Properties

 Label 1734.2.a.j.1.1 Level $1734$ Weight $2$ Character 1734.1 Self dual yes Analytic conductor $13.846$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

Related objects

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1734,2,Mod(1,1734)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1734, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1734.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1734 = 2 \cdot 3 \cdot 17^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1734.a (trivial)

Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$13.8460597105$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 102) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

 Embedding label 1.1 Character $$\chi$$ $$=$$ 1734.1

$q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} +2.00000 q^{5} -1.00000 q^{6} +1.00000 q^{8} +1.00000 q^{9} +O(q^{10})$$ $$q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} +2.00000 q^{5} -1.00000 q^{6} +1.00000 q^{8} +1.00000 q^{9} +2.00000 q^{10} +4.00000 q^{11} -1.00000 q^{12} -2.00000 q^{13} -2.00000 q^{15} +1.00000 q^{16} +1.00000 q^{18} +4.00000 q^{19} +2.00000 q^{20} +4.00000 q^{22} -1.00000 q^{24} -1.00000 q^{25} -2.00000 q^{26} -1.00000 q^{27} +10.0000 q^{29} -2.00000 q^{30} -8.00000 q^{31} +1.00000 q^{32} -4.00000 q^{33} +1.00000 q^{36} +2.00000 q^{37} +4.00000 q^{38} +2.00000 q^{39} +2.00000 q^{40} -10.0000 q^{41} +12.0000 q^{43} +4.00000 q^{44} +2.00000 q^{45} -1.00000 q^{48} -7.00000 q^{49} -1.00000 q^{50} -2.00000 q^{52} +6.00000 q^{53} -1.00000 q^{54} +8.00000 q^{55} -4.00000 q^{57} +10.0000 q^{58} +12.0000 q^{59} -2.00000 q^{60} +10.0000 q^{61} -8.00000 q^{62} +1.00000 q^{64} -4.00000 q^{65} -4.00000 q^{66} -12.0000 q^{67} +1.00000 q^{72} -10.0000 q^{73} +2.00000 q^{74} +1.00000 q^{75} +4.00000 q^{76} +2.00000 q^{78} +8.00000 q^{79} +2.00000 q^{80} +1.00000 q^{81} -10.0000 q^{82} +4.00000 q^{83} +12.0000 q^{86} -10.0000 q^{87} +4.00000 q^{88} -6.00000 q^{89} +2.00000 q^{90} +8.00000 q^{93} +8.00000 q^{95} -1.00000 q^{96} +14.0000 q^{97} -7.00000 q^{98} +4.00000 q^{99} +O(q^{100})$$

Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 1.00000 0.707107
$$3$$ −1.00000 −0.577350
$$4$$ 1.00000 0.500000
$$5$$ 2.00000 0.894427 0.447214 0.894427i $$-0.352416\pi$$
0.447214 + 0.894427i $$0.352416\pi$$
$$6$$ −1.00000 −0.408248
$$7$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$8$$ 1.00000 0.353553
$$9$$ 1.00000 0.333333
$$10$$ 2.00000 0.632456
$$11$$ 4.00000 1.20605 0.603023 0.797724i $$-0.293963\pi$$
0.603023 + 0.797724i $$0.293963\pi$$
$$12$$ −1.00000 −0.288675
$$13$$ −2.00000 −0.554700 −0.277350 0.960769i $$-0.589456\pi$$
−0.277350 + 0.960769i $$0.589456\pi$$
$$14$$ 0 0
$$15$$ −2.00000 −0.516398
$$16$$ 1.00000 0.250000
$$17$$ 0 0
$$18$$ 1.00000 0.235702
$$19$$ 4.00000 0.917663 0.458831 0.888523i $$-0.348268\pi$$
0.458831 + 0.888523i $$0.348268\pi$$
$$20$$ 2.00000 0.447214
$$21$$ 0 0
$$22$$ 4.00000 0.852803
$$23$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$24$$ −1.00000 −0.204124
$$25$$ −1.00000 −0.200000
$$26$$ −2.00000 −0.392232
$$27$$ −1.00000 −0.192450
$$28$$ 0 0
$$29$$ 10.0000 1.85695 0.928477 0.371391i $$-0.121119\pi$$
0.928477 + 0.371391i $$0.121119\pi$$
$$30$$ −2.00000 −0.365148
$$31$$ −8.00000 −1.43684 −0.718421 0.695608i $$-0.755135\pi$$
−0.718421 + 0.695608i $$0.755135\pi$$
$$32$$ 1.00000 0.176777
$$33$$ −4.00000 −0.696311
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 1.00000 0.166667
$$37$$ 2.00000 0.328798 0.164399 0.986394i $$-0.447432\pi$$
0.164399 + 0.986394i $$0.447432\pi$$
$$38$$ 4.00000 0.648886
$$39$$ 2.00000 0.320256
$$40$$ 2.00000 0.316228
$$41$$ −10.0000 −1.56174 −0.780869 0.624695i $$-0.785223\pi$$
−0.780869 + 0.624695i $$0.785223\pi$$
$$42$$ 0 0
$$43$$ 12.0000 1.82998 0.914991 0.403473i $$-0.132197\pi$$
0.914991 + 0.403473i $$0.132197\pi$$
$$44$$ 4.00000 0.603023
$$45$$ 2.00000 0.298142
$$46$$ 0 0
$$47$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$48$$ −1.00000 −0.144338
$$49$$ −7.00000 −1.00000
$$50$$ −1.00000 −0.141421
$$51$$ 0 0
$$52$$ −2.00000 −0.277350
$$53$$ 6.00000 0.824163 0.412082 0.911147i $$-0.364802\pi$$
0.412082 + 0.911147i $$0.364802\pi$$
$$54$$ −1.00000 −0.136083
$$55$$ 8.00000 1.07872
$$56$$ 0 0
$$57$$ −4.00000 −0.529813
$$58$$ 10.0000 1.31306
$$59$$ 12.0000 1.56227 0.781133 0.624364i $$-0.214642\pi$$
0.781133 + 0.624364i $$0.214642\pi$$
$$60$$ −2.00000 −0.258199
$$61$$ 10.0000 1.28037 0.640184 0.768221i $$-0.278858\pi$$
0.640184 + 0.768221i $$0.278858\pi$$
$$62$$ −8.00000 −1.01600
$$63$$ 0 0
$$64$$ 1.00000 0.125000
$$65$$ −4.00000 −0.496139
$$66$$ −4.00000 −0.492366
$$67$$ −12.0000 −1.46603 −0.733017 0.680211i $$-0.761888\pi$$
−0.733017 + 0.680211i $$0.761888\pi$$
$$68$$ 0 0
$$69$$ 0 0
$$70$$ 0 0
$$71$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$72$$ 1.00000 0.117851
$$73$$ −10.0000 −1.17041 −0.585206 0.810885i $$-0.698986\pi$$
−0.585206 + 0.810885i $$0.698986\pi$$
$$74$$ 2.00000 0.232495
$$75$$ 1.00000 0.115470
$$76$$ 4.00000 0.458831
$$77$$ 0 0
$$78$$ 2.00000 0.226455
$$79$$ 8.00000 0.900070 0.450035 0.893011i $$-0.351411\pi$$
0.450035 + 0.893011i $$0.351411\pi$$
$$80$$ 2.00000 0.223607
$$81$$ 1.00000 0.111111
$$82$$ −10.0000 −1.10432
$$83$$ 4.00000 0.439057 0.219529 0.975606i $$-0.429548\pi$$
0.219529 + 0.975606i $$0.429548\pi$$
$$84$$ 0 0
$$85$$ 0 0
$$86$$ 12.0000 1.29399
$$87$$ −10.0000 −1.07211
$$88$$ 4.00000 0.426401
$$89$$ −6.00000 −0.635999 −0.317999 0.948091i $$-0.603011\pi$$
−0.317999 + 0.948091i $$0.603011\pi$$
$$90$$ 2.00000 0.210819
$$91$$ 0 0
$$92$$ 0 0
$$93$$ 8.00000 0.829561
$$94$$ 0 0
$$95$$ 8.00000 0.820783
$$96$$ −1.00000 −0.102062
$$97$$ 14.0000 1.42148 0.710742 0.703452i $$-0.248359\pi$$
0.710742 + 0.703452i $$0.248359\pi$$
$$98$$ −7.00000 −0.707107
$$99$$ 4.00000 0.402015
$$100$$ −1.00000 −0.100000
$$101$$ −10.0000 −0.995037 −0.497519 0.867453i $$-0.665755\pi$$
−0.497519 + 0.867453i $$0.665755\pi$$
$$102$$ 0 0
$$103$$ −8.00000 −0.788263 −0.394132 0.919054i $$-0.628955\pi$$
−0.394132 + 0.919054i $$0.628955\pi$$
$$104$$ −2.00000 −0.196116
$$105$$ 0 0
$$106$$ 6.00000 0.582772
$$107$$ 4.00000 0.386695 0.193347 0.981130i $$-0.438066\pi$$
0.193347 + 0.981130i $$0.438066\pi$$
$$108$$ −1.00000 −0.0962250
$$109$$ 10.0000 0.957826 0.478913 0.877862i $$-0.341031\pi$$
0.478913 + 0.877862i $$0.341031\pi$$
$$110$$ 8.00000 0.762770
$$111$$ −2.00000 −0.189832
$$112$$ 0 0
$$113$$ −2.00000 −0.188144 −0.0940721 0.995565i $$-0.529988\pi$$
−0.0940721 + 0.995565i $$0.529988\pi$$
$$114$$ −4.00000 −0.374634
$$115$$ 0 0
$$116$$ 10.0000 0.928477
$$117$$ −2.00000 −0.184900
$$118$$ 12.0000 1.10469
$$119$$ 0 0
$$120$$ −2.00000 −0.182574
$$121$$ 5.00000 0.454545
$$122$$ 10.0000 0.905357
$$123$$ 10.0000 0.901670
$$124$$ −8.00000 −0.718421
$$125$$ −12.0000 −1.07331
$$126$$ 0 0
$$127$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$128$$ 1.00000 0.0883883
$$129$$ −12.0000 −1.05654
$$130$$ −4.00000 −0.350823
$$131$$ 12.0000 1.04844 0.524222 0.851581i $$-0.324356\pi$$
0.524222 + 0.851581i $$0.324356\pi$$
$$132$$ −4.00000 −0.348155
$$133$$ 0 0
$$134$$ −12.0000 −1.03664
$$135$$ −2.00000 −0.172133
$$136$$ 0 0
$$137$$ 10.0000 0.854358 0.427179 0.904167i $$-0.359507\pi$$
0.427179 + 0.904167i $$0.359507\pi$$
$$138$$ 0 0
$$139$$ 4.00000 0.339276 0.169638 0.985506i $$-0.445740\pi$$
0.169638 + 0.985506i $$0.445740\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 0 0
$$143$$ −8.00000 −0.668994
$$144$$ 1.00000 0.0833333
$$145$$ 20.0000 1.66091
$$146$$ −10.0000 −0.827606
$$147$$ 7.00000 0.577350
$$148$$ 2.00000 0.164399
$$149$$ −10.0000 −0.819232 −0.409616 0.912258i $$-0.634337\pi$$
−0.409616 + 0.912258i $$0.634337\pi$$
$$150$$ 1.00000 0.0816497
$$151$$ 24.0000 1.95309 0.976546 0.215308i $$-0.0690756\pi$$
0.976546 + 0.215308i $$0.0690756\pi$$
$$152$$ 4.00000 0.324443
$$153$$ 0 0
$$154$$ 0 0
$$155$$ −16.0000 −1.28515
$$156$$ 2.00000 0.160128
$$157$$ −2.00000 −0.159617 −0.0798087 0.996810i $$-0.525431\pi$$
−0.0798087 + 0.996810i $$0.525431\pi$$
$$158$$ 8.00000 0.636446
$$159$$ −6.00000 −0.475831
$$160$$ 2.00000 0.158114
$$161$$ 0 0
$$162$$ 1.00000 0.0785674
$$163$$ −4.00000 −0.313304 −0.156652 0.987654i $$-0.550070\pi$$
−0.156652 + 0.987654i $$0.550070\pi$$
$$164$$ −10.0000 −0.780869
$$165$$ −8.00000 −0.622799
$$166$$ 4.00000 0.310460
$$167$$ −16.0000 −1.23812 −0.619059 0.785345i $$-0.712486\pi$$
−0.619059 + 0.785345i $$0.712486\pi$$
$$168$$ 0 0
$$169$$ −9.00000 −0.692308
$$170$$ 0 0
$$171$$ 4.00000 0.305888
$$172$$ 12.0000 0.914991
$$173$$ −6.00000 −0.456172 −0.228086 0.973641i $$-0.573247\pi$$
−0.228086 + 0.973641i $$0.573247\pi$$
$$174$$ −10.0000 −0.758098
$$175$$ 0 0
$$176$$ 4.00000 0.301511
$$177$$ −12.0000 −0.901975
$$178$$ −6.00000 −0.449719
$$179$$ −12.0000 −0.896922 −0.448461 0.893802i $$-0.648028\pi$$
−0.448461 + 0.893802i $$0.648028\pi$$
$$180$$ 2.00000 0.149071
$$181$$ −14.0000 −1.04061 −0.520306 0.853980i $$-0.674182\pi$$
−0.520306 + 0.853980i $$0.674182\pi$$
$$182$$ 0 0
$$183$$ −10.0000 −0.739221
$$184$$ 0 0
$$185$$ 4.00000 0.294086
$$186$$ 8.00000 0.586588
$$187$$ 0 0
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 8.00000 0.580381
$$191$$ −16.0000 −1.15772 −0.578860 0.815427i $$-0.696502\pi$$
−0.578860 + 0.815427i $$0.696502\pi$$
$$192$$ −1.00000 −0.0721688
$$193$$ −18.0000 −1.29567 −0.647834 0.761781i $$-0.724325\pi$$
−0.647834 + 0.761781i $$0.724325\pi$$
$$194$$ 14.0000 1.00514
$$195$$ 4.00000 0.286446
$$196$$ −7.00000 −0.500000
$$197$$ −14.0000 −0.997459 −0.498729 0.866758i $$-0.666200\pi$$
−0.498729 + 0.866758i $$0.666200\pi$$
$$198$$ 4.00000 0.284268
$$199$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$200$$ −1.00000 −0.0707107
$$201$$ 12.0000 0.846415
$$202$$ −10.0000 −0.703598
$$203$$ 0 0
$$204$$ 0 0
$$205$$ −20.0000 −1.39686
$$206$$ −8.00000 −0.557386
$$207$$ 0 0
$$208$$ −2.00000 −0.138675
$$209$$ 16.0000 1.10674
$$210$$ 0 0
$$211$$ 28.0000 1.92760 0.963800 0.266627i $$-0.0859092\pi$$
0.963800 + 0.266627i $$0.0859092\pi$$
$$212$$ 6.00000 0.412082
$$213$$ 0 0
$$214$$ 4.00000 0.273434
$$215$$ 24.0000 1.63679
$$216$$ −1.00000 −0.0680414
$$217$$ 0 0
$$218$$ 10.0000 0.677285
$$219$$ 10.0000 0.675737
$$220$$ 8.00000 0.539360
$$221$$ 0 0
$$222$$ −2.00000 −0.134231
$$223$$ 16.0000 1.07144 0.535720 0.844396i $$-0.320040\pi$$
0.535720 + 0.844396i $$0.320040\pi$$
$$224$$ 0 0
$$225$$ −1.00000 −0.0666667
$$226$$ −2.00000 −0.133038
$$227$$ −4.00000 −0.265489 −0.132745 0.991150i $$-0.542379\pi$$
−0.132745 + 0.991150i $$0.542379\pi$$
$$228$$ −4.00000 −0.264906
$$229$$ −26.0000 −1.71813 −0.859064 0.511868i $$-0.828954\pi$$
−0.859064 + 0.511868i $$0.828954\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 10.0000 0.656532
$$233$$ −26.0000 −1.70332 −0.851658 0.524097i $$-0.824403\pi$$
−0.851658 + 0.524097i $$0.824403\pi$$
$$234$$ −2.00000 −0.130744
$$235$$ 0 0
$$236$$ 12.0000 0.781133
$$237$$ −8.00000 −0.519656
$$238$$ 0 0
$$239$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$240$$ −2.00000 −0.129099
$$241$$ −2.00000 −0.128831 −0.0644157 0.997923i $$-0.520518\pi$$
−0.0644157 + 0.997923i $$0.520518\pi$$
$$242$$ 5.00000 0.321412
$$243$$ −1.00000 −0.0641500
$$244$$ 10.0000 0.640184
$$245$$ −14.0000 −0.894427
$$246$$ 10.0000 0.637577
$$247$$ −8.00000 −0.509028
$$248$$ −8.00000 −0.508001
$$249$$ −4.00000 −0.253490
$$250$$ −12.0000 −0.758947
$$251$$ 28.0000 1.76734 0.883672 0.468106i $$-0.155064\pi$$
0.883672 + 0.468106i $$0.155064\pi$$
$$252$$ 0 0
$$253$$ 0 0
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 1.00000 0.0625000
$$257$$ 2.00000 0.124757 0.0623783 0.998053i $$-0.480131\pi$$
0.0623783 + 0.998053i $$0.480131\pi$$
$$258$$ −12.0000 −0.747087
$$259$$ 0 0
$$260$$ −4.00000 −0.248069
$$261$$ 10.0000 0.618984
$$262$$ 12.0000 0.741362
$$263$$ −8.00000 −0.493301 −0.246651 0.969104i $$-0.579330\pi$$
−0.246651 + 0.969104i $$0.579330\pi$$
$$264$$ −4.00000 −0.246183
$$265$$ 12.0000 0.737154
$$266$$ 0 0
$$267$$ 6.00000 0.367194
$$268$$ −12.0000 −0.733017
$$269$$ −6.00000 −0.365826 −0.182913 0.983129i $$-0.558553\pi$$
−0.182913 + 0.983129i $$0.558553\pi$$
$$270$$ −2.00000 −0.121716
$$271$$ 16.0000 0.971931 0.485965 0.873978i $$-0.338468\pi$$
0.485965 + 0.873978i $$0.338468\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 10.0000 0.604122
$$275$$ −4.00000 −0.241209
$$276$$ 0 0
$$277$$ −30.0000 −1.80253 −0.901263 0.433273i $$-0.857359\pi$$
−0.901263 + 0.433273i $$0.857359\pi$$
$$278$$ 4.00000 0.239904
$$279$$ −8.00000 −0.478947
$$280$$ 0 0
$$281$$ −6.00000 −0.357930 −0.178965 0.983855i $$-0.557275\pi$$
−0.178965 + 0.983855i $$0.557275\pi$$
$$282$$ 0 0
$$283$$ −12.0000 −0.713326 −0.356663 0.934233i $$-0.616086\pi$$
−0.356663 + 0.934233i $$0.616086\pi$$
$$284$$ 0 0
$$285$$ −8.00000 −0.473879
$$286$$ −8.00000 −0.473050
$$287$$ 0 0
$$288$$ 1.00000 0.0589256
$$289$$ 0 0
$$290$$ 20.0000 1.17444
$$291$$ −14.0000 −0.820695
$$292$$ −10.0000 −0.585206
$$293$$ −26.0000 −1.51894 −0.759468 0.650545i $$-0.774541\pi$$
−0.759468 + 0.650545i $$0.774541\pi$$
$$294$$ 7.00000 0.408248
$$295$$ 24.0000 1.39733
$$296$$ 2.00000 0.116248
$$297$$ −4.00000 −0.232104
$$298$$ −10.0000 −0.579284
$$299$$ 0 0
$$300$$ 1.00000 0.0577350
$$301$$ 0 0
$$302$$ 24.0000 1.38104
$$303$$ 10.0000 0.574485
$$304$$ 4.00000 0.229416
$$305$$ 20.0000 1.14520
$$306$$ 0 0
$$307$$ −12.0000 −0.684876 −0.342438 0.939540i $$-0.611253\pi$$
−0.342438 + 0.939540i $$0.611253\pi$$
$$308$$ 0 0
$$309$$ 8.00000 0.455104
$$310$$ −16.0000 −0.908739
$$311$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$312$$ 2.00000 0.113228
$$313$$ −10.0000 −0.565233 −0.282617 0.959233i $$-0.591202\pi$$
−0.282617 + 0.959233i $$0.591202\pi$$
$$314$$ −2.00000 −0.112867
$$315$$ 0 0
$$316$$ 8.00000 0.450035
$$317$$ −6.00000 −0.336994 −0.168497 0.985702i $$-0.553891\pi$$
−0.168497 + 0.985702i $$0.553891\pi$$
$$318$$ −6.00000 −0.336463
$$319$$ 40.0000 2.23957
$$320$$ 2.00000 0.111803
$$321$$ −4.00000 −0.223258
$$322$$ 0 0
$$323$$ 0 0
$$324$$ 1.00000 0.0555556
$$325$$ 2.00000 0.110940
$$326$$ −4.00000 −0.221540
$$327$$ −10.0000 −0.553001
$$328$$ −10.0000 −0.552158
$$329$$ 0 0
$$330$$ −8.00000 −0.440386
$$331$$ −20.0000 −1.09930 −0.549650 0.835395i $$-0.685239\pi$$
−0.549650 + 0.835395i $$0.685239\pi$$
$$332$$ 4.00000 0.219529
$$333$$ 2.00000 0.109599
$$334$$ −16.0000 −0.875481
$$335$$ −24.0000 −1.31126
$$336$$ 0 0
$$337$$ 14.0000 0.762629 0.381314 0.924445i $$-0.375472\pi$$
0.381314 + 0.924445i $$0.375472\pi$$
$$338$$ −9.00000 −0.489535
$$339$$ 2.00000 0.108625
$$340$$ 0 0
$$341$$ −32.0000 −1.73290
$$342$$ 4.00000 0.216295
$$343$$ 0 0
$$344$$ 12.0000 0.646997
$$345$$ 0 0
$$346$$ −6.00000 −0.322562
$$347$$ −28.0000 −1.50312 −0.751559 0.659665i $$-0.770698\pi$$
−0.751559 + 0.659665i $$0.770698\pi$$
$$348$$ −10.0000 −0.536056
$$349$$ 14.0000 0.749403 0.374701 0.927146i $$-0.377745\pi$$
0.374701 + 0.927146i $$0.377745\pi$$
$$350$$ 0 0
$$351$$ 2.00000 0.106752
$$352$$ 4.00000 0.213201
$$353$$ −30.0000 −1.59674 −0.798369 0.602168i $$-0.794304\pi$$
−0.798369 + 0.602168i $$0.794304\pi$$
$$354$$ −12.0000 −0.637793
$$355$$ 0 0
$$356$$ −6.00000 −0.317999
$$357$$ 0 0
$$358$$ −12.0000 −0.634220
$$359$$ −24.0000 −1.26667 −0.633336 0.773877i $$-0.718315\pi$$
−0.633336 + 0.773877i $$0.718315\pi$$
$$360$$ 2.00000 0.105409
$$361$$ −3.00000 −0.157895
$$362$$ −14.0000 −0.735824
$$363$$ −5.00000 −0.262432
$$364$$ 0 0
$$365$$ −20.0000 −1.04685
$$366$$ −10.0000 −0.522708
$$367$$ −24.0000 −1.25279 −0.626395 0.779506i $$-0.715470\pi$$
−0.626395 + 0.779506i $$0.715470\pi$$
$$368$$ 0 0
$$369$$ −10.0000 −0.520579
$$370$$ 4.00000 0.207950
$$371$$ 0 0
$$372$$ 8.00000 0.414781
$$373$$ 6.00000 0.310668 0.155334 0.987862i $$-0.450355\pi$$
0.155334 + 0.987862i $$0.450355\pi$$
$$374$$ 0 0
$$375$$ 12.0000 0.619677
$$376$$ 0 0
$$377$$ −20.0000 −1.03005
$$378$$ 0 0
$$379$$ 4.00000 0.205466 0.102733 0.994709i $$-0.467241\pi$$
0.102733 + 0.994709i $$0.467241\pi$$
$$380$$ 8.00000 0.410391
$$381$$ 0 0
$$382$$ −16.0000 −0.818631
$$383$$ −16.0000 −0.817562 −0.408781 0.912633i $$-0.634046\pi$$
−0.408781 + 0.912633i $$0.634046\pi$$
$$384$$ −1.00000 −0.0510310
$$385$$ 0 0
$$386$$ −18.0000 −0.916176
$$387$$ 12.0000 0.609994
$$388$$ 14.0000 0.710742
$$389$$ −26.0000 −1.31825 −0.659126 0.752032i $$-0.729074\pi$$
−0.659126 + 0.752032i $$0.729074\pi$$
$$390$$ 4.00000 0.202548
$$391$$ 0 0
$$392$$ −7.00000 −0.353553
$$393$$ −12.0000 −0.605320
$$394$$ −14.0000 −0.705310
$$395$$ 16.0000 0.805047
$$396$$ 4.00000 0.201008
$$397$$ 26.0000 1.30490 0.652451 0.757831i $$-0.273741\pi$$
0.652451 + 0.757831i $$0.273741\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ −1.00000 −0.0500000
$$401$$ 14.0000 0.699127 0.349563 0.936913i $$-0.386330\pi$$
0.349563 + 0.936913i $$0.386330\pi$$
$$402$$ 12.0000 0.598506
$$403$$ 16.0000 0.797017
$$404$$ −10.0000 −0.497519
$$405$$ 2.00000 0.0993808
$$406$$ 0 0
$$407$$ 8.00000 0.396545
$$408$$ 0 0
$$409$$ 26.0000 1.28562 0.642809 0.766027i $$-0.277769\pi$$
0.642809 + 0.766027i $$0.277769\pi$$
$$410$$ −20.0000 −0.987730
$$411$$ −10.0000 −0.493264
$$412$$ −8.00000 −0.394132
$$413$$ 0 0
$$414$$ 0 0
$$415$$ 8.00000 0.392705
$$416$$ −2.00000 −0.0980581
$$417$$ −4.00000 −0.195881
$$418$$ 16.0000 0.782586
$$419$$ −4.00000 −0.195413 −0.0977064 0.995215i $$-0.531151\pi$$
−0.0977064 + 0.995215i $$0.531151\pi$$
$$420$$ 0 0
$$421$$ 22.0000 1.07221 0.536107 0.844150i $$-0.319894\pi$$
0.536107 + 0.844150i $$0.319894\pi$$
$$422$$ 28.0000 1.36302
$$423$$ 0 0
$$424$$ 6.00000 0.291386
$$425$$ 0 0
$$426$$ 0 0
$$427$$ 0 0
$$428$$ 4.00000 0.193347
$$429$$ 8.00000 0.386244
$$430$$ 24.0000 1.15738
$$431$$ 8.00000 0.385346 0.192673 0.981263i $$-0.438284\pi$$
0.192673 + 0.981263i $$0.438284\pi$$
$$432$$ −1.00000 −0.0481125
$$433$$ −14.0000 −0.672797 −0.336399 0.941720i $$-0.609209\pi$$
−0.336399 + 0.941720i $$0.609209\pi$$
$$434$$ 0 0
$$435$$ −20.0000 −0.958927
$$436$$ 10.0000 0.478913
$$437$$ 0 0
$$438$$ 10.0000 0.477818
$$439$$ −16.0000 −0.763638 −0.381819 0.924237i $$-0.624702\pi$$
−0.381819 + 0.924237i $$0.624702\pi$$
$$440$$ 8.00000 0.381385
$$441$$ −7.00000 −0.333333
$$442$$ 0 0
$$443$$ −4.00000 −0.190046 −0.0950229 0.995475i $$-0.530292\pi$$
−0.0950229 + 0.995475i $$0.530292\pi$$
$$444$$ −2.00000 −0.0949158
$$445$$ −12.0000 −0.568855
$$446$$ 16.0000 0.757622
$$447$$ 10.0000 0.472984
$$448$$ 0 0
$$449$$ −2.00000 −0.0943858 −0.0471929 0.998886i $$-0.515028\pi$$
−0.0471929 + 0.998886i $$0.515028\pi$$
$$450$$ −1.00000 −0.0471405
$$451$$ −40.0000 −1.88353
$$452$$ −2.00000 −0.0940721
$$453$$ −24.0000 −1.12762
$$454$$ −4.00000 −0.187729
$$455$$ 0 0
$$456$$ −4.00000 −0.187317
$$457$$ 10.0000 0.467780 0.233890 0.972263i $$-0.424854\pi$$
0.233890 + 0.972263i $$0.424854\pi$$
$$458$$ −26.0000 −1.21490
$$459$$ 0 0
$$460$$ 0 0
$$461$$ 30.0000 1.39724 0.698620 0.715493i $$-0.253798\pi$$
0.698620 + 0.715493i $$0.253798\pi$$
$$462$$ 0 0
$$463$$ 32.0000 1.48717 0.743583 0.668644i $$-0.233125\pi$$
0.743583 + 0.668644i $$0.233125\pi$$
$$464$$ 10.0000 0.464238
$$465$$ 16.0000 0.741982
$$466$$ −26.0000 −1.20443
$$467$$ −12.0000 −0.555294 −0.277647 0.960683i $$-0.589555\pi$$
−0.277647 + 0.960683i $$0.589555\pi$$
$$468$$ −2.00000 −0.0924500
$$469$$ 0 0
$$470$$ 0 0
$$471$$ 2.00000 0.0921551
$$472$$ 12.0000 0.552345
$$473$$ 48.0000 2.20704
$$474$$ −8.00000 −0.367452
$$475$$ −4.00000 −0.183533
$$476$$ 0 0
$$477$$ 6.00000 0.274721
$$478$$ 0 0
$$479$$ −24.0000 −1.09659 −0.548294 0.836286i $$-0.684723\pi$$
−0.548294 + 0.836286i $$0.684723\pi$$
$$480$$ −2.00000 −0.0912871
$$481$$ −4.00000 −0.182384
$$482$$ −2.00000 −0.0910975
$$483$$ 0 0
$$484$$ 5.00000 0.227273
$$485$$ 28.0000 1.27141
$$486$$ −1.00000 −0.0453609
$$487$$ 16.0000 0.725029 0.362515 0.931978i $$-0.381918\pi$$
0.362515 + 0.931978i $$0.381918\pi$$
$$488$$ 10.0000 0.452679
$$489$$ 4.00000 0.180886
$$490$$ −14.0000 −0.632456
$$491$$ 12.0000 0.541552 0.270776 0.962642i $$-0.412720\pi$$
0.270776 + 0.962642i $$0.412720\pi$$
$$492$$ 10.0000 0.450835
$$493$$ 0 0
$$494$$ −8.00000 −0.359937
$$495$$ 8.00000 0.359573
$$496$$ −8.00000 −0.359211
$$497$$ 0 0
$$498$$ −4.00000 −0.179244
$$499$$ −4.00000 −0.179065 −0.0895323 0.995984i $$-0.528537\pi$$
−0.0895323 + 0.995984i $$0.528537\pi$$
$$500$$ −12.0000 −0.536656
$$501$$ 16.0000 0.714827
$$502$$ 28.0000 1.24970
$$503$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$504$$ 0 0
$$505$$ −20.0000 −0.889988
$$506$$ 0 0
$$507$$ 9.00000 0.399704
$$508$$ 0 0
$$509$$ 30.0000 1.32973 0.664863 0.746965i $$-0.268490\pi$$
0.664863 + 0.746965i $$0.268490\pi$$
$$510$$ 0 0
$$511$$ 0 0
$$512$$ 1.00000 0.0441942
$$513$$ −4.00000 −0.176604
$$514$$ 2.00000 0.0882162
$$515$$ −16.0000 −0.705044
$$516$$ −12.0000 −0.528271
$$517$$ 0 0
$$518$$ 0 0
$$519$$ 6.00000 0.263371
$$520$$ −4.00000 −0.175412
$$521$$ 22.0000 0.963837 0.481919 0.876216i $$-0.339940\pi$$
0.481919 + 0.876216i $$0.339940\pi$$
$$522$$ 10.0000 0.437688
$$523$$ −4.00000 −0.174908 −0.0874539 0.996169i $$-0.527873\pi$$
−0.0874539 + 0.996169i $$0.527873\pi$$
$$524$$ 12.0000 0.524222
$$525$$ 0 0
$$526$$ −8.00000 −0.348817
$$527$$ 0 0
$$528$$ −4.00000 −0.174078
$$529$$ −23.0000 −1.00000
$$530$$ 12.0000 0.521247
$$531$$ 12.0000 0.520756
$$532$$ 0 0
$$533$$ 20.0000 0.866296
$$534$$ 6.00000 0.259645
$$535$$ 8.00000 0.345870
$$536$$ −12.0000 −0.518321
$$537$$ 12.0000 0.517838
$$538$$ −6.00000 −0.258678
$$539$$ −28.0000 −1.20605
$$540$$ −2.00000 −0.0860663
$$541$$ 10.0000 0.429934 0.214967 0.976621i $$-0.431036\pi$$
0.214967 + 0.976621i $$0.431036\pi$$
$$542$$ 16.0000 0.687259
$$543$$ 14.0000 0.600798
$$544$$ 0 0
$$545$$ 20.0000 0.856706
$$546$$ 0 0
$$547$$ 12.0000 0.513083 0.256541 0.966533i $$-0.417417\pi$$
0.256541 + 0.966533i $$0.417417\pi$$
$$548$$ 10.0000 0.427179
$$549$$ 10.0000 0.426790
$$550$$ −4.00000 −0.170561
$$551$$ 40.0000 1.70406
$$552$$ 0 0
$$553$$ 0 0
$$554$$ −30.0000 −1.27458
$$555$$ −4.00000 −0.169791
$$556$$ 4.00000 0.169638
$$557$$ −34.0000 −1.44063 −0.720313 0.693649i $$-0.756002\pi$$
−0.720313 + 0.693649i $$0.756002\pi$$
$$558$$ −8.00000 −0.338667
$$559$$ −24.0000 −1.01509
$$560$$ 0 0
$$561$$ 0 0
$$562$$ −6.00000 −0.253095
$$563$$ 36.0000 1.51722 0.758610 0.651546i $$-0.225879\pi$$
0.758610 + 0.651546i $$0.225879\pi$$
$$564$$ 0 0
$$565$$ −4.00000 −0.168281
$$566$$ −12.0000 −0.504398
$$567$$ 0 0
$$568$$ 0 0
$$569$$ −6.00000 −0.251533 −0.125767 0.992060i $$-0.540139\pi$$
−0.125767 + 0.992060i $$0.540139\pi$$
$$570$$ −8.00000 −0.335083
$$571$$ −28.0000 −1.17176 −0.585882 0.810397i $$-0.699252\pi$$
−0.585882 + 0.810397i $$0.699252\pi$$
$$572$$ −8.00000 −0.334497
$$573$$ 16.0000 0.668410
$$574$$ 0 0
$$575$$ 0 0
$$576$$ 1.00000 0.0416667
$$577$$ 2.00000 0.0832611 0.0416305 0.999133i $$-0.486745\pi$$
0.0416305 + 0.999133i $$0.486745\pi$$
$$578$$ 0 0
$$579$$ 18.0000 0.748054
$$580$$ 20.0000 0.830455
$$581$$ 0 0
$$582$$ −14.0000 −0.580319
$$583$$ 24.0000 0.993978
$$584$$ −10.0000 −0.413803
$$585$$ −4.00000 −0.165380
$$586$$ −26.0000 −1.07405
$$587$$ −20.0000 −0.825488 −0.412744 0.910847i $$-0.635430\pi$$
−0.412744 + 0.910847i $$0.635430\pi$$
$$588$$ 7.00000 0.288675
$$589$$ −32.0000 −1.31854
$$590$$ 24.0000 0.988064
$$591$$ 14.0000 0.575883
$$592$$ 2.00000 0.0821995
$$593$$ −14.0000 −0.574911 −0.287456 0.957794i $$-0.592809\pi$$
−0.287456 + 0.957794i $$0.592809\pi$$
$$594$$ −4.00000 −0.164122
$$595$$ 0 0
$$596$$ −10.0000 −0.409616
$$597$$ 0 0
$$598$$ 0 0
$$599$$ −8.00000 −0.326871 −0.163436 0.986554i $$-0.552258\pi$$
−0.163436 + 0.986554i $$0.552258\pi$$
$$600$$ 1.00000 0.0408248
$$601$$ 6.00000 0.244745 0.122373 0.992484i $$-0.460950\pi$$
0.122373 + 0.992484i $$0.460950\pi$$
$$602$$ 0 0
$$603$$ −12.0000 −0.488678
$$604$$ 24.0000 0.976546
$$605$$ 10.0000 0.406558
$$606$$ 10.0000 0.406222
$$607$$ 24.0000 0.974130 0.487065 0.873366i $$-0.338067\pi$$
0.487065 + 0.873366i $$0.338067\pi$$
$$608$$ 4.00000 0.162221
$$609$$ 0 0
$$610$$ 20.0000 0.809776
$$611$$ 0 0
$$612$$ 0 0
$$613$$ 38.0000 1.53481 0.767403 0.641165i $$-0.221549\pi$$
0.767403 + 0.641165i $$0.221549\pi$$
$$614$$ −12.0000 −0.484281
$$615$$ 20.0000 0.806478
$$616$$ 0 0
$$617$$ 6.00000 0.241551 0.120775 0.992680i $$-0.461462\pi$$
0.120775 + 0.992680i $$0.461462\pi$$
$$618$$ 8.00000 0.321807
$$619$$ 20.0000 0.803868 0.401934 0.915669i $$-0.368338\pi$$
0.401934 + 0.915669i $$0.368338\pi$$
$$620$$ −16.0000 −0.642575
$$621$$ 0 0
$$622$$ 0 0
$$623$$ 0 0
$$624$$ 2.00000 0.0800641
$$625$$ −19.0000 −0.760000
$$626$$ −10.0000 −0.399680
$$627$$ −16.0000 −0.638978
$$628$$ −2.00000 −0.0798087
$$629$$ 0 0
$$630$$ 0 0
$$631$$ −24.0000 −0.955425 −0.477712 0.878516i $$-0.658534\pi$$
−0.477712 + 0.878516i $$0.658534\pi$$
$$632$$ 8.00000 0.318223
$$633$$ −28.0000 −1.11290
$$634$$ −6.00000 −0.238290
$$635$$ 0 0
$$636$$ −6.00000 −0.237915
$$637$$ 14.0000 0.554700
$$638$$ 40.0000 1.58362
$$639$$ 0 0
$$640$$ 2.00000 0.0790569
$$641$$ −2.00000 −0.0789953 −0.0394976 0.999220i $$-0.512576\pi$$
−0.0394976 + 0.999220i $$0.512576\pi$$
$$642$$ −4.00000 −0.157867
$$643$$ 28.0000 1.10421 0.552106 0.833774i $$-0.313824\pi$$
0.552106 + 0.833774i $$0.313824\pi$$
$$644$$ 0 0
$$645$$ −24.0000 −0.944999
$$646$$ 0 0
$$647$$ −40.0000 −1.57256 −0.786281 0.617869i $$-0.787996\pi$$
−0.786281 + 0.617869i $$0.787996\pi$$
$$648$$ 1.00000 0.0392837
$$649$$ 48.0000 1.88416
$$650$$ 2.00000 0.0784465
$$651$$ 0 0
$$652$$ −4.00000 −0.156652
$$653$$ −6.00000 −0.234798 −0.117399 0.993085i $$-0.537456\pi$$
−0.117399 + 0.993085i $$0.537456\pi$$
$$654$$ −10.0000 −0.391031
$$655$$ 24.0000 0.937758
$$656$$ −10.0000 −0.390434
$$657$$ −10.0000 −0.390137
$$658$$ 0 0
$$659$$ 36.0000 1.40236 0.701180 0.712984i $$-0.252657\pi$$
0.701180 + 0.712984i $$0.252657\pi$$
$$660$$ −8.00000 −0.311400
$$661$$ 6.00000 0.233373 0.116686 0.993169i $$-0.462773\pi$$
0.116686 + 0.993169i $$0.462773\pi$$
$$662$$ −20.0000 −0.777322
$$663$$ 0 0
$$664$$ 4.00000 0.155230
$$665$$ 0 0
$$666$$ 2.00000 0.0774984
$$667$$ 0 0
$$668$$ −16.0000 −0.619059
$$669$$ −16.0000 −0.618596
$$670$$ −24.0000 −0.927201
$$671$$ 40.0000 1.54418
$$672$$ 0 0
$$673$$ 46.0000 1.77317 0.886585 0.462566i $$-0.153071\pi$$
0.886585 + 0.462566i $$0.153071\pi$$
$$674$$ 14.0000 0.539260
$$675$$ 1.00000 0.0384900
$$676$$ −9.00000 −0.346154
$$677$$ −46.0000 −1.76792 −0.883962 0.467559i $$-0.845134\pi$$
−0.883962 + 0.467559i $$0.845134\pi$$
$$678$$ 2.00000 0.0768095
$$679$$ 0 0
$$680$$ 0 0
$$681$$ 4.00000 0.153280
$$682$$ −32.0000 −1.22534
$$683$$ 20.0000 0.765279 0.382639 0.923898i $$-0.375015\pi$$
0.382639 + 0.923898i $$0.375015\pi$$
$$684$$ 4.00000 0.152944
$$685$$ 20.0000 0.764161
$$686$$ 0 0
$$687$$ 26.0000 0.991962
$$688$$ 12.0000 0.457496
$$689$$ −12.0000 −0.457164
$$690$$ 0 0
$$691$$ 28.0000 1.06517 0.532585 0.846376i $$-0.321221\pi$$
0.532585 + 0.846376i $$0.321221\pi$$
$$692$$ −6.00000 −0.228086
$$693$$ 0 0
$$694$$ −28.0000 −1.06287
$$695$$ 8.00000 0.303457
$$696$$ −10.0000 −0.379049
$$697$$ 0 0
$$698$$ 14.0000 0.529908
$$699$$ 26.0000 0.983410
$$700$$ 0 0
$$701$$ 46.0000 1.73740 0.868698 0.495342i $$-0.164957\pi$$
0.868698 + 0.495342i $$0.164957\pi$$
$$702$$ 2.00000 0.0754851
$$703$$ 8.00000 0.301726
$$704$$ 4.00000 0.150756
$$705$$ 0 0
$$706$$ −30.0000 −1.12906
$$707$$ 0 0
$$708$$ −12.0000 −0.450988
$$709$$ −46.0000 −1.72757 −0.863783 0.503864i $$-0.831911\pi$$
−0.863783 + 0.503864i $$0.831911\pi$$
$$710$$ 0 0
$$711$$ 8.00000 0.300023
$$712$$ −6.00000 −0.224860
$$713$$ 0 0
$$714$$ 0 0
$$715$$ −16.0000 −0.598366
$$716$$ −12.0000 −0.448461
$$717$$ 0 0
$$718$$ −24.0000 −0.895672
$$719$$ −40.0000 −1.49175 −0.745874 0.666087i $$-0.767968\pi$$
−0.745874 + 0.666087i $$0.767968\pi$$
$$720$$ 2.00000 0.0745356
$$721$$ 0 0
$$722$$ −3.00000 −0.111648
$$723$$ 2.00000 0.0743808
$$724$$ −14.0000 −0.520306
$$725$$ −10.0000 −0.371391
$$726$$ −5.00000 −0.185567
$$727$$ −8.00000 −0.296704 −0.148352 0.988935i $$-0.547397\pi$$
−0.148352 + 0.988935i $$0.547397\pi$$
$$728$$ 0 0
$$729$$ 1.00000 0.0370370
$$730$$ −20.0000 −0.740233
$$731$$ 0 0
$$732$$ −10.0000 −0.369611
$$733$$ 46.0000 1.69905 0.849524 0.527549i $$-0.176889\pi$$
0.849524 + 0.527549i $$0.176889\pi$$
$$734$$ −24.0000 −0.885856
$$735$$ 14.0000 0.516398
$$736$$ 0 0
$$737$$ −48.0000 −1.76810
$$738$$ −10.0000 −0.368105
$$739$$ 52.0000 1.91285 0.956425 0.291977i $$-0.0943129\pi$$
0.956425 + 0.291977i $$0.0943129\pi$$
$$740$$ 4.00000 0.147043
$$741$$ 8.00000 0.293887
$$742$$ 0 0
$$743$$ 16.0000 0.586983 0.293492 0.955962i $$-0.405183\pi$$
0.293492 + 0.955962i $$0.405183\pi$$
$$744$$ 8.00000 0.293294
$$745$$ −20.0000 −0.732743
$$746$$ 6.00000 0.219676
$$747$$ 4.00000 0.146352
$$748$$ 0 0
$$749$$ 0 0
$$750$$ 12.0000 0.438178
$$751$$ −8.00000 −0.291924 −0.145962 0.989290i $$-0.546628\pi$$
−0.145962 + 0.989290i $$0.546628\pi$$
$$752$$ 0 0
$$753$$ −28.0000 −1.02038
$$754$$ −20.0000 −0.728357
$$755$$ 48.0000 1.74690
$$756$$ 0 0
$$757$$ −10.0000 −0.363456 −0.181728 0.983349i $$-0.558169\pi$$
−0.181728 + 0.983349i $$0.558169\pi$$
$$758$$ 4.00000 0.145287
$$759$$ 0 0
$$760$$ 8.00000 0.290191
$$761$$ −6.00000 −0.217500 −0.108750 0.994069i $$-0.534685\pi$$
−0.108750 + 0.994069i $$0.534685\pi$$
$$762$$ 0 0
$$763$$ 0 0
$$764$$ −16.0000 −0.578860
$$765$$ 0 0
$$766$$ −16.0000 −0.578103
$$767$$ −24.0000 −0.866590
$$768$$ −1.00000 −0.0360844
$$769$$ −30.0000 −1.08183 −0.540914 0.841078i $$-0.681921\pi$$
−0.540914 + 0.841078i $$0.681921\pi$$
$$770$$ 0 0
$$771$$ −2.00000 −0.0720282
$$772$$ −18.0000 −0.647834
$$773$$ 38.0000 1.36677 0.683383 0.730061i $$-0.260508\pi$$
0.683383 + 0.730061i $$0.260508\pi$$
$$774$$ 12.0000 0.431331
$$775$$ 8.00000 0.287368
$$776$$ 14.0000 0.502571
$$777$$ 0 0
$$778$$ −26.0000 −0.932145
$$779$$ −40.0000 −1.43315
$$780$$ 4.00000 0.143223
$$781$$ 0 0
$$782$$ 0 0
$$783$$ −10.0000 −0.357371
$$784$$ −7.00000 −0.250000
$$785$$ −4.00000 −0.142766
$$786$$ −12.0000 −0.428026
$$787$$ −4.00000 −0.142585 −0.0712923 0.997455i $$-0.522712\pi$$
−0.0712923 + 0.997455i $$0.522712\pi$$
$$788$$ −14.0000 −0.498729
$$789$$ 8.00000 0.284808
$$790$$ 16.0000 0.569254
$$791$$ 0 0
$$792$$ 4.00000 0.142134
$$793$$ −20.0000 −0.710221
$$794$$ 26.0000 0.922705
$$795$$ −12.0000 −0.425596
$$796$$ 0 0
$$797$$ 14.0000 0.495905 0.247953 0.968772i $$-0.420242\pi$$
0.247953 + 0.968772i $$0.420242\pi$$
$$798$$ 0 0
$$799$$ 0 0
$$800$$ −1.00000 −0.0353553
$$801$$ −6.00000 −0.212000
$$802$$ 14.0000 0.494357
$$803$$ −40.0000 −1.41157
$$804$$ 12.0000 0.423207
$$805$$ 0 0
$$806$$ 16.0000 0.563576
$$807$$ 6.00000 0.211210
$$808$$ −10.0000 −0.351799
$$809$$ 22.0000 0.773479 0.386739 0.922189i $$-0.373601\pi$$
0.386739 + 0.922189i $$0.373601\pi$$
$$810$$ 2.00000 0.0702728
$$811$$ 20.0000 0.702295 0.351147 0.936320i $$-0.385792\pi$$
0.351147 + 0.936320i $$0.385792\pi$$
$$812$$ 0 0
$$813$$ −16.0000 −0.561144
$$814$$ 8.00000 0.280400
$$815$$ −8.00000 −0.280228
$$816$$ 0 0
$$817$$ 48.0000 1.67931
$$818$$ 26.0000 0.909069
$$819$$ 0 0
$$820$$ −20.0000 −0.698430
$$821$$ 34.0000 1.18661 0.593304 0.804978i $$-0.297823\pi$$
0.593304 + 0.804978i $$0.297823\pi$$
$$822$$ −10.0000 −0.348790
$$823$$ −32.0000 −1.11545 −0.557725 0.830026i $$-0.688326\pi$$
−0.557725 + 0.830026i $$0.688326\pi$$
$$824$$ −8.00000 −0.278693
$$825$$ 4.00000 0.139262
$$826$$ 0 0
$$827$$ 20.0000 0.695468 0.347734 0.937593i $$-0.386951\pi$$
0.347734 + 0.937593i $$0.386951\pi$$
$$828$$ 0 0
$$829$$ −34.0000 −1.18087 −0.590434 0.807086i $$-0.701044\pi$$
−0.590434 + 0.807086i $$0.701044\pi$$
$$830$$ 8.00000 0.277684
$$831$$ 30.0000 1.04069
$$832$$ −2.00000 −0.0693375
$$833$$ 0 0
$$834$$ −4.00000 −0.138509
$$835$$ −32.0000 −1.10741
$$836$$ 16.0000 0.553372
$$837$$ 8.00000 0.276520
$$838$$ −4.00000 −0.138178
$$839$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$840$$ 0 0
$$841$$ 71.0000 2.44828
$$842$$ 22.0000 0.758170
$$843$$ 6.00000 0.206651
$$844$$ 28.0000 0.963800
$$845$$ −18.0000 −0.619219
$$846$$ 0 0
$$847$$ 0 0
$$848$$ 6.00000 0.206041
$$849$$ 12.0000 0.411839
$$850$$ 0 0
$$851$$ 0 0
$$852$$ 0 0
$$853$$ 2.00000 0.0684787 0.0342393 0.999414i $$-0.489099\pi$$
0.0342393 + 0.999414i $$0.489099\pi$$
$$854$$ 0 0
$$855$$ 8.00000 0.273594
$$856$$ 4.00000 0.136717
$$857$$ 6.00000 0.204956 0.102478 0.994735i $$-0.467323\pi$$
0.102478 + 0.994735i $$0.467323\pi$$
$$858$$ 8.00000 0.273115
$$859$$ −36.0000 −1.22830 −0.614152 0.789188i $$-0.710502\pi$$
−0.614152 + 0.789188i $$0.710502\pi$$
$$860$$ 24.0000 0.818393
$$861$$ 0 0
$$862$$ 8.00000 0.272481
$$863$$ −32.0000 −1.08929 −0.544646 0.838666i $$-0.683336\pi$$
−0.544646 + 0.838666i $$0.683336\pi$$
$$864$$ −1.00000 −0.0340207
$$865$$ −12.0000 −0.408012
$$866$$ −14.0000 −0.475739
$$867$$ 0 0
$$868$$ 0 0
$$869$$ 32.0000 1.08553
$$870$$ −20.0000 −0.678064
$$871$$ 24.0000 0.813209
$$872$$ 10.0000 0.338643
$$873$$ 14.0000 0.473828
$$874$$ 0 0
$$875$$ 0 0
$$876$$ 10.0000 0.337869
$$877$$ −22.0000 −0.742887 −0.371444 0.928456i $$-0.621137\pi$$
−0.371444 + 0.928456i $$0.621137\pi$$
$$878$$ −16.0000 −0.539974
$$879$$ 26.0000 0.876958
$$880$$ 8.00000 0.269680
$$881$$ −2.00000 −0.0673817 −0.0336909 0.999432i $$-0.510726\pi$$
−0.0336909 + 0.999432i $$0.510726\pi$$
$$882$$ −7.00000 −0.235702
$$883$$ 36.0000 1.21150 0.605748 0.795656i $$-0.292874\pi$$
0.605748 + 0.795656i $$0.292874\pi$$
$$884$$ 0 0
$$885$$ −24.0000 −0.806751
$$886$$ −4.00000 −0.134383
$$887$$ 48.0000 1.61168 0.805841 0.592132i $$-0.201714\pi$$
0.805841 + 0.592132i $$0.201714\pi$$
$$888$$ −2.00000 −0.0671156
$$889$$ 0 0
$$890$$ −12.0000 −0.402241
$$891$$ 4.00000 0.134005
$$892$$ 16.0000 0.535720
$$893$$ 0 0
$$894$$ 10.0000 0.334450
$$895$$ −24.0000 −0.802232
$$896$$ 0 0
$$897$$ 0 0
$$898$$ −2.00000 −0.0667409
$$899$$ −80.0000 −2.66815
$$900$$ −1.00000 −0.0333333
$$901$$ 0 0
$$902$$ −40.0000 −1.33185
$$903$$ 0 0
$$904$$ −2.00000 −0.0665190
$$905$$ −28.0000 −0.930751
$$906$$ −24.0000 −0.797347
$$907$$ −28.0000 −0.929725 −0.464862 0.885383i $$-0.653896\pi$$
−0.464862 + 0.885383i $$0.653896\pi$$
$$908$$ −4.00000 −0.132745
$$909$$ −10.0000 −0.331679
$$910$$ 0 0
$$911$$ −8.00000 −0.265052 −0.132526 0.991180i $$-0.542309\pi$$
−0.132526 + 0.991180i $$0.542309\pi$$
$$912$$ −4.00000 −0.132453
$$913$$ 16.0000 0.529523
$$914$$ 10.0000 0.330771
$$915$$ −20.0000 −0.661180
$$916$$ −26.0000 −0.859064
$$917$$ 0 0
$$918$$ 0 0
$$919$$ 24.0000 0.791687 0.395843 0.918318i $$-0.370452\pi$$
0.395843 + 0.918318i $$0.370452\pi$$
$$920$$ 0 0
$$921$$ 12.0000 0.395413
$$922$$ 30.0000 0.987997
$$923$$ 0 0
$$924$$ 0 0
$$925$$ −2.00000 −0.0657596
$$926$$ 32.0000 1.05159
$$927$$ −8.00000 −0.262754
$$928$$ 10.0000 0.328266
$$929$$ −2.00000 −0.0656179 −0.0328089 0.999462i $$-0.510445\pi$$
−0.0328089 + 0.999462i $$0.510445\pi$$
$$930$$ 16.0000 0.524661
$$931$$ −28.0000 −0.917663
$$932$$ −26.0000 −0.851658
$$933$$ 0 0
$$934$$ −12.0000 −0.392652
$$935$$ 0 0
$$936$$ −2.00000 −0.0653720
$$937$$ −22.0000 −0.718709 −0.359354 0.933201i $$-0.617003\pi$$
−0.359354 + 0.933201i $$0.617003\pi$$
$$938$$ 0 0
$$939$$ 10.0000 0.326338
$$940$$ 0 0
$$941$$ 10.0000 0.325991 0.162995 0.986627i $$-0.447884\pi$$
0.162995 + 0.986627i $$0.447884\pi$$
$$942$$ 2.00000 0.0651635
$$943$$ 0 0
$$944$$ 12.0000 0.390567
$$945$$ 0 0
$$946$$ 48.0000 1.56061
$$947$$ 28.0000 0.909878 0.454939 0.890523i $$-0.349661\pi$$
0.454939 + 0.890523i $$0.349661\pi$$
$$948$$ −8.00000 −0.259828
$$949$$ 20.0000 0.649227
$$950$$ −4.00000 −0.129777
$$951$$ 6.00000 0.194563
$$952$$ 0 0
$$953$$ −6.00000 −0.194359 −0.0971795 0.995267i $$-0.530982\pi$$
−0.0971795 + 0.995267i $$0.530982\pi$$
$$954$$ 6.00000 0.194257
$$955$$ −32.0000 −1.03550
$$956$$ 0 0
$$957$$ −40.0000 −1.29302
$$958$$ −24.0000 −0.775405
$$959$$ 0 0
$$960$$ −2.00000 −0.0645497
$$961$$ 33.0000 1.06452
$$962$$ −4.00000 −0.128965
$$963$$ 4.00000 0.128898
$$964$$ −2.00000 −0.0644157
$$965$$ −36.0000 −1.15888
$$966$$ 0 0
$$967$$ −8.00000 −0.257263 −0.128631 0.991692i $$-0.541058\pi$$
−0.128631 + 0.991692i $$0.541058\pi$$
$$968$$ 5.00000 0.160706
$$969$$ 0 0
$$970$$ 28.0000 0.899026
$$971$$ −4.00000 −0.128366 −0.0641831 0.997938i $$-0.520444\pi$$
−0.0641831 + 0.997938i $$0.520444\pi$$
$$972$$ −1.00000 −0.0320750
$$973$$ 0 0
$$974$$ 16.0000 0.512673
$$975$$ −2.00000 −0.0640513
$$976$$ 10.0000 0.320092
$$977$$ −46.0000 −1.47167 −0.735835 0.677161i $$-0.763210\pi$$
−0.735835 + 0.677161i $$0.763210\pi$$
$$978$$ 4.00000 0.127906
$$979$$ −24.0000 −0.767043
$$980$$ −14.0000 −0.447214
$$981$$ 10.0000 0.319275
$$982$$ 12.0000 0.382935
$$983$$ −48.0000 −1.53096 −0.765481 0.643458i $$-0.777499\pi$$
−0.765481 + 0.643458i $$0.777499\pi$$
$$984$$ 10.0000 0.318788
$$985$$ −28.0000 −0.892154
$$986$$ 0 0
$$987$$ 0 0
$$988$$ −8.00000 −0.254514
$$989$$ 0 0
$$990$$ 8.00000 0.254257
$$991$$ 40.0000 1.27064 0.635321 0.772248i $$-0.280868\pi$$
0.635321 + 0.772248i $$0.280868\pi$$
$$992$$ −8.00000 −0.254000
$$993$$ 20.0000 0.634681
$$994$$ 0 0
$$995$$ 0 0
$$996$$ −4.00000 −0.126745
$$997$$ 2.00000 0.0633406 0.0316703 0.999498i $$-0.489917\pi$$
0.0316703 + 0.999498i $$0.489917\pi$$
$$998$$ −4.00000 −0.126618
$$999$$ −2.00000 −0.0632772
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1734.2.a.j.1.1 1
3.2 odd 2 5202.2.a.c.1.1 1
17.2 even 8 1734.2.f.e.1483.1 4
17.4 even 4 1734.2.b.b.577.2 2
17.8 even 8 1734.2.f.e.829.2 4
17.9 even 8 1734.2.f.e.829.1 4
17.13 even 4 1734.2.b.b.577.1 2
17.15 even 8 1734.2.f.e.1483.2 4
17.16 even 2 102.2.a.c.1.1 1
51.50 odd 2 306.2.a.b.1.1 1
68.67 odd 2 816.2.a.b.1.1 1
85.33 odd 4 2550.2.d.m.2449.1 2
85.67 odd 4 2550.2.d.m.2449.2 2
85.84 even 2 2550.2.a.c.1.1 1
119.118 odd 2 4998.2.a.be.1.1 1
136.67 odd 2 3264.2.a.bc.1.1 1
136.101 even 2 3264.2.a.m.1.1 1
204.203 even 2 2448.2.a.p.1.1 1
255.254 odd 2 7650.2.a.ca.1.1 1
408.101 odd 2 9792.2.a.k.1.1 1
408.203 even 2 9792.2.a.l.1.1 1

By twisted newform
Twist Min Dim Char Parity Ord Type
102.2.a.c.1.1 1 17.16 even 2
306.2.a.b.1.1 1 51.50 odd 2
816.2.a.b.1.1 1 68.67 odd 2
1734.2.a.j.1.1 1 1.1 even 1 trivial
1734.2.b.b.577.1 2 17.13 even 4
1734.2.b.b.577.2 2 17.4 even 4
1734.2.f.e.829.1 4 17.9 even 8
1734.2.f.e.829.2 4 17.8 even 8
1734.2.f.e.1483.1 4 17.2 even 8
1734.2.f.e.1483.2 4 17.15 even 8
2448.2.a.p.1.1 1 204.203 even 2
2550.2.a.c.1.1 1 85.84 even 2
2550.2.d.m.2449.1 2 85.33 odd 4
2550.2.d.m.2449.2 2 85.67 odd 4
3264.2.a.m.1.1 1 136.101 even 2
3264.2.a.bc.1.1 1 136.67 odd 2
4998.2.a.be.1.1 1 119.118 odd 2
5202.2.a.c.1.1 1 3.2 odd 2
7650.2.a.ca.1.1 1 255.254 odd 2
9792.2.a.k.1.1 1 408.101 odd 2
9792.2.a.l.1.1 1 408.203 even 2