Properties

Label 1734.2.f.g
Level $1734$
Weight $2$
Character orbit 1734.f
Analytic conductor $13.846$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1734,2,Mod(829,1734)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1734, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1734.829");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1734 = 2 \cdot 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1734.f (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.8460597105\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 102)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{8}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{8}^{2} q^{2} - \zeta_{8} q^{3} - q^{4} + 4 \zeta_{8} q^{5} - \zeta_{8}^{3} q^{6} - 2 \zeta_{8}^{3} q^{7} - \zeta_{8}^{2} q^{8} + \zeta_{8}^{2} q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + \zeta_{8}^{2} q^{2} - \zeta_{8} q^{3} - q^{4} + 4 \zeta_{8} q^{5} - \zeta_{8}^{3} q^{6} - 2 \zeta_{8}^{3} q^{7} - \zeta_{8}^{2} q^{8} + \zeta_{8}^{2} q^{9} + 4 \zeta_{8}^{3} q^{10} + \zeta_{8} q^{12} + 6 q^{13} + 2 \zeta_{8} q^{14} - 4 \zeta_{8}^{2} q^{15} + q^{16} - q^{18} - 4 \zeta_{8}^{2} q^{19} - 4 \zeta_{8} q^{20} - 2 q^{21} - 6 \zeta_{8}^{3} q^{23} + \zeta_{8}^{3} q^{24} + 11 \zeta_{8}^{2} q^{25} + 6 \zeta_{8}^{2} q^{26} - \zeta_{8}^{3} q^{27} + 2 \zeta_{8}^{3} q^{28} + 4 \zeta_{8} q^{29} + 4 q^{30} - 6 \zeta_{8} q^{31} + \zeta_{8}^{2} q^{32} + 8 q^{35} - \zeta_{8}^{2} q^{36} - 4 \zeta_{8} q^{37} + 4 q^{38} - 6 \zeta_{8} q^{39} - 4 \zeta_{8}^{3} q^{40} - 10 \zeta_{8}^{3} q^{41} - 2 \zeta_{8}^{2} q^{42} - 4 \zeta_{8}^{2} q^{43} + 4 \zeta_{8}^{3} q^{45} + 6 \zeta_{8} q^{46} - 4 q^{47} - \zeta_{8} q^{48} + 3 \zeta_{8}^{2} q^{49} - 11 q^{50} - 6 q^{52} + 2 \zeta_{8}^{2} q^{53} + \zeta_{8} q^{54} - 2 \zeta_{8} q^{56} + 4 \zeta_{8}^{3} q^{57} + 4 \zeta_{8}^{3} q^{58} + 12 \zeta_{8}^{2} q^{59} + 4 \zeta_{8}^{2} q^{60} - 4 \zeta_{8}^{3} q^{61} - 6 \zeta_{8}^{3} q^{62} + 2 \zeta_{8} q^{63} - q^{64} + 24 \zeta_{8} q^{65} - 12 q^{67} - 6 q^{69} + 8 \zeta_{8}^{2} q^{70} - 6 \zeta_{8} q^{71} + q^{72} - 2 \zeta_{8} q^{73} - 4 \zeta_{8}^{3} q^{74} - 11 \zeta_{8}^{3} q^{75} + 4 \zeta_{8}^{2} q^{76} - 6 \zeta_{8}^{3} q^{78} - 10 \zeta_{8}^{3} q^{79} + 4 \zeta_{8} q^{80} - q^{81} + 10 \zeta_{8} q^{82} + 12 \zeta_{8}^{2} q^{83} + 2 q^{84} + 4 q^{86} - 4 \zeta_{8}^{2} q^{87} + 2 q^{89} - 4 \zeta_{8} q^{90} - 12 \zeta_{8}^{3} q^{91} + 6 \zeta_{8}^{3} q^{92} + 6 \zeta_{8}^{2} q^{93} - 4 \zeta_{8}^{2} q^{94} - 16 \zeta_{8}^{3} q^{95} - \zeta_{8}^{3} q^{96} - 6 \zeta_{8} q^{97} - 3 q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{4} + 24 q^{13} + 4 q^{16} - 4 q^{18} - 8 q^{21} + 16 q^{30} + 32 q^{35} + 16 q^{38} - 16 q^{47} - 44 q^{50} - 24 q^{52} - 4 q^{64} - 48 q^{67} - 24 q^{69} + 4 q^{72} - 4 q^{81} + 8 q^{84} + 16 q^{86} + 8 q^{89} - 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1734\mathbb{Z}\right)^\times\).

\(n\) \(1157\) \(1159\)
\(\chi(n)\) \(1\) \(\zeta_{8}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
829.1
0.707107 + 0.707107i
−0.707107 0.707107i
0.707107 0.707107i
−0.707107 + 0.707107i
1.00000i −0.707107 0.707107i −1.00000 2.82843 + 2.82843i 0.707107 0.707107i 1.41421 1.41421i 1.00000i 1.00000i −2.82843 + 2.82843i
829.2 1.00000i 0.707107 + 0.707107i −1.00000 −2.82843 2.82843i −0.707107 + 0.707107i −1.41421 + 1.41421i 1.00000i 1.00000i 2.82843 2.82843i
1483.1 1.00000i −0.707107 + 0.707107i −1.00000 2.82843 2.82843i 0.707107 + 0.707107i 1.41421 + 1.41421i 1.00000i 1.00000i −2.82843 2.82843i
1483.2 1.00000i 0.707107 0.707107i −1.00000 −2.82843 + 2.82843i −0.707107 0.707107i −1.41421 1.41421i 1.00000i 1.00000i 2.82843 + 2.82843i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.b even 2 1 inner
17.c even 4 2 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1734.2.f.g 4
17.b even 2 1 inner 1734.2.f.g 4
17.c even 4 2 inner 1734.2.f.g 4
17.d even 8 1 102.2.a.a 1
17.d even 8 1 1734.2.a.h 1
17.d even 8 2 1734.2.b.d 2
51.g odd 8 1 306.2.a.d 1
51.g odd 8 1 5202.2.a.g 1
68.g odd 8 1 816.2.a.h 1
85.k odd 8 1 2550.2.d.q 2
85.m even 8 1 2550.2.a.be 1
85.n odd 8 1 2550.2.d.q 2
119.l odd 8 1 4998.2.a.x 1
136.o even 8 1 3264.2.a.bf 1
136.p odd 8 1 3264.2.a.p 1
204.p even 8 1 2448.2.a.t 1
255.y odd 8 1 7650.2.a.z 1
408.bd even 8 1 9792.2.a.b 1
408.be odd 8 1 9792.2.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
102.2.a.a 1 17.d even 8 1
306.2.a.d 1 51.g odd 8 1
816.2.a.h 1 68.g odd 8 1
1734.2.a.h 1 17.d even 8 1
1734.2.b.d 2 17.d even 8 2
1734.2.f.g 4 1.a even 1 1 trivial
1734.2.f.g 4 17.b even 2 1 inner
1734.2.f.g 4 17.c even 4 2 inner
2448.2.a.t 1 204.p even 8 1
2550.2.a.be 1 85.m even 8 1
2550.2.d.q 2 85.k odd 8 1
2550.2.d.q 2 85.n odd 8 1
3264.2.a.p 1 136.p odd 8 1
3264.2.a.bf 1 136.o even 8 1
4998.2.a.x 1 119.l odd 8 1
5202.2.a.g 1 51.g odd 8 1
7650.2.a.z 1 255.y odd 8 1
9792.2.a.a 1 408.be odd 8 1
9792.2.a.b 1 408.bd even 8 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1734, [\chi])\):

\( T_{5}^{4} + 256 \) Copy content Toggle raw display
\( T_{7}^{4} + 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} + 1 \) Copy content Toggle raw display
$5$ \( T^{4} + 256 \) Copy content Toggle raw display
$7$ \( T^{4} + 16 \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( (T - 6)^{4} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 1296 \) Copy content Toggle raw display
$29$ \( T^{4} + 256 \) Copy content Toggle raw display
$31$ \( T^{4} + 1296 \) Copy content Toggle raw display
$37$ \( T^{4} + 256 \) Copy content Toggle raw display
$41$ \( T^{4} + 10000 \) Copy content Toggle raw display
$43$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$47$ \( (T + 4)^{4} \) Copy content Toggle raw display
$53$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 144)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} + 256 \) Copy content Toggle raw display
$67$ \( (T + 12)^{4} \) Copy content Toggle raw display
$71$ \( T^{4} + 1296 \) Copy content Toggle raw display
$73$ \( T^{4} + 16 \) Copy content Toggle raw display
$79$ \( T^{4} + 10000 \) Copy content Toggle raw display
$83$ \( (T^{2} + 144)^{2} \) Copy content Toggle raw display
$89$ \( (T - 2)^{4} \) Copy content Toggle raw display
$97$ \( T^{4} + 1296 \) Copy content Toggle raw display
show more
show less