Properties

Label 17298.2.a.j
Level $17298$
Weight $2$
Character orbit 17298.a
Self dual yes
Analytic conductor $138.125$
Dimension $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [17298,2,Mod(1,17298)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("17298.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(17298, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 17298 = 2 \cdot 3^{2} \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 17298.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-1,0,1,3,0,-4,-1,0,-3,-3,0,-5,4,0,1,-3,0,-7,3,0,3,-6,0,4,5, 0,-4,-6,0,0,-1,0,3,-12,0,-2,7,0,-3,-12,0,-8,-3,0,6,-3,0,9,-4,0,-5,-12, 0,-9,4,0,6,6,0,-5,0,0,1,-15,0,11,-3,0,12,-3,0,4,2,0,-7,12,0,13,3,0,12, 3,0,-9,8,0,3,6,0,20,-6,0,3,-21,0,-7,-9,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(138.125225416\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: not computed
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - q^{2} + q^{4} + 3 q^{5} - 4 q^{7} - q^{8} - 3 q^{10} - 3 q^{11} - 5 q^{13} + 4 q^{14} + q^{16} - 3 q^{17} - 7 q^{19} + 3 q^{20} + 3 q^{22} - 6 q^{23} + 4 q^{25} + 5 q^{26} - 4 q^{28} - 6 q^{29}+ \cdots - 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(31\) \( -1 \)

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.