Properties

Label 1728.4.f.f.863.3
Level $1728$
Weight $4$
Character 1728.863
Analytic conductor $101.955$
Analytic rank $0$
Dimension $8$
CM discriminant -24
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1728,4,Mod(863,1728)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1728, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1728.863");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1728.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(101.955300490\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 863.3
Root \(0.965926 - 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 1728.863
Dual form 1728.4.f.f.863.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-11.9503 q^{5} -29.7279i q^{7} +O(q^{10})\) \(q-11.9503 q^{5} -29.7279i q^{7} +41.2720i q^{11} +17.8091 q^{25} -218.238 q^{29} -257.742i q^{31} +355.257i q^{35} -540.749 q^{49} -247.534 q^{53} -493.212i q^{55} +717.069i q^{59} -1204.69 q^{73} +1226.93 q^{77} +1370.00i q^{79} -1504.75i q^{83} +1865.26 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 1568 q^{25} - 864 q^{49} - 1288 q^{73} + 2296 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1728\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(703\) \(1217\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −11.9503 −1.06887 −0.534433 0.845211i \(-0.679475\pi\)
−0.534433 + 0.845211i \(0.679475\pi\)
\(6\) 0 0
\(7\) − 29.7279i − 1.60516i −0.596547 0.802578i \(-0.703461\pi\)
0.596547 0.802578i \(-0.296539\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 41.2720i 1.13127i 0.824655 + 0.565636i \(0.191369\pi\)
−0.824655 + 0.565636i \(0.808631\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 17.8091 0.142473
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −218.238 −1.39744 −0.698722 0.715394i \(-0.746247\pi\)
−0.698722 + 0.715394i \(0.746247\pi\)
\(30\) 0 0
\(31\) − 257.742i − 1.49329i −0.665225 0.746643i \(-0.731664\pi\)
0.665225 0.746643i \(-0.268336\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 355.257i 1.71570i
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) −540.749 −1.57653
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −247.534 −0.641536 −0.320768 0.947158i \(-0.603941\pi\)
−0.320768 + 0.947158i \(0.603941\pi\)
\(54\) 0 0
\(55\) − 493.212i − 1.20918i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 717.069i 1.58228i 0.611636 + 0.791139i \(0.290512\pi\)
−0.611636 + 0.791139i \(0.709488\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −1204.69 −1.93148 −0.965741 0.259506i \(-0.916440\pi\)
−0.965741 + 0.259506i \(0.916440\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1226.93 1.81587
\(78\) 0 0
\(79\) 1370.00i 1.95110i 0.219774 + 0.975551i \(0.429468\pi\)
−0.219774 + 0.975551i \(0.570532\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 1504.75i − 1.98998i −0.0999988 0.994988i \(-0.531884\pi\)
0.0999988 0.994988i \(-0.468116\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1865.26 1.95246 0.976230 0.216735i \(-0.0695409\pi\)
0.976230 + 0.216735i \(0.0695409\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 2030.06 1.99998 0.999992 0.00396786i \(-0.00126301\pi\)
0.999992 + 0.00396786i \(0.00126301\pi\)
\(102\) 0 0
\(103\) − 1582.00i − 1.51339i −0.653768 0.756695i \(-0.726813\pi\)
0.653768 0.756695i \(-0.273187\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2072.87i 1.87282i 0.350904 + 0.936411i \(0.385874\pi\)
−0.350904 + 0.936411i \(0.614126\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −372.382 −0.279776
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1280.96 0.916581
\(126\) 0 0
\(127\) 381.623i 0.266642i 0.991073 + 0.133321i \(0.0425641\pi\)
−0.991073 + 0.133321i \(0.957436\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 1672.00i − 1.11514i −0.830129 0.557571i \(-0.811733\pi\)
0.830129 0.557571i \(-0.188267\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 2608.01 1.49368
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2784.86 1.53117 0.765586 0.643334i \(-0.222449\pi\)
0.765586 + 0.643334i \(0.222449\pi\)
\(150\) 0 0
\(151\) 2669.34i 1.43860i 0.694702 + 0.719298i \(0.255536\pi\)
−0.694702 + 0.719298i \(0.744464\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 3080.09i 1.59612i
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 2197.00 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 4074.19 1.79049 0.895246 0.445572i \(-0.147000\pi\)
0.895246 + 0.445572i \(0.147000\pi\)
\(174\) 0 0
\(175\) − 529.427i − 0.228691i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 4625.71i 1.93152i 0.259442 + 0.965759i \(0.416461\pi\)
−0.259442 + 0.965759i \(0.583539\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 2837.39 1.05824 0.529119 0.848548i \(-0.322523\pi\)
0.529119 + 0.848548i \(0.322523\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −4825.13 −1.74506 −0.872528 0.488564i \(-0.837521\pi\)
−0.872528 + 0.488564i \(0.837521\pi\)
\(198\) 0 0
\(199\) 2743.36i 0.977245i 0.872495 + 0.488622i \(0.162500\pi\)
−0.872495 + 0.488622i \(0.837500\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 6487.77i 2.24312i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −7662.14 −2.39696
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) − 182.000i − 0.0546530i −0.999627 0.0273265i \(-0.991301\pi\)
0.999627 0.0273265i \(-0.00869938\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 5954.79i 1.74112i 0.492066 + 0.870558i \(0.336242\pi\)
−0.492066 + 0.870558i \(0.663758\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −6230.00 −1.66518 −0.832592 0.553886i \(-0.813144\pi\)
−0.832592 + 0.553886i \(0.813144\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 6462.10 1.68510
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 6827.74i 1.71699i 0.512826 + 0.858493i \(0.328599\pi\)
−0.512826 + 0.858493i \(0.671401\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 2958.10 0.685715
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 7264.22 1.64650 0.823248 0.567682i \(-0.192160\pi\)
0.823248 + 0.567682i \(0.192160\pi\)
\(270\) 0 0
\(271\) − 899.412i − 0.201607i −0.994906 0.100803i \(-0.967859\pi\)
0.994906 0.100803i \(-0.0321413\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 735.018i 0.161175i
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 4913.00 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 2899.45 0.578116 0.289058 0.957312i \(-0.406658\pi\)
0.289058 + 0.957312i \(0.406658\pi\)
\(294\) 0 0
\(295\) − 8569.17i − 1.69124i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −10842.1 −1.95793 −0.978964 0.204034i \(-0.934595\pi\)
−0.978964 + 0.204034i \(0.934595\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6095.88 1.08006 0.540030 0.841646i \(-0.318413\pi\)
0.540030 + 0.841646i \(0.318413\pi\)
\(318\) 0 0
\(319\) − 9007.15i − 1.58089i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 11594.0 1.87408 0.937041 0.349220i \(-0.113553\pi\)
0.937041 + 0.349220i \(0.113553\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 10637.5 1.68931
\(342\) 0 0
\(343\) 5878.68i 0.925419i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 410.937i 0.0635742i 0.999495 + 0.0317871i \(0.0101199\pi\)
−0.999495 + 0.0317871i \(0.989880\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −6859.00 −1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 14396.4 2.06449
\(366\) 0 0
\(367\) − 11086.3i − 1.57684i −0.615135 0.788422i \(-0.710899\pi\)
0.615135 0.788422i \(-0.289101\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 7358.67i 1.02977i
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) −14662.2 −1.94092
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −12381.9 −1.61385 −0.806927 0.590652i \(-0.798871\pi\)
−0.806927 + 0.590652i \(0.798871\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 16371.9i − 2.08546i
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 16122.8 1.94920 0.974598 0.223959i \(-0.0718983\pi\)
0.974598 + 0.223959i \(0.0718983\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 21317.0 2.53981
\(414\) 0 0
\(415\) 17982.2i 2.12702i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 11940.8i 1.39223i 0.717930 + 0.696115i \(0.245090\pi\)
−0.717930 + 0.696115i \(0.754910\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 323.047 0.0358537 0.0179268 0.999839i \(-0.494293\pi\)
0.0179268 + 0.999839i \(0.494293\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 12472.9i 1.35603i 0.735048 + 0.678015i \(0.237160\pi\)
−0.735048 + 0.678015i \(0.762840\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 11130.2i − 1.19370i −0.802352 0.596851i \(-0.796418\pi\)
0.802352 0.596851i \(-0.203582\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 18136.9 1.85648 0.928239 0.371984i \(-0.121322\pi\)
0.928239 + 0.371984i \(0.121322\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −15677.5 −1.58389 −0.791945 0.610593i \(-0.790931\pi\)
−0.791945 + 0.610593i \(0.790931\pi\)
\(462\) 0 0
\(463\) − 2943.22i − 0.295428i −0.989030 0.147714i \(-0.952808\pi\)
0.989030 0.147714i \(-0.0471915\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 15261.8i 1.51228i 0.654411 + 0.756139i \(0.272917\pi\)
−0.654411 + 0.756139i \(0.727083\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −22290.4 −2.08692
\(486\) 0 0
\(487\) 2914.00i 0.271142i 0.990768 + 0.135571i \(0.0432868\pi\)
−0.990768 + 0.135571i \(0.956713\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 18431.6i 1.69410i 0.531510 + 0.847052i \(0.321625\pi\)
−0.531510 + 0.847052i \(0.678375\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) −24259.8 −2.13771
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −15001.6 −1.30636 −0.653178 0.757204i \(-0.726565\pi\)
−0.653178 + 0.757204i \(0.726565\pi\)
\(510\) 0 0
\(511\) 35812.9i 3.10033i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 18905.3i 1.61761i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −12167.0 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) − 24771.4i − 2.00180i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 22317.8i − 1.78348i
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 40727.3 3.13182
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 9977.55 0.758999 0.379499 0.925192i \(-0.376096\pi\)
0.379499 + 0.925192i \(0.376096\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 26291.4i − 1.96812i −0.177838 0.984060i \(-0.556910\pi\)
0.177838 0.984060i \(-0.443090\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 10906.0 0.786868 0.393434 0.919353i \(-0.371287\pi\)
0.393434 + 0.919353i \(0.371287\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −44733.1 −3.19422
\(582\) 0 0
\(583\) − 10216.2i − 0.725751i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1404.57i 0.0987615i 0.998780 + 0.0493807i \(0.0157248\pi\)
−0.998780 + 0.0493807i \(0.984275\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 27127.6 1.84119 0.920596 0.390516i \(-0.127703\pi\)
0.920596 + 0.390516i \(0.127703\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 4450.07 0.299043
\(606\) 0 0
\(607\) − 29414.0i − 1.96685i −0.181318 0.983425i \(-0.558036\pi\)
0.181318 0.983425i \(-0.441964\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −17534.0 −1.12217
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 23104.5i 1.45765i 0.684701 + 0.728824i \(0.259933\pi\)
−0.684701 + 0.728824i \(0.740067\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 4560.50i − 0.285004i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) −29594.9 −1.78999
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 29066.7 1.74191 0.870957 0.491359i \(-0.163500\pi\)
0.870957 + 0.491359i \(0.163500\pi\)
\(654\) 0 0
\(655\) 19980.9i 1.19194i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 19623.4i − 1.15997i −0.814629 0.579983i \(-0.803059\pi\)
0.814629 0.579983i \(-0.196941\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −1722.56 −0.0986626 −0.0493313 0.998782i \(-0.515709\pi\)
−0.0493313 + 0.998782i \(0.515709\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −34762.3 −1.97344 −0.986722 0.162416i \(-0.948071\pi\)
−0.986722 + 0.162416i \(0.948071\pi\)
\(678\) 0 0
\(679\) − 55450.4i − 3.13401i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 33827.0i − 1.89510i −0.319610 0.947549i \(-0.603552\pi\)
0.319610 0.947549i \(-0.396448\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −36317.6 −1.95677 −0.978385 0.206790i \(-0.933698\pi\)
−0.978385 + 0.206790i \(0.933698\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 60349.4i − 3.21029i
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) −47029.6 −2.42923
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −3886.63 −0.199098
\(726\) 0 0
\(727\) 31564.7i 1.61028i 0.593087 + 0.805138i \(0.297909\pi\)
−0.593087 + 0.805138i \(0.702091\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) −33279.8 −1.63662
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 61622.2 3.00617
\(750\) 0 0
\(751\) − 41146.5i − 1.99928i −0.0268390 0.999640i \(-0.508544\pi\)
0.0268390 0.999640i \(-0.491456\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 31899.4i − 1.53766i
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 25148.7 1.17930 0.589651 0.807658i \(-0.299265\pi\)
0.589651 + 0.807658i \(0.299265\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −19797.3 −0.921165 −0.460583 0.887617i \(-0.652360\pi\)
−0.460583 + 0.887617i \(0.652360\pi\)
\(774\) 0 0
\(775\) − 4590.15i − 0.212753i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −5021.94 −0.223195 −0.111597 0.993754i \(-0.535597\pi\)
−0.111597 + 0.993754i \(0.535597\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 49720.0i − 2.18503i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −46484.8 −1.97604 −0.988021 0.154321i \(-0.950681\pi\)
−0.988021 + 0.154321i \(0.950681\pi\)
\(822\) 0 0
\(823\) 46519.1i 1.97030i 0.171701 + 0.985149i \(0.445074\pi\)
−0.171701 + 0.985149i \(0.554926\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 24660.9i 1.03693i 0.855097 + 0.518467i \(0.173497\pi\)
−0.855097 + 0.518467i \(0.826503\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 23239.0 0.952848
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −26254.8 −1.06887
\(846\) 0 0
\(847\) 11070.1i 0.449084i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) −48687.7 −1.91379
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −56542.7 −2.20723
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 38080.3i − 1.47126i
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 11344.9 0.428002
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) − 55278.5i − 2.06453i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 56249.2i 2.08678i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 62104.2 2.25120
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −49705.2 −1.78998
\(918\) 0 0
\(919\) 40528.3i 1.45474i 0.686246 + 0.727370i \(0.259257\pi\)
−0.686246 + 0.727370i \(0.740743\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 25150.6 0.876876 0.438438 0.898761i \(-0.355532\pi\)
0.438438 + 0.898761i \(0.355532\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −4842.34 −0.167753 −0.0838766 0.996476i \(-0.526730\pi\)
−0.0838766 + 0.996476i \(0.526730\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 9728.84i − 0.333838i −0.985971 0.166919i \(-0.946618\pi\)
0.985971 0.166919i \(-0.0533819\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −36640.0 −1.22990
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −33907.6 −1.13111
\(966\) 0 0
\(967\) − 41439.1i − 1.37807i −0.724729 0.689034i \(-0.758035\pi\)
0.724729 0.689034i \(-0.241965\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 56704.0i 1.87407i 0.349240 + 0.937033i \(0.386440\pi\)
−0.349240 + 0.937033i \(0.613560\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 57661.6 1.86523
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 61677.9i 1.97706i 0.151033 + 0.988529i \(0.451740\pi\)
−0.151033 + 0.988529i \(0.548260\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 32783.9i − 1.04454i
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1728.4.f.f.863.3 8
3.2 odd 2 inner 1728.4.f.f.863.5 yes 8
4.3 odd 2 inner 1728.4.f.f.863.4 yes 8
8.3 odd 2 inner 1728.4.f.f.863.6 yes 8
8.5 even 2 inner 1728.4.f.f.863.5 yes 8
12.11 even 2 inner 1728.4.f.f.863.6 yes 8
24.5 odd 2 CM 1728.4.f.f.863.3 8
24.11 even 2 inner 1728.4.f.f.863.4 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1728.4.f.f.863.3 8 1.1 even 1 trivial
1728.4.f.f.863.3 8 24.5 odd 2 CM
1728.4.f.f.863.4 yes 8 4.3 odd 2 inner
1728.4.f.f.863.4 yes 8 24.11 even 2 inner
1728.4.f.f.863.5 yes 8 3.2 odd 2 inner
1728.4.f.f.863.5 yes 8 8.5 even 2 inner
1728.4.f.f.863.6 yes 8 8.3 odd 2 inner
1728.4.f.f.863.6 yes 8 12.11 even 2 inner