Properties

Label 1728.4.bm
Level $1728$
Weight $4$
Character orbit 1728.bm
Rep. character $\chi_{1728}(191,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $1284$
Sturm bound $1152$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1728.bm (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 108 \)
Character field: \(\Q(\zeta_{18})\)
Sturm bound: \(1152\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(1728, [\chi])\).

Total New Old
Modular forms 5256 1308 3948
Cusp forms 5112 1284 3828
Eisenstein series 144 24 120

Trace form

\( 1284 q + 12 q^{5} - 12 q^{9} + 12 q^{13} - 18 q^{17} + 12 q^{21} - 12 q^{25} + 12 q^{29} - 708 q^{33} + 6 q^{37} - 132 q^{41} + 12 q^{45} - 12 q^{49} - 174 q^{57} + 12 q^{61} - 12 q^{65} + 12 q^{69} - 6 q^{73}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(1728, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(1728, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(1728, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(108, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(432, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(864, [\chi])\)\(^{\oplus 2}\)