0.140546 0.140546i
\(406\) 8.00000i 0.397033i
\(407\) 0 0
\(408\) 0 0
\(409\) −26.0000 −1.28562 −0.642809 0.766027i \(-0.722231\pi\)
−0.642809 + 0.766027i \(0.722231\pi\)
\(410\) 40.0000i 1.97546i
\(411\) 4.24264 + 4.24264i 0.209274 + 0.209274i
\(412\) −4.00000 −0.197066
\(413\) 16.9706 + 16.9706i 0.835067 + 0.835067i
\(414\) −4.24264 + 4.24264i −0.208514 + 0.208514i
\(415\) −33.9411 + 33.9411i −1.66610 + 1.66610i
\(416\) 6.00000i 0.294174i
\(417\) 8.00000i 0.391762i
\(418\) 0 0
\(419\) −8.48528 + 8.48528i −0.414533 + 0.414533i −0.883314 0.468781i \(-0.844693\pi\)
0.468781 + 0.883314i \(0.344693\pi\)
\(420\) 5.65685 + 5.65685i 0.276026 + 0.276026i
\(421\) −34.0000 −1.65706 −0.828529 0.559946i \(-0.810822\pi\)
−0.828529 + 0.559946i \(0.810822\pi\)
\(422\) −5.65685 5.65685i −0.275371 0.275371i
\(423\) 4.00000i 0.194487i
\(424\) 2.00000 0.0971286
\(425\) 0 0
\(426\) −6.00000 −0.290701
\(427\) 8.00000i 0.387147i
\(428\) 0 0
\(429\) 0 0
\(430\) 11.3137 + 11.3137i 0.545595 + 0.545595i
\(431\) 9.89949 9.89949i 0.476842 0.476842i −0.427278 0.904120i \(-0.640528\pi\)
0.904120 + 0.427278i \(0.140528\pi\)
\(432\) 0.707107 0.707107i 0.0340207 0.0340207i
\(433\) 18.0000i 0.865025i −0.901628 0.432512i \(-0.857627\pi\)
0.901628 0.432512i \(-0.142373\pi\)
\(434\) 12.0000i 0.576018i
\(435\) 11.3137 11.3137i 0.542451 0.542451i
\(436\) 11.3137 11.3137i 0.541828 0.541828i
\(437\) −16.9706 16.9706i −0.811812 0.811812i
\(438\) −2.00000 −0.0955637
\(439\) −7.07107 7.07107i −0.337484 0.337484i 0.517936 0.855419i \(-0.326701\pi\)
−0.855419 + 0.517936i \(0.826701\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) 0 0
\(443\) 12.0000 0.570137 0.285069 0.958507i \(-0.407984\pi\)
0.285069 + 0.958507i \(0.407984\pi\)
\(444\) 4.00000i 0.189832i
\(445\) 5.65685 + 5.65685i 0.268161 + 0.268161i
\(446\) −4.00000 −0.189405
\(447\) −4.24264 4.24264i −0.200670 0.200670i
\(448\) −1.41421 + 1.41421i −0.0668153 + 0.0668153i
\(449\) 18.3848 18.3848i 0.867631 0.867631i −0.124579 0.992210i \(-0.539758\pi\)
0.992210 + 0.124579i \(0.0397579\pi\)
\(450\) 11.0000i 0.518545i
\(451\) 0 0
\(452\) −1.41421 + 1.41421i −0.0665190 + 0.0665190i
\(453\) 16.9706 16.9706i 0.797347 0.797347i
\(454\) 2.82843 + 2.82843i 0.132745 + 0.132745i
\(455\) 48.0000 2.25027
\(456\) 2.82843 + 2.82843i 0.132453 + 0.132453i
\(457\) 22.0000i 1.02912i −0.857455 0.514558i \(-0.827956\pi\)
0.857455 0.514558i \(-0.172044\pi\)
\(458\) 2.00000 0.0934539
\(459\) 0 0
\(460\) −24.0000 −1.11901
\(461\) 10.0000i 0.465746i 0.972507 + 0.232873i \(0.0748127\pi\)
−0.972507 + 0.232873i \(0.925187\pi\)
\(462\) 0 0
\(463\) 4.00000 0.185896 0.0929479 0.995671i \(-0.470371\pi\)
0.0929479 + 0.995671i \(0.470371\pi\)
\(464\) 2.82843 + 2.82843i 0.131306 + 0.131306i
\(465\) −16.9706 + 16.9706i −0.786991 + 0.786991i
\(466\) −4.24264 + 4.24264i −0.196537 + 0.196537i
\(467\) 36.0000i 1.66588i −0.553362 0.832941i \(-0.686655\pi\)
0.553362 0.832941i \(-0.313345\pi\)
\(468\) 6.00000i 0.277350i
\(469\) −16.9706 + 16.9706i −0.783628 + 0.783628i
\(470\) 11.3137 11.3137i 0.521862 0.521862i
\(471\) 4.24264 + 4.24264i 0.195491 + 0.195491i
\(472\) 12.0000 0.552345
\(473\) 0 0
\(474\) 10.0000i 0.459315i
\(475\) 44.0000 2.01886
\(476\) 0 0
\(477\) −2.00000 −0.0915737
\(478\) 20.0000i 0.914779i
\(479\) 7.07107 + 7.07107i 0.323085 + 0.323085i 0.849949 0.526864i \(-0.176632\pi\)
−0.526864 + 0.849949i \(0.676632\pi\)
\(480\) 4.00000 0.182574
\(481\) −16.9706 16.9706i −0.773791 0.773791i
\(482\) 12.7279 12.7279i 0.579741 0.579741i
\(483\) −8.48528 + 8.48528i −0.386094 + 0.386094i
\(484\) 11.0000i 0.500000i
\(485\) 24.0000i 1.08978i
\(486\) −0.707107 + 0.707107i −0.0320750 + 0.0320750i
\(487\) −26.8701 + 26.8701i −1.21760 + 1.21760i −0.249128 + 0.968471i \(0.580144\pi\)
−0.968471 + 0.249128i \(0.919856\pi\)
\(488\) −2.82843 2.82843i −0.128037 0.128037i
\(489\) 12.0000 0.542659
\(490\) −8.48528 8.48528i −0.383326 0.383326i
\(491\) 20.0000i 0.902587i 0.892375 + 0.451294i \(0.149037\pi\)
−0.892375 + 0.451294i \(0.850963\pi\)
\(492\) 10.0000 0.450835
\(493\) 0 0
\(494\) 24.0000 1.07981
\(495\) 0 0
\(496\) −4.24264 4.24264i −0.190500 0.190500i
\(497\) −12.0000 −0.538274
\(498\) 8.48528 + 8.48528i 0.380235 + 0.380235i
\(499\) 22.6274 22.6274i 1.01294 1.01294i 0.0130272 0.999915i \(-0.495853\pi\)
0.999915 0.0130272i \(-0.00414679\pi\)
\(500\) 16.9706 16.9706i 0.758947 0.758947i
\(501\) 2.00000i 0.0893534i
\(502\) 12.0000i 0.535586i
\(503\) 18.3848 18.3848i 0.819737 0.819737i −0.166333 0.986070i \(-0.553193\pi\)
0.986070 + 0.166333i \(0.0531927\pi\)
\(504\) 1.41421 1.41421i 0.0629941 0.0629941i
\(505\) 39.5980 + 39.5980i 1.76209 + 1.76209i
\(506\) 0 0
\(507\) −16.2635 16.2635i −0.722285 0.722285i
\(508\) 8.00000i 0.354943i
\(509\) 26.0000 1.15243 0.576215 0.817298i \(-0.304529\pi\)
0.576215 + 0.817298i \(0.304529\pi\)
\(510\) 0 0
\(511\) −4.00000 −0.176950
\(512\) 1.00000i 0.0441942i
\(513\) −2.82843 2.82843i −0.124878 0.124878i
\(514\) 18.0000 0.793946
\(515\) 11.3137 + 11.3137i 0.498542 + 0.498542i
\(516\) 2.82843 2.82843i 0.124515 0.124515i
\(517\) 0 0
\(518\) 8.00000i 0.351500i
\(519\) 4.00000i 0.175581i
\(520\) 16.9706 16.9706i 0.744208 0.744208i
\(521\) −7.07107 + 7.07107i −0.309789 + 0.309789i −0.844828 0.535039i \(-0.820297\pi\)
0.535039 + 0.844828i \(0.320297\pi\)
\(522\) −2.82843 2.82843i −0.123797 0.123797i
\(523\) 20.0000 0.874539 0.437269 0.899331i \(-0.355946\pi\)
0.437269 + 0.899331i \(0.355946\pi\)
\(524\) −11.3137 11.3137i −0.494242 0.494242i
\(525\) 22.0000i 0.960159i
\(526\) 12.0000 0.523225
\(527\) 0 0
\(528\) 0 0
\(529\) 13.0000i 0.565217i
\(530\) −5.65685 5.65685i −0.245718 0.245718i
\(531\) −12.0000 −0.520756
\(532\) 5.65685 + 5.65685i 0.245256 + 0.245256i
\(533\) 42.4264 42.4264i 1.83769 1.83769i
\(534\) 1.41421 1.41421i 0.0611990 0.0611990i
\(535\) 0 0
\(536\) 12.0000i 0.518321i
\(537\) −8.48528 + 8.48528i −0.366167 + 0.366167i
\(538\) 8.48528 8.48528i 0.365826 0.365826i
\(539\) 0 0
\(540\) −4.00000 −0.172133
\(541\) −8.48528 8.48528i −0.364811 0.364811i 0.500770 0.865581i \(-0.333050\pi\)
−0.865581 + 0.500770i \(0.833050\pi\)
\(542\) 16.0000i 0.687259i
\(543\) 20.0000 0.858282
\(544\) 0 0
\(545\) −64.0000 −2.74146
\(546\) 12.0000i 0.513553i
\(547\) −5.65685 5.65685i −0.241870 0.241870i 0.575754 0.817623i \(-0.304709\pi\)
−0.817623 + 0.575754i \(0.804709\pi\)
\(548\) 6.00000 0.256307
\(549\) 2.82843 + 2.82843i 0.120714 + 0.120714i
\(550\) 0 0
\(551\) 11.3137 11.3137i 0.481980 0.481980i
\(552\) 6.00000i 0.255377i
\(553\) 20.0000i 0.850487i
\(554\) −5.65685 + 5.65685i −0.240337 + 0.240337i
\(555\) −11.3137 + 11.3137i −0.480240 + 0.480240i
\(556\) −5.65685 5.65685i −0.239904 0.239904i
\(557\) −14.0000 −0.593199 −0.296600 0.955002i \(-0.595853\pi\)
−0.296600 + 0.955002i \(0.595853\pi\)
\(558\) 4.24264 + 4.24264i 0.179605 + 0.179605i
\(559\) 24.0000i 1.01509i
\(560\) 8.00000 0.338062
\(561\) 0 0
\(562\) 18.0000 0.759284
\(563\) 4.00000i 0.168580i 0.996441 + 0.0842900i \(0.0268622\pi\)
−0.996441 + 0.0842900i \(0.973138\pi\)
\(564\) −2.82843 2.82843i −0.119098 0.119098i
\(565\) 8.00000 0.336563
\(566\) 22.6274 + 22.6274i 0.951101 + 0.951101i
\(567\) −1.41421 + 1.41421i −0.0593914 + 0.0593914i
\(568\) −4.24264 + 4.24264i −0.178017 + 0.178017i
\(569\) 6.00000i 0.251533i −0.992060 0.125767i \(-0.959861\pi\)
0.992060 0.125767i \(-0.0401390\pi\)
\(570\) 16.0000i 0.670166i
\(571\) −31.1127 + 31.1127i −1.30203 + 1.30203i −0.375002 + 0.927024i \(0.622358\pi\)
−0.927024 + 0.375002i \(0.877642\pi\)
\(572\) 0 0
\(573\) −2.82843 2.82843i −0.118159 0.118159i
\(574\) 20.0000 0.834784
\(575\) 46.6690 + 46.6690i 1.94623 + 1.94623i
\(576\) 1.00000i 0.0416667i
\(577\) −30.0000 −1.24892 −0.624458 0.781058i \(-0.714680\pi\)
−0.624458 + 0.781058i \(0.714680\pi\)
\(578\) 0 0
\(579\) −6.00000 −0.249351
\(580\) 16.0000i 0.664364i
\(581\) 16.9706 + 16.9706i 0.704058 + 0.704058i
\(582\) −6.00000 −0.248708
\(583\) 0 0
\(584\) −1.41421 + 1.41421i −0.0585206 + 0.0585206i
\(585\) −16.9706 + 16.9706i −0.701646 + 0.701646i
\(586\) 2.00000i 0.0826192i
\(587\) 36.0000i 1.48588i 0.669359 + 0.742940i \(0.266569\pi\)
−0.669359 + 0.742940i \(0.733431\pi\)
\(588\) −2.12132 + 2.12132i −0.0874818 + 0.0874818i
\(589\) −16.9706 + 16.9706i −0.699260 + 0.699260i
\(590\) −33.9411 33.9411i −1.39733 1.39733i
\(591\) 8.00000 0.329076
\(592\) −2.82843 2.82843i −0.116248 0.116248i
\(593\) 30.0000i 1.23195i 0.787765 + 0.615976i \(0.211238\pi\)
−0.787765 + 0.615976i \(0.788762\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −6.00000 −0.245770
\(597\) 14.0000i 0.572982i
\(598\) 25.4558 + 25.4558i 1.04097 + 1.04097i
\(599\) 16.0000 0.653742 0.326871 0.945069i \(-0.394006\pi\)
0.326871 + 0.945069i \(0.394006\pi\)
\(600\) −7.77817 7.77817i −0.317543 0.317543i
\(601\) −26.8701 + 26.8701i −1.09605 + 1.09605i −0.101185 + 0.994868i \(0.532263\pi\)
−0.994868 + 0.101185i \(0.967737\pi\)
\(602\) 5.65685 5.65685i 0.230556 0.230556i
\(603\) 12.0000i 0.488678i
\(604\) 24.0000i 0.976546i
\(605\) −31.1127 + 31.1127i −1.26491 + 1.26491i
\(606\) 9.89949 9.89949i 0.402139 0.402139i
\(607\) 26.8701 + 26.8701i 1.09062 + 1.09062i 0.995462 + 0.0951600i \(0.0303363\pi\)
0.0951600 + 0.995462i \(0.469664\pi\)
\(608\) 4.00000 0.162221
\(609\) −5.65685 5.65685i −0.229227 0.229227i
\(610\) 16.0000i 0.647821i
\(611\) −24.0000 −0.970936
\(612\) 0 0
\(613\) 30.0000 1.21169 0.605844 0.795583i \(-0.292835\pi\)
0.605844 + 0.795583i \(0.292835\pi\)
\(614\) 12.0000i 0.484281i
\(615\) −28.2843 28.2843i −1.14053 1.14053i
\(616\) 0 0
\(617\) 4.24264 + 4.24264i 0.170802 + 0.170802i 0.787332 0.616530i \(-0.211462\pi\)
−0.616530 + 0.787332i \(0.711462\pi\)
\(618\) 2.82843 2.82843i 0.113776 0.113776i
\(619\) 14.1421 14.1421i 0.568420 0.568420i −0.363265 0.931686i \(-0.618338\pi\)
0.931686 + 0.363265i \(0.118338\pi\)
\(620\) 24.0000i 0.963863i
\(621\) 6.00000i 0.240772i
\(622\) 21.2132 21.2132i 0.850572 0.850572i
\(623\) 2.82843 2.82843i 0.113319 0.113319i
\(624\) −4.24264 4.24264i −0.169842 0.169842i
\(625\) −41.0000 −1.64000
\(626\) 18.3848 + 18.3848i 0.734803 + 0.734803i
\(627\) 0 0
\(628\) 6.00000 0.239426
\(629\) 0 0
\(630\) −8.00000 −0.318728
\(631\) 20.0000i 0.796187i −0.917345 0.398094i \(-0.869672\pi\)
0.917345 0.398094i \(-0.130328\pi\)
\(632\) −7.07107 7.07107i −0.281272 0.281272i
\(633\) 8.00000 0.317971
\(634\) −11.3137 11.3137i −0.449325 0.449325i
\(635\) −22.6274 + 22.6274i −0.897942 + 0.897942i
\(636\) −1.41421 + 1.41421i −0.0560772 + 0.0560772i
\(637\) 18.0000i 0.713186i
\(638\) 0 0
\(639\) 4.24264 4.24264i 0.167836 0.167836i
\(640\) 2.82843 2.82843i 0.111803 0.111803i
\(641\) 1.41421 + 1.41421i 0.0558581 + 0.0558581i 0.734484 0.678626i \(-0.237424\pi\)
−0.678626 + 0.734484i \(0.737424\pi\)
\(642\) 0 0
\(643\) 2.82843 + 2.82843i 0.111542 + 0.111542i 0.760675 0.649133i \(-0.224868\pi\)
−0.649133 + 0.760675i \(0.724868\pi\)
\(644\) 12.0000i 0.472866i
\(645\) −16.0000 −0.629999
\(646\) 0 0
\(647\) 28.0000 1.10079 0.550397 0.834903i \(-0.314476\pi\)
0.550397 + 0.834903i \(0.314476\pi\)
\(648\) 1.00000i 0.0392837i
\(649\) 0 0
\(650\) −66.0000 −2.58873
\(651\) 8.48528 + 8.48528i 0.332564 + 0.332564i
\(652\) 8.48528 8.48528i 0.332309 0.332309i
\(653\) −14.1421 + 14.1421i −0.553425 + 0.553425i −0.927428 0.374003i \(-0.877985\pi\)
0.374003 + 0.927428i \(0.377985\pi\)
\(654\) 16.0000i 0.625650i
\(655\) 64.0000i 2.50069i
\(656\) 7.07107 7.07107i 0.276079 0.276079i
\(657\) 1.41421 1.41421i 0.0551737 0.0551737i
\(658\) −5.65685 5.65685i −0.220527 0.220527i
\(659\) −12.0000 −0.467454 −0.233727 0.972302i \(-0.575092\pi\)
−0.233727 + 0.972302i \(0.575092\pi\)
\(660\) 0 0
\(661\) 14.0000i 0.544537i 0.962221 + 0.272268i \(0.0877739\pi\)
−0.962221 + 0.272268i \(0.912226\pi\)
\(662\) −20.0000 −0.777322
\(663\) 0 0
\(664\) 12.0000 0.465690
\(665\) 32.0000i 1.24091i
\(666\) 2.82843 + 2.82843i 0.109599 + 0.109599i
\(667\) 24.0000 0.929284
\(668\) 1.41421 + 1.41421i 0.0547176 + 0.0547176i
\(669\) 2.82843 2.82843i 0.109353 0.109353i
\(670\) 33.9411 33.9411i 1.31126 1.31126i
\(671\) 0 0
\(672\) 2.00000i 0.0771517i
\(673\) 18.3848 18.3848i 0.708681 0.708681i −0.257577 0.966258i \(-0.582924\pi\)
0.966258 + 0.257577i \(0.0829240\pi\)
\(674\) 4.24264 4.24264i 0.163420 0.163420i
\(675\) 7.77817 + 7.77817i 0.299382 + 0.299382i
\(676\) −23.0000 −0.884615
\(677\) 5.65685 + 5.65685i 0.217411 + 0.217411i 0.807406 0.589996i \(-0.200871\pi\)
−0.589996 + 0.807406i \(0.700871\pi\)
\(678\) 2.00000i 0.0768095i
\(679\) −12.0000 −0.460518
\(680\) 0 0
\(681\) −4.00000 −0.153280
\(682\) 0 0
\(683\) 8.48528 + 8.48528i 0.324680 + 0.324680i 0.850559 0.525879i \(-0.176264\pi\)
−0.525879 + 0.850559i \(0.676264\pi\)
\(684\) −4.00000 −0.152944
\(685\) −16.9706 16.9706i −0.648412 0.648412i
\(686\) −14.1421 + 14.1421i −0.539949 + 0.539949i
\(687\) −1.41421 + 1.41421i −0.0539556 + 0.0539556i
\(688\) 4.00000i 0.152499i
\(689\) 12.0000i 0.457164i
\(690\) 16.9706 16.9706i 0.646058 0.646058i
\(691\) 11.3137 11.3137i 0.430394 0.430394i −0.458368 0.888762i \(-0.651566\pi\)
0.888762 + 0.458368i \(0.151566\pi\)
\(692\) 2.82843 + 2.82843i 0.107521 + 0.107521i
\(693\) 0 0
\(694\) 2.82843 + 2.82843i 0.107366 + 0.107366i
\(695\) 32.0000i 1.21383i
\(696\) −4.00000 −0.151620
\(697\) 0 0
\(698\) 30.0000 1.13552
\(699\) 6.00000i 0.226941i
\(700\) −15.5563 15.5563i −0.587975 0.587975i
\(701\) 18.0000 0.679851 0.339925 0.940452i \(-0.389598\pi\)
0.339925 + 0.940452i \(0.389598\pi\)
\(702\) 4.24264 + 4.24264i 0.160128 + 0.160128i
\(703\) −11.3137 + 11.3137i −0.426705 + 0.426705i
\(704\) 0 0
\(705\) 16.0000i 0.602595i
\(706\) 14.0000i 0.526897i
\(707\) 19.7990 19.7990i 0.744618 0.744618i
\(708\) −8.48528 + 8.48528i −0.318896 + 0.318896i
\(709\) 11.3137 + 11.3137i 0.424895 + 0.424895i 0.886885 0.461990i \(-0.152864\pi\)
−0.461990 + 0.886885i \(0.652864\pi\)
\(710\) 24.0000 0.900704
\(711\) 7.07107 + 7.07107i 0.265186 + 0.265186i
\(712\) 2.00000i 0.0749532i
\(713\) −36.0000 −1.34821
\(714\) 0 0
\(715\) 0 0
\(716\) 12.0000i 0.448461i
\(717\) 14.1421 + 14.1421i 0.528148 + 0.528148i
\(718\) 0 0
\(719\) −29.6985 29.6985i −1.10757 1.10757i −0.993470 0.114097i \(-0.963603\pi\)
−0.114097 0.993470i \(-0.536397\pi\)
\(720\) −2.82843 + 2.82843i −0.105409 + 0.105409i
\(721\) 5.65685 5.65685i 0.210672 0.210672i
\(722\) 3.00000i 0.111648i
\(723\) 18.0000i 0.669427i
\(724\) 14.1421 14.1421i 0.525588 0.525588i
\(725\) −31.1127 + 31.1127i −1.15550 + 1.15550i
\(726\) 7.77817 + 7.77817i 0.288675 + 0.288675i
\(727\) 8.00000 0.296704 0.148352 0.988935i \(-0.452603\pi\)
0.148352 + 0.988935i \(0.452603\pi\)
\(728\) −8.48528 8.48528i −0.314485 0.314485i
\(729\) 1.00000i 0.0370370i
\(730\) 8.00000 0.296093
\(731\) 0 0
\(732\) 4.00000 0.147844
\(733\) 18.0000i 0.664845i −0.943131 0.332423i \(-0.892134\pi\)
0.943131 0.332423i \(-0.107866\pi\)
\(734\) −7.07107 7.07107i −0.260998 0.260998i
\(735\) 12.0000 0.442627
\(736\) 4.24264 + 4.24264i 0.156386 + 0.156386i
\(737\) 0 0
\(738\) −7.07107 + 7.07107i −0.260290 + 0.260290i
\(739\) 12.0000i 0.441427i −0.975339 0.220714i \(-0.929161\pi\)
0.975339 0.220714i \(-0.0708386\pi\)
\(740\) 16.0000i 0.588172i
\(741\) −16.9706 + 16.9706i −0.623429 + 0.623429i
\(742\) −2.82843 + 2.82843i −0.103835 + 0.103835i
\(743\) −26.8701 26.8701i −0.985767 0.985767i 0.0141333 0.999900i \(-0.495501\pi\)
−0.999900 + 0.0141333i \(0.995501\pi\)
\(744\) 6.00000 0.219971
\(745\) 16.9706 + 16.9706i 0.621753 + 0.621753i
\(746\) 14.0000i 0.512576i
\(747\) −12.0000 −0.439057
\(748\) 0 0
\(749\) 0 0
\(750\) 24.0000i 0.876356i
\(751\) −24.0416 24.0416i −0.877292 0.877292i 0.115962 0.993254i \(-0.463005\pi\)
−0.993254 + 0.115962i \(0.963005\pi\)
\(752\) −4.00000 −0.145865
\(753\) 8.48528 + 8.48528i 0.309221 + 0.309221i
\(754\) −16.9706 + 16.9706i −0.618031 + 0.618031i
\(755\) −67.8823 + 67.8823i −2.47049 + 2.47049i
\(756\) 2.00000i 0.0727393i
\(757\) 14.0000i 0.508839i 0.967094 + 0.254419i \(0.0818843\pi\)
−0.967094 + 0.254419i \(0.918116\pi\)
\(758\) −2.82843 + 2.82843i −0.102733 + 0.102733i
\(759\) 0 0
\(760\) −11.3137 11.3137i −0.410391 0.410391i
\(761\) −10.0000 −0.362500 −0.181250 0.983437i \(-0.558014\pi\)
−0.181250 + 0.983437i \(0.558014\pi\)
\(762\) 5.65685 + 5.65685i 0.204926 + 0.204926i
\(763\) 32.0000i 1.15848i
\(764\) −4.00000 −0.144715
\(765\) 0 0
\(766\) −28.0000 −1.01168
\(767\) 72.0000i 2.59977i
\(768\) −0.707107 0.707107i −0.0255155 0.0255155i
\(769\) −26.0000 −0.937584 −0.468792 0.883309i \(-0.655311\pi\)
−0.468792 + 0.883309i \(0.655311\pi\)
\(770\) 0 0
\(771\) −12.7279 + 12.7279i −0.458385 + 0.458385i
\(772\) −4.24264 + 4.24264i −0.152696 + 0.152696i
\(773\) 42.0000i 1.51064i 0.655359 + 0.755318i \(0.272517\pi\)
−0.655359 + 0.755318i \(0.727483\pi\)
\(774\) 4.00000i 0.143777i
\(775\) 46.6690 46.6690i 1.67640 1.67640i
\(776\) −4.24264 + 4.24264i −0.152302 + 0.152302i
\(777\) 5.65685 + 5.65685i 0.202939 + 0.202939i
\(778\) −14.0000 −0.501924
\(779\) −28.2843 28.2843i