Properties

Label 1728.4.a.c
Level $1728$
Weight $4$
Character orbit 1728.a
Self dual yes
Analytic conductor $101.955$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1728,4,Mod(1,1728)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1728, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1728.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1728.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(101.955300490\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 27)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 15 q^{5} - 25 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q - 15 q^{5} - 25 q^{7} + 15 q^{11} - 20 q^{13} + 72 q^{17} - 2 q^{19} + 114 q^{23} + 100 q^{25} - 30 q^{29} + 101 q^{31} + 375 q^{35} + 430 q^{37} - 30 q^{41} - 110 q^{43} - 330 q^{47} + 282 q^{49} - 621 q^{53} - 225 q^{55} + 660 q^{59} + 376 q^{61} + 300 q^{65} + 250 q^{67} - 360 q^{71} + 785 q^{73} - 375 q^{77} + 488 q^{79} - 489 q^{83} - 1080 q^{85} - 450 q^{89} + 500 q^{91} + 30 q^{95} - 1105 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 −15.0000 0 −25.0000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1728.4.a.c 1
3.b odd 2 1 1728.4.a.bc 1
4.b odd 2 1 1728.4.a.d 1
8.b even 2 1 27.4.a.b yes 1
8.d odd 2 1 432.4.a.n 1
12.b even 2 1 1728.4.a.bd 1
24.f even 2 1 432.4.a.a 1
24.h odd 2 1 27.4.a.a 1
40.f even 2 1 675.4.a.a 1
40.i odd 4 2 675.4.b.a 2
56.h odd 2 1 1323.4.a.k 1
72.j odd 6 2 81.4.c.c 2
72.n even 6 2 81.4.c.a 2
120.i odd 2 1 675.4.a.j 1
120.w even 4 2 675.4.b.b 2
168.i even 2 1 1323.4.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
27.4.a.a 1 24.h odd 2 1
27.4.a.b yes 1 8.b even 2 1
81.4.c.a 2 72.n even 6 2
81.4.c.c 2 72.j odd 6 2
432.4.a.a 1 24.f even 2 1
432.4.a.n 1 8.d odd 2 1
675.4.a.a 1 40.f even 2 1
675.4.a.j 1 120.i odd 2 1
675.4.b.a 2 40.i odd 4 2
675.4.b.b 2 120.w even 4 2
1323.4.a.d 1 168.i even 2 1
1323.4.a.k 1 56.h odd 2 1
1728.4.a.c 1 1.a even 1 1 trivial
1728.4.a.d 1 4.b odd 2 1
1728.4.a.bc 1 3.b odd 2 1
1728.4.a.bd 1 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1728))\):

\( T_{5} + 15 \) Copy content Toggle raw display
\( T_{7} + 25 \) Copy content Toggle raw display
\( T_{11} - 15 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T + 15 \) Copy content Toggle raw display
$7$ \( T + 25 \) Copy content Toggle raw display
$11$ \( T - 15 \) Copy content Toggle raw display
$13$ \( T + 20 \) Copy content Toggle raw display
$17$ \( T - 72 \) Copy content Toggle raw display
$19$ \( T + 2 \) Copy content Toggle raw display
$23$ \( T - 114 \) Copy content Toggle raw display
$29$ \( T + 30 \) Copy content Toggle raw display
$31$ \( T - 101 \) Copy content Toggle raw display
$37$ \( T - 430 \) Copy content Toggle raw display
$41$ \( T + 30 \) Copy content Toggle raw display
$43$ \( T + 110 \) Copy content Toggle raw display
$47$ \( T + 330 \) Copy content Toggle raw display
$53$ \( T + 621 \) Copy content Toggle raw display
$59$ \( T - 660 \) Copy content Toggle raw display
$61$ \( T - 376 \) Copy content Toggle raw display
$67$ \( T - 250 \) Copy content Toggle raw display
$71$ \( T + 360 \) Copy content Toggle raw display
$73$ \( T - 785 \) Copy content Toggle raw display
$79$ \( T - 488 \) Copy content Toggle raw display
$83$ \( T + 489 \) Copy content Toggle raw display
$89$ \( T + 450 \) Copy content Toggle raw display
$97$ \( T + 1105 \) Copy content Toggle raw display
show more
show less