# Properties

 Label 1728.4.a.bt Level $1728$ Weight $4$ Character orbit 1728.a Self dual yes Analytic conductor $101.955$ Analytic rank $0$ Dimension $2$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1728 = 2^{6} \cdot 3^{3}$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 1728.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$101.955300490$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{33})$$ Defining polynomial: $$x^{2} - x - 8$$ Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$2\cdot 3$$ Twist minimal: no (minimal twist has level 216) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = 3\sqrt{33}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( 4 + \beta ) q^{5} + ( 12 + \beta ) q^{7} +O(q^{10})$$ $$q + ( 4 + \beta ) q^{5} + ( 12 + \beta ) q^{7} + q^{11} + ( -16 + 4 \beta ) q^{13} + ( 28 + 4 \beta ) q^{17} + ( -92 - 2 \beta ) q^{19} + ( -46 + 4 \beta ) q^{23} + ( 188 + 8 \beta ) q^{25} + ( -168 + 2 \beta ) q^{29} + ( 188 - 5 \beta ) q^{31} + ( 345 + 16 \beta ) q^{35} + ( -174 + 4 \beta ) q^{37} + ( 156 - 10 \beta ) q^{41} + ( -40 + 14 \beta ) q^{43} + ( 114 + 8 \beta ) q^{47} + ( 98 + 24 \beta ) q^{49} + ( 76 - 13 \beta ) q^{53} + ( 4 + \beta ) q^{55} + ( 340 - 24 \beta ) q^{59} + ( 56 + 32 \beta ) q^{61} + 1124 q^{65} + ( -176 - 34 \beta ) q^{67} + ( -908 + 12 \beta ) q^{71} -287 q^{73} + ( 12 + \beta ) q^{77} + ( -680 + 32 \beta ) q^{79} + ( -391 + 32 \beta ) q^{83} + ( 1300 + 44 \beta ) q^{85} + ( -120 - 18 \beta ) q^{89} + ( 996 + 32 \beta ) q^{91} + ( -962 - 100 \beta ) q^{95} + ( -169 + 8 \beta ) q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q + 8q^{5} + 24q^{7} + O(q^{10})$$ $$2q + 8q^{5} + 24q^{7} + 2q^{11} - 32q^{13} + 56q^{17} - 184q^{19} - 92q^{23} + 376q^{25} - 336q^{29} + 376q^{31} + 690q^{35} - 348q^{37} + 312q^{41} - 80q^{43} + 228q^{47} + 196q^{49} + 152q^{53} + 8q^{55} + 680q^{59} + 112q^{61} + 2248q^{65} - 352q^{67} - 1816q^{71} - 574q^{73} + 24q^{77} - 1360q^{79} - 782q^{83} + 2600q^{85} - 240q^{89} + 1992q^{91} - 1924q^{95} - 338q^{97} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −2.37228 3.37228
0 0 0 −13.2337 0 −5.23369 0 0 0
1.2 0 0 0 21.2337 0 29.2337 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$1$$
$$3$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1728.4.a.bt 2
3.b odd 2 1 1728.4.a.bh 2
4.b odd 2 1 1728.4.a.bs 2
8.b even 2 1 216.4.a.e 2
8.d odd 2 1 432.4.a.o 2
12.b even 2 1 1728.4.a.bg 2
24.f even 2 1 432.4.a.s 2
24.h odd 2 1 216.4.a.h yes 2
72.j odd 6 2 648.4.i.m 4
72.n even 6 2 648.4.i.s 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
216.4.a.e 2 8.b even 2 1
216.4.a.h yes 2 24.h odd 2 1
432.4.a.o 2 8.d odd 2 1
432.4.a.s 2 24.f even 2 1
648.4.i.m 4 72.j odd 6 2
648.4.i.s 4 72.n even 6 2
1728.4.a.bg 2 12.b even 2 1
1728.4.a.bh 2 3.b odd 2 1
1728.4.a.bs 2 4.b odd 2 1
1728.4.a.bt 2 1.a even 1 1 trivial

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{4}^{\mathrm{new}}(\Gamma_0(1728))$$:

 $$T_{5}^{2} - 8 T_{5} - 281$$ $$T_{7}^{2} - 24 T_{7} - 153$$ $$T_{11} - 1$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2}$$
$5$ $$-281 - 8 T + T^{2}$$
$7$ $$-153 - 24 T + T^{2}$$
$11$ $$( -1 + T )^{2}$$
$13$ $$-4496 + 32 T + T^{2}$$
$17$ $$-3968 - 56 T + T^{2}$$
$19$ $$7276 + 184 T + T^{2}$$
$23$ $$-2636 + 92 T + T^{2}$$
$29$ $$27036 + 336 T + T^{2}$$
$31$ $$27919 - 376 T + T^{2}$$
$37$ $$25524 + 348 T + T^{2}$$
$41$ $$-5364 - 312 T + T^{2}$$
$43$ $$-56612 + 80 T + T^{2}$$
$47$ $$-6012 - 228 T + T^{2}$$
$53$ $$-44417 - 152 T + T^{2}$$
$59$ $$-55472 - 680 T + T^{2}$$
$61$ $$-300992 - 112 T + T^{2}$$
$67$ $$-312356 + 352 T + T^{2}$$
$71$ $$781696 + 1816 T + T^{2}$$
$73$ $$( 287 + T )^{2}$$
$79$ $$158272 + 1360 T + T^{2}$$
$83$ $$-151247 + 782 T + T^{2}$$
$89$ $$-81828 + 240 T + T^{2}$$
$97$ $$9553 + 338 T + T^{2}$$