Properties

Label 1728.3.q.j.1601.2
Level $1728$
Weight $3$
Character 1728.1601
Analytic conductor $47.085$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1728.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(47.0845896815\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.19269881856.9
Defining polynomial: \( x^{8} - 2x^{7} + 15x^{6} - 2x^{5} + 133x^{4} - 84x^{3} + 276x^{2} + 144x + 144 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 72)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1601.2
Root \(-0.331167 + 0.573598i\) of defining polynomial
Character \(\chi\) \(=\) 1728.1601
Dual form 1728.3.q.j.449.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.0440114 + 0.0254100i) q^{5} +(4.52944 - 7.84521i) q^{7} +O(q^{10})\) \(q+(-0.0440114 + 0.0254100i) q^{5} +(4.52944 - 7.84521i) q^{7} +(3.29117 + 1.90016i) q^{11} +(-0.216902 - 0.375686i) q^{13} -26.2355i q^{17} -34.2225 q^{19} +(29.9930 - 17.3164i) q^{23} +(-12.4987 + 21.6484i) q^{25} +(14.0316 + 8.10114i) q^{29} +(-17.1675 - 29.7350i) q^{31} +0.460372i q^{35} -29.2761 q^{37} +(-48.7026 + 28.1185i) q^{41} +(3.94539 - 6.83362i) q^{43} +(33.4489 + 19.3117i) q^{47} +(-16.5316 - 28.6335i) q^{49} -50.5273i q^{53} -0.193132 q^{55} +(-8.54743 + 4.93486i) q^{59} +(36.5718 - 63.3442i) q^{61} +(0.0190923 + 0.0110230i) q^{65} +(12.6797 + 21.9618i) q^{67} +97.8262i q^{71} -77.0599 q^{73} +(29.8143 - 17.2133i) q^{77} +(-42.1389 + 72.9868i) q^{79} +(40.6763 + 23.4845i) q^{83} +(0.666644 + 1.15466i) q^{85} -108.587i q^{89} -3.92978 q^{91} +(1.50618 - 0.869593i) q^{95} +(-32.4021 + 56.1221i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{5} + 6 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 6 q^{5} + 6 q^{7} + 36 q^{11} - 14 q^{13} - 4 q^{19} + 102 q^{23} + 10 q^{25} - 114 q^{29} - 50 q^{31} - 120 q^{37} - 264 q^{41} + 28 q^{43} - 150 q^{47} + 94 q^{49} - 244 q^{55} - 108 q^{59} - 14 q^{61} + 198 q^{65} + 20 q^{67} - 76 q^{73} + 66 q^{77} + 26 q^{79} + 246 q^{83} + 224 q^{85} - 108 q^{91} + 456 q^{95} - 236 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1728\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(703\) \(1217\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.0440114 + 0.0254100i −0.00880228 + 0.00508200i −0.504395 0.863473i \(-0.668284\pi\)
0.495592 + 0.868555i \(0.334951\pi\)
\(6\) 0 0
\(7\) 4.52944 7.84521i 0.647062 1.12074i −0.336759 0.941591i \(-0.609331\pi\)
0.983821 0.179154i \(-0.0573360\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.29117 + 1.90016i 0.299198 + 0.172742i 0.642082 0.766636i \(-0.278071\pi\)
−0.342885 + 0.939377i \(0.611404\pi\)
\(12\) 0 0
\(13\) −0.216902 0.375686i −0.0166848 0.0288989i 0.857562 0.514380i \(-0.171978\pi\)
−0.874247 + 0.485481i \(0.838645\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 26.2355i 1.54327i −0.636068 0.771633i \(-0.719440\pi\)
0.636068 0.771633i \(-0.280560\pi\)
\(18\) 0 0
\(19\) −34.2225 −1.80118 −0.900592 0.434666i \(-0.856867\pi\)
−0.900592 + 0.434666i \(0.856867\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 29.9930 17.3164i 1.30404 0.752889i 0.322947 0.946417i \(-0.395326\pi\)
0.981095 + 0.193528i \(0.0619931\pi\)
\(24\) 0 0
\(25\) −12.4987 + 21.6484i −0.499948 + 0.865936i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 14.0316 + 8.10114i 0.483848 + 0.279350i 0.722019 0.691874i \(-0.243214\pi\)
−0.238171 + 0.971223i \(0.576548\pi\)
\(30\) 0 0
\(31\) −17.1675 29.7350i −0.553790 0.959193i −0.997997 0.0632685i \(-0.979848\pi\)
0.444206 0.895925i \(-0.353486\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.460372i 0.0131535i
\(36\) 0 0
\(37\) −29.2761 −0.791247 −0.395623 0.918413i \(-0.629471\pi\)
−0.395623 + 0.918413i \(0.629471\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −48.7026 + 28.1185i −1.18787 + 0.685816i −0.957822 0.287363i \(-0.907221\pi\)
−0.230047 + 0.973180i \(0.573888\pi\)
\(42\) 0 0
\(43\) 3.94539 6.83362i 0.0917533 0.158921i −0.816496 0.577352i \(-0.804086\pi\)
0.908249 + 0.418430i \(0.137420\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 33.4489 + 19.3117i 0.711678 + 0.410887i 0.811682 0.584100i \(-0.198552\pi\)
−0.100004 + 0.994987i \(0.531886\pi\)
\(48\) 0 0
\(49\) −16.5316 28.6335i −0.337379 0.584358i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 50.5273i 0.953344i −0.879081 0.476672i \(-0.841843\pi\)
0.879081 0.476672i \(-0.158157\pi\)
\(54\) 0 0
\(55\) −0.193132 −0.00351149
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −8.54743 + 4.93486i −0.144872 + 0.0836417i −0.570684 0.821170i \(-0.693322\pi\)
0.425812 + 0.904812i \(0.359988\pi\)
\(60\) 0 0
\(61\) 36.5718 63.3442i 0.599537 1.03843i −0.393352 0.919388i \(-0.628685\pi\)
0.992889 0.119041i \(-0.0379821\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.0190923 + 0.0110230i 0.000293728 + 0.000169584i
\(66\) 0 0
\(67\) 12.6797 + 21.9618i 0.189249 + 0.327789i 0.945000 0.327070i \(-0.106061\pi\)
−0.755751 + 0.654859i \(0.772728\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 97.8262i 1.37783i 0.724840 + 0.688917i \(0.241914\pi\)
−0.724840 + 0.688917i \(0.758086\pi\)
\(72\) 0 0
\(73\) −77.0599 −1.05561 −0.527807 0.849364i \(-0.676986\pi\)
−0.527807 + 0.849364i \(0.676986\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 29.8143 17.2133i 0.387199 0.223549i
\(78\) 0 0
\(79\) −42.1389 + 72.9868i −0.533404 + 0.923883i 0.465835 + 0.884872i \(0.345754\pi\)
−0.999239 + 0.0390112i \(0.987579\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 40.6763 + 23.4845i 0.490076 + 0.282946i 0.724606 0.689163i \(-0.242022\pi\)
−0.234530 + 0.972109i \(0.575355\pi\)
\(84\) 0 0
\(85\) 0.666644 + 1.15466i 0.00784287 + 0.0135843i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 108.587i 1.22008i −0.792371 0.610039i \(-0.791154\pi\)
0.792371 0.610039i \(-0.208846\pi\)
\(90\) 0 0
\(91\) −3.92978 −0.0431844
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.50618 0.869593i 0.0158545 0.00915361i
\(96\) 0 0
\(97\) −32.4021 + 56.1221i −0.334043 + 0.578579i −0.983300 0.181990i \(-0.941746\pi\)
0.649258 + 0.760568i \(0.275080\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −168.478 97.2705i −1.66809 0.963075i −0.968664 0.248373i \(-0.920104\pi\)
−0.699430 0.714701i \(-0.746563\pi\)
\(102\) 0 0
\(103\) −12.4420 21.5502i −0.120796 0.209225i 0.799286 0.600951i \(-0.205211\pi\)
−0.920082 + 0.391726i \(0.871878\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 23.2306i 0.217108i −0.994091 0.108554i \(-0.965378\pi\)
0.994091 0.108554i \(-0.0346221\pi\)
\(108\) 0 0
\(109\) −157.077 −1.44108 −0.720538 0.693416i \(-0.756105\pi\)
−0.720538 + 0.693416i \(0.756105\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 32.5614 18.7994i 0.288154 0.166366i −0.348955 0.937140i \(-0.613463\pi\)
0.637109 + 0.770774i \(0.280130\pi\)
\(114\) 0 0
\(115\) −0.880021 + 1.52424i −0.00765236 + 0.0132543i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −205.823 118.832i −1.72961 0.998589i
\(120\) 0 0
\(121\) −53.2788 92.2816i −0.440321 0.762658i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 2.54087i 0.0203269i
\(126\) 0 0
\(127\) 48.4364 0.381389 0.190694 0.981649i \(-0.438926\pi\)
0.190694 + 0.981649i \(0.438926\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0.0274376 0.0158411i 0.000209447 0.000120924i −0.499895 0.866086i \(-0.666628\pi\)
0.500105 + 0.865965i \(0.333295\pi\)
\(132\) 0 0
\(133\) −155.009 + 268.483i −1.16548 + 2.01867i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −0.913705 0.527528i −0.00666938 0.00385057i 0.496662 0.867944i \(-0.334559\pi\)
−0.503331 + 0.864094i \(0.667892\pi\)
\(138\) 0 0
\(139\) −45.3655 78.5754i −0.326371 0.565290i 0.655418 0.755266i \(-0.272492\pi\)
−0.981789 + 0.189976i \(0.939159\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.64860i 0.0115286i
\(144\) 0 0
\(145\) −0.823399 −0.00567862
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 15.1086 8.72295i 0.101400 0.0585433i −0.448442 0.893812i \(-0.648021\pi\)
0.549842 + 0.835268i \(0.314688\pi\)
\(150\) 0 0
\(151\) 40.8713 70.7912i 0.270671 0.468816i −0.698363 0.715744i \(-0.746088\pi\)
0.969034 + 0.246928i \(0.0794211\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.51113 + 0.872452i 0.00974923 + 0.00562872i
\(156\) 0 0
\(157\) −96.4835 167.114i −0.614544 1.06442i −0.990464 0.137770i \(-0.956007\pi\)
0.375920 0.926652i \(-0.377327\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 313.735i 1.94866i
\(162\) 0 0
\(163\) 165.401 1.01473 0.507364 0.861732i \(-0.330620\pi\)
0.507364 + 0.861732i \(0.330620\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 215.643 124.502i 1.29128 0.745520i 0.312398 0.949951i \(-0.398868\pi\)
0.978881 + 0.204432i \(0.0655346\pi\)
\(168\) 0 0
\(169\) 84.4059 146.195i 0.499443 0.865061i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −117.476 67.8248i −0.679052 0.392051i 0.120446 0.992720i \(-0.461568\pi\)
−0.799498 + 0.600669i \(0.794901\pi\)
\(174\) 0 0
\(175\) 113.224 + 196.110i 0.646995 + 1.12063i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 95.4526i 0.533255i 0.963800 + 0.266627i \(0.0859093\pi\)
−0.963800 + 0.266627i \(0.914091\pi\)
\(180\) 0 0
\(181\) −58.9249 −0.325552 −0.162776 0.986663i \(-0.552045\pi\)
−0.162776 + 0.986663i \(0.552045\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.28848 0.743906i 0.00696477 0.00402111i
\(186\) 0 0
\(187\) 49.8517 86.3457i 0.266587 0.461742i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −164.852 95.1775i −0.863101 0.498311i 0.00194880 0.999998i \(-0.499380\pi\)
−0.865049 + 0.501687i \(0.832713\pi\)
\(192\) 0 0
\(193\) 5.29645 + 9.17373i 0.0274428 + 0.0475323i 0.879421 0.476046i \(-0.157930\pi\)
−0.851978 + 0.523578i \(0.824597\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 215.874i 1.09581i −0.836541 0.547904i \(-0.815426\pi\)
0.836541 0.547904i \(-0.184574\pi\)
\(198\) 0 0
\(199\) −146.668 −0.737026 −0.368513 0.929623i \(-0.620133\pi\)
−0.368513 + 0.929623i \(0.620133\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 127.110 73.3872i 0.626159 0.361513i
\(204\) 0 0
\(205\) 1.42898 2.47506i 0.00697063 0.0120735i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −112.632 65.0282i −0.538910 0.311140i
\(210\) 0 0
\(211\) 54.8335 + 94.9744i 0.259874 + 0.450116i 0.966208 0.257763i \(-0.0829855\pi\)
−0.706334 + 0.707879i \(0.749652\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0.401009i 0.00186516i
\(216\) 0 0
\(217\) −311.036 −1.43335
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −9.85631 + 5.69054i −0.0445987 + 0.0257491i
\(222\) 0 0
\(223\) 73.8403 127.895i 0.331123 0.573521i −0.651610 0.758554i \(-0.725906\pi\)
0.982732 + 0.185033i \(0.0592393\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −346.255 199.911i −1.52535 0.880664i −0.999548 0.0300589i \(-0.990431\pi\)
−0.525806 0.850605i \(-0.676236\pi\)
\(228\) 0 0
\(229\) −39.1692 67.8430i −0.171044 0.296258i 0.767741 0.640760i \(-0.221381\pi\)
−0.938785 + 0.344503i \(0.888047\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 352.995i 1.51500i 0.652835 + 0.757500i \(0.273580\pi\)
−0.652835 + 0.757500i \(0.726420\pi\)
\(234\) 0 0
\(235\) −1.96284 −0.00835251
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −279.549 + 161.397i −1.16966 + 0.675303i −0.953600 0.301077i \(-0.902654\pi\)
−0.216060 + 0.976380i \(0.569321\pi\)
\(240\) 0 0
\(241\) −105.601 + 182.907i −0.438180 + 0.758949i −0.997549 0.0699691i \(-0.977710\pi\)
0.559370 + 0.828918i \(0.311043\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.45516 + 0.840135i 0.00593941 + 0.00342912i
\(246\) 0 0
\(247\) 7.42293 + 12.8569i 0.0300524 + 0.0520522i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 206.824i 0.824001i −0.911184 0.412001i \(-0.864830\pi\)
0.911184 0.412001i \(-0.135170\pi\)
\(252\) 0 0
\(253\) 131.616 0.520222
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −20.7432 + 11.9761i −0.0807127 + 0.0465995i −0.539813 0.841785i \(-0.681505\pi\)
0.459100 + 0.888384i \(0.348172\pi\)
\(258\) 0 0
\(259\) −132.604 + 229.678i −0.511986 + 0.886786i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 119.369 + 68.9175i 0.453873 + 0.262044i 0.709464 0.704741i \(-0.248937\pi\)
−0.255592 + 0.966785i \(0.582270\pi\)
\(264\) 0 0
\(265\) 1.28390 + 2.22377i 0.00484489 + 0.00839160i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 249.461i 0.927366i 0.886001 + 0.463683i \(0.153472\pi\)
−0.886001 + 0.463683i \(0.846528\pi\)
\(270\) 0 0
\(271\) 72.6700 0.268155 0.134078 0.990971i \(-0.457193\pi\)
0.134078 + 0.990971i \(0.457193\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −82.2709 + 47.4991i −0.299167 + 0.172724i
\(276\) 0 0
\(277\) 182.021 315.270i 0.657117 1.13816i −0.324242 0.945974i \(-0.605109\pi\)
0.981359 0.192185i \(-0.0615574\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −241.120 139.211i −0.858077 0.495411i 0.00529060 0.999986i \(-0.498316\pi\)
−0.863368 + 0.504575i \(0.831649\pi\)
\(282\) 0 0
\(283\) 13.7745 + 23.8581i 0.0486732 + 0.0843044i 0.889336 0.457255i \(-0.151167\pi\)
−0.840662 + 0.541560i \(0.817834\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 509.443i 1.77506i
\(288\) 0 0
\(289\) −399.303 −1.38167
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 342.145 197.537i 1.16773 0.674189i 0.214585 0.976705i \(-0.431160\pi\)
0.953144 + 0.302517i \(0.0978267\pi\)
\(294\) 0 0
\(295\) 0.250789 0.434380i 0.000850133 0.00147247i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −13.0111 7.51195i −0.0435153 0.0251236i
\(300\) 0 0
\(301\) −35.7408 61.9049i −0.118740 0.205664i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 3.71715i 0.0121874i
\(306\) 0 0
\(307\) 122.443 0.398836 0.199418 0.979915i \(-0.436095\pi\)
0.199418 + 0.979915i \(0.436095\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 420.591 242.829i 1.35238 0.780799i 0.363801 0.931477i \(-0.381479\pi\)
0.988583 + 0.150677i \(0.0481455\pi\)
\(312\) 0 0
\(313\) 5.15434 8.92759i 0.0164676 0.0285226i −0.857674 0.514194i \(-0.828091\pi\)
0.874142 + 0.485671i \(0.161425\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −144.879 83.6462i −0.457033 0.263868i 0.253763 0.967266i \(-0.418332\pi\)
−0.710796 + 0.703398i \(0.751665\pi\)
\(318\) 0 0
\(319\) 30.7869 + 53.3245i 0.0965107 + 0.167162i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 897.845i 2.77971i
\(324\) 0 0
\(325\) 10.8440 0.0333661
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 303.009 174.942i 0.921000 0.531740i
\(330\) 0 0
\(331\) −52.2422 + 90.4861i −0.157831 + 0.273372i −0.934086 0.357047i \(-0.883784\pi\)
0.776255 + 0.630419i \(0.217117\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −1.11610 0.644381i −0.00333164 0.00192352i
\(336\) 0 0
\(337\) 196.086 + 339.631i 0.581858 + 1.00781i 0.995259 + 0.0972586i \(0.0310074\pi\)
−0.413401 + 0.910549i \(0.635659\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 130.484i 0.382651i
\(342\) 0 0
\(343\) 144.370 0.420903
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 247.220 142.732i 0.712449 0.411333i −0.0995180 0.995036i \(-0.531730\pi\)
0.811967 + 0.583703i \(0.198397\pi\)
\(348\) 0 0
\(349\) −151.562 + 262.514i −0.434276 + 0.752189i −0.997236 0.0742956i \(-0.976329\pi\)
0.562960 + 0.826484i \(0.309663\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −308.183 177.929i −0.873039 0.504049i −0.00468222 0.999989i \(-0.501490\pi\)
−0.868357 + 0.495940i \(0.834824\pi\)
\(354\) 0 0
\(355\) −2.48576 4.30547i −0.00700215 0.0121281i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 148.171i 0.412733i −0.978475 0.206367i \(-0.933836\pi\)
0.978475 0.206367i \(-0.0661639\pi\)
\(360\) 0 0
\(361\) 810.179 2.24426
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3.39151 1.95809i 0.00929181 0.00536463i
\(366\) 0 0
\(367\) −123.772 + 214.380i −0.337254 + 0.584141i −0.983915 0.178636i \(-0.942831\pi\)
0.646661 + 0.762777i \(0.276165\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −396.397 228.860i −1.06846 0.616873i
\(372\) 0 0
\(373\) 224.520 + 388.881i 0.601931 + 1.04258i 0.992528 + 0.122014i \(0.0389353\pi\)
−0.390597 + 0.920562i \(0.627731\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 7.02862i 0.0186436i
\(378\) 0 0
\(379\) −618.282 −1.63135 −0.815675 0.578510i \(-0.803634\pi\)
−0.815675 + 0.578510i \(0.803634\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 370.803 214.083i 0.968155 0.558965i 0.0694818 0.997583i \(-0.477865\pi\)
0.898673 + 0.438619i \(0.144532\pi\)
\(384\) 0 0
\(385\) −0.874780 + 1.51516i −0.00227216 + 0.00393549i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 585.313 + 337.930i 1.50466 + 0.868716i 0.999985 + 0.00540555i \(0.00172065\pi\)
0.504674 + 0.863310i \(0.331613\pi\)
\(390\) 0 0
\(391\) −454.306 786.881i −1.16191 2.01248i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 4.28300i 0.0108430i
\(396\) 0 0
\(397\) −209.902 −0.528721 −0.264361 0.964424i \(-0.585161\pi\)
−0.264361 + 0.964424i \(0.585161\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −175.023 + 101.050i −0.436467 + 0.251994i −0.702098 0.712080i \(-0.747753\pi\)
0.265631 + 0.964075i \(0.414420\pi\)
\(402\) 0 0
\(403\) −7.44734 + 12.8992i −0.0184797 + 0.0320079i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −96.3528 55.6293i −0.236739 0.136681i
\(408\) 0 0
\(409\) −291.252 504.464i −0.712108 1.23341i −0.964064 0.265669i \(-0.914407\pi\)
0.251957 0.967739i \(-0.418926\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 89.4085i 0.216486i
\(414\) 0 0
\(415\) −2.38696 −0.00575172
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 675.460 389.977i 1.61208 0.930733i 0.623189 0.782071i \(-0.285837\pi\)
0.988888 0.148662i \(-0.0474968\pi\)
\(420\) 0 0
\(421\) 84.1068 145.677i 0.199779 0.346027i −0.748678 0.662934i \(-0.769311\pi\)
0.948457 + 0.316907i \(0.102644\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 567.957 + 327.910i 1.33637 + 0.771553i
\(426\) 0 0
\(427\) −331.299 573.827i −0.775876 1.34386i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 182.732i 0.423973i −0.977273 0.211986i \(-0.932007\pi\)
0.977273 0.211986i \(-0.0679933\pi\)
\(432\) 0 0
\(433\) 447.193 1.03278 0.516389 0.856354i \(-0.327276\pi\)
0.516389 + 0.856354i \(0.327276\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1026.43 + 592.612i −2.34882 + 1.35609i
\(438\) 0 0
\(439\) 98.6108 170.799i 0.224626 0.389063i −0.731581 0.681754i \(-0.761217\pi\)
0.956207 + 0.292691i \(0.0945507\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 244.803 + 141.337i 0.552603 + 0.319045i 0.750171 0.661244i \(-0.229971\pi\)
−0.197568 + 0.980289i \(0.563304\pi\)
\(444\) 0 0
\(445\) 2.75919 + 4.77906i 0.00620043 + 0.0107395i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 349.046i 0.777386i 0.921367 + 0.388693i \(0.127073\pi\)
−0.921367 + 0.388693i \(0.872927\pi\)
\(450\) 0 0
\(451\) −213.718 −0.473877
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0.172955 0.0998556i 0.000380121 0.000219463i
\(456\) 0 0
\(457\) −40.2987 + 69.7995i −0.0881811 + 0.152734i −0.906742 0.421685i \(-0.861439\pi\)
0.818561 + 0.574419i \(0.194772\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 495.135 + 285.866i 1.07405 + 0.620100i 0.929284 0.369366i \(-0.120425\pi\)
0.144761 + 0.989467i \(0.453759\pi\)
\(462\) 0 0
\(463\) 139.837 + 242.205i 0.302024 + 0.523120i 0.976594 0.215090i \(-0.0690045\pi\)
−0.674571 + 0.738210i \(0.735671\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 506.702i 1.08501i 0.840051 + 0.542507i \(0.182525\pi\)
−0.840051 + 0.542507i \(0.817475\pi\)
\(468\) 0 0
\(469\) 229.727 0.489823
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 25.9699 14.9938i 0.0549048 0.0316993i
\(474\) 0 0
\(475\) 427.737 740.862i 0.900499 1.55971i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 217.596 + 125.629i 0.454271 + 0.262274i 0.709632 0.704572i \(-0.248861\pi\)
−0.255361 + 0.966846i \(0.582194\pi\)
\(480\) 0 0
\(481\) 6.35006 + 10.9986i 0.0132018 + 0.0228662i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 3.29335i 0.00679041i
\(486\) 0 0
\(487\) −313.224 −0.643170 −0.321585 0.946881i \(-0.604216\pi\)
−0.321585 + 0.946881i \(0.604216\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 533.397 307.957i 1.08635 0.627204i 0.153747 0.988110i \(-0.450866\pi\)
0.932602 + 0.360906i \(0.117533\pi\)
\(492\) 0 0
\(493\) 212.538 368.126i 0.431111 0.746706i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 767.467 + 443.098i 1.54420 + 0.891544i
\(498\) 0 0
\(499\) 412.029 + 713.654i 0.825709 + 1.43017i 0.901377 + 0.433036i \(0.142558\pi\)
−0.0756679 + 0.997133i \(0.524109\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 175.718i 0.349340i 0.984627 + 0.174670i \(0.0558858\pi\)
−0.984627 + 0.174670i \(0.944114\pi\)
\(504\) 0 0
\(505\) 9.88657 0.0195774
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −314.934 + 181.827i −0.618730 + 0.357224i −0.776374 0.630272i \(-0.782943\pi\)
0.157644 + 0.987496i \(0.449610\pi\)
\(510\) 0 0
\(511\) −349.038 + 604.551i −0.683049 + 1.18307i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 1.09518 + 0.632301i 0.00212656 + 0.00122777i
\(516\) 0 0
\(517\) 73.3907 + 127.116i 0.141955 + 0.245873i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 458.709i 0.880440i 0.897890 + 0.440220i \(0.145099\pi\)
−0.897890 + 0.440220i \(0.854901\pi\)
\(522\) 0 0
\(523\) 458.289 0.876270 0.438135 0.898909i \(-0.355639\pi\)
0.438135 + 0.898909i \(0.355639\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −780.113 + 450.398i −1.48029 + 0.854646i
\(528\) 0 0
\(529\) 335.219 580.616i 0.633683 1.09757i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 21.1274 + 12.1979i 0.0396387 + 0.0228854i
\(534\) 0 0
\(535\) 0.590289 + 1.02241i 0.00110334 + 0.00191105i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 125.651i 0.233118i
\(540\) 0 0
\(541\) 824.876 1.52472 0.762362 0.647150i \(-0.224039\pi\)
0.762362 + 0.647150i \(0.224039\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 6.91319 3.99133i 0.0126847 0.00732354i
\(546\) 0 0
\(547\) 16.8719 29.2230i 0.0308444 0.0534241i −0.850191 0.526474i \(-0.823514\pi\)
0.881036 + 0.473050i \(0.156847\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −480.196 277.241i −0.871499 0.503160i
\(552\) 0 0
\(553\) 381.731 + 661.178i 0.690291 + 1.19562i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 541.032i 0.971332i −0.874145 0.485666i \(-0.838577\pi\)
0.874145 0.485666i \(-0.161423\pi\)
\(558\) 0 0
\(559\) −3.42306 −0.00612354
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −97.8909 + 56.5173i −0.173874 + 0.100386i −0.584411 0.811458i \(-0.698674\pi\)
0.410537 + 0.911844i \(0.365341\pi\)
\(564\) 0 0
\(565\) −0.955383 + 1.65477i −0.00169094 + 0.00292880i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −236.524 136.557i −0.415684 0.239995i 0.277545 0.960713i \(-0.410479\pi\)
−0.693229 + 0.720717i \(0.743813\pi\)
\(570\) 0 0
\(571\) −122.654 212.443i −0.214806 0.372054i 0.738407 0.674356i \(-0.235579\pi\)
−0.953212 + 0.302301i \(0.902245\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 865.733i 1.50562i
\(576\) 0 0
\(577\) 632.666 1.09648 0.548238 0.836323i \(-0.315299\pi\)
0.548238 + 0.836323i \(0.315299\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 368.482 212.743i 0.634220 0.366167i
\(582\) 0 0
\(583\) 96.0099 166.294i 0.164682 0.285238i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −980.129 565.878i −1.66973 0.964017i −0.967784 0.251782i \(-0.918983\pi\)
−0.701942 0.712234i \(-0.747683\pi\)
\(588\) 0 0
\(589\) 587.515 + 1017.61i 0.997478 + 1.72768i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 180.213i 0.303900i 0.988388 + 0.151950i \(0.0485553\pi\)
−0.988388 + 0.151950i \(0.951445\pi\)
\(594\) 0 0
\(595\) 12.0781 0.0202993
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 566.086 326.830i 0.945052 0.545626i 0.0535119 0.998567i \(-0.482959\pi\)
0.891541 + 0.452941i \(0.149625\pi\)
\(600\) 0 0
\(601\) −178.947 + 309.945i −0.297749 + 0.515716i −0.975621 0.219464i \(-0.929569\pi\)
0.677872 + 0.735180i \(0.262902\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 4.68975 + 2.70763i 0.00775164 + 0.00447541i
\(606\) 0 0
\(607\) 320.064 + 554.367i 0.527288 + 0.913290i 0.999494 + 0.0318015i \(0.0101245\pi\)
−0.472206 + 0.881488i \(0.656542\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 16.7550i 0.0274223i
\(612\) 0 0
\(613\) −246.093 −0.401457 −0.200729 0.979647i \(-0.564331\pi\)
−0.200729 + 0.979647i \(0.564331\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −309.912 + 178.928i −0.502289 + 0.289997i −0.729658 0.683812i \(-0.760321\pi\)
0.227369 + 0.973809i \(0.426987\pi\)
\(618\) 0 0
\(619\) 40.5053 70.1573i 0.0654368 0.113340i −0.831451 0.555598i \(-0.812489\pi\)
0.896888 + 0.442258i \(0.145823\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −851.888 491.838i −1.36740 0.789467i
\(624\) 0 0
\(625\) −312.403 541.098i −0.499845 0.865757i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 768.075i 1.22110i
\(630\) 0 0
\(631\) −252.241 −0.399748 −0.199874 0.979822i \(-0.564053\pi\)
−0.199874 + 0.979822i \(0.564053\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −2.13175 + 1.23077i −0.00335709 + 0.00193822i
\(636\) 0 0
\(637\) −7.17147 + 12.4214i −0.0112582 + 0.0194998i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 843.278 + 486.867i 1.31557 + 0.759542i 0.983012 0.183542i \(-0.0587563\pi\)
0.332554 + 0.943084i \(0.392090\pi\)
\(642\) 0 0
\(643\) 341.530 + 591.547i 0.531151 + 0.919980i 0.999339 + 0.0363512i \(0.0115735\pi\)
−0.468188 + 0.883629i \(0.655093\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 390.640i 0.603771i −0.953344 0.301885i \(-0.902384\pi\)
0.953344 0.301885i \(-0.0976160\pi\)
\(648\) 0 0
\(649\) −37.5081 −0.0577937
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 542.529 313.230i 0.830826 0.479678i −0.0233093 0.999728i \(-0.507420\pi\)
0.854135 + 0.520051i \(0.174087\pi\)
\(654\) 0 0
\(655\) −0.000805043 0.00139438i −1.22907e−6 2.12882e-6i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 51.4518 + 29.7057i 0.0780755 + 0.0450769i 0.538530 0.842607i \(-0.318980\pi\)
−0.460454 + 0.887684i \(0.652313\pi\)
\(660\) 0 0
\(661\) −425.950 737.767i −0.644402 1.11614i −0.984439 0.175725i \(-0.943773\pi\)
0.340037 0.940412i \(-0.389560\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 15.7551i 0.0236918i
\(666\) 0 0
\(667\) 561.132 0.841277
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 240.728 138.985i 0.358760 0.207130i
\(672\) 0 0
\(673\) 210.489 364.577i 0.312762 0.541720i −0.666197 0.745776i \(-0.732079\pi\)
0.978959 + 0.204056i \(0.0654124\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 313.326 + 180.899i 0.462816 + 0.267207i 0.713227 0.700933i \(-0.247233\pi\)
−0.250412 + 0.968139i \(0.580566\pi\)
\(678\) 0 0
\(679\) 293.527 + 508.403i 0.432293 + 0.748753i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 705.769i 1.03334i 0.856186 + 0.516668i \(0.172828\pi\)
−0.856186 + 0.516668i \(0.827172\pi\)
\(684\) 0 0
\(685\) 0.0536179 7.82743e−5
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −18.9824 + 10.9595i −0.0275506 + 0.0159063i
\(690\) 0 0
\(691\) −345.384 + 598.222i −0.499832 + 0.865734i −1.00000 0.000194148i \(-0.999938\pi\)
0.500168 + 0.865928i \(0.333272\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 3.99320 + 2.30547i 0.00574561 + 0.00331723i
\(696\) 0 0
\(697\) 737.703 + 1277.74i 1.05840 + 1.83320i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 1213.04i 1.73045i 0.501384 + 0.865225i \(0.332824\pi\)
−0.501384 + 0.865225i \(0.667176\pi\)
\(702\) 0 0
\(703\) 1001.90 1.42518
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1526.22 + 881.161i −2.15872 + 1.24634i
\(708\) 0 0
\(709\) −226.667 + 392.598i −0.319699 + 0.553735i −0.980425 0.196892i \(-0.936915\pi\)
0.660726 + 0.750627i \(0.270249\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −1029.81 594.560i −1.44433 0.833885i
\(714\) 0 0
\(715\) 0.0418908 + 0.0725570i 5.85885e−5 + 0.000101478i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 418.833i 0.582522i 0.956644 + 0.291261i \(0.0940748\pi\)
−0.956644 + 0.291261i \(0.905925\pi\)
\(720\) 0 0
\(721\) −225.421 −0.312650
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −350.753 + 202.508i −0.483798 + 0.279321i
\(726\) 0 0
\(727\) 376.166 651.539i 0.517423 0.896203i −0.482372 0.875966i \(-0.660225\pi\)
0.999795 0.0202365i \(-0.00644191\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −179.284 103.509i −0.245258 0.141600i
\(732\) 0 0
\(733\) −255.863 443.168i −0.349063 0.604595i 0.637020 0.770847i \(-0.280167\pi\)
−0.986083 + 0.166252i \(0.946833\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 96.3737i 0.130765i
\(738\) 0 0
\(739\) 466.830 0.631705 0.315853 0.948808i \(-0.397710\pi\)
0.315853 + 0.948808i \(0.397710\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 546.320 315.418i 0.735290 0.424520i −0.0850643 0.996375i \(-0.527110\pi\)
0.820354 + 0.571856i \(0.193776\pi\)
\(744\) 0 0
\(745\) −0.443300 + 0.767818i −0.000595034 + 0.00103063i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −182.249 105.222i −0.243323 0.140483i
\(750\) 0 0
\(751\) 90.7172 + 157.127i 0.120795 + 0.209223i 0.920081 0.391727i \(-0.128122\pi\)
−0.799286 + 0.600950i \(0.794789\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 4.15416i 0.00550220i
\(756\) 0 0
\(757\) 1381.82 1.82539 0.912696 0.408640i \(-0.133997\pi\)
0.912696 + 0.408640i \(0.133997\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 590.093 340.690i 0.775418 0.447688i −0.0593862 0.998235i \(-0.518914\pi\)
0.834804 + 0.550548i \(0.185581\pi\)
\(762\) 0 0
\(763\) −711.471 + 1232.30i −0.932466 + 1.61508i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 3.70791 + 2.14076i 0.00483430 + 0.00279109i
\(768\) 0 0
\(769\) −45.1754 78.2461i −0.0587457 0.101750i 0.835157 0.550012i \(-0.185377\pi\)
−0.893903 + 0.448261i \(0.852043\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 87.4025i 0.113069i 0.998401 + 0.0565346i \(0.0180051\pi\)
−0.998401 + 0.0565346i \(0.981995\pi\)
\(774\) 0 0
\(775\) 858.286 1.10747
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1666.72 962.284i 2.13957 1.23528i
\(780\) 0 0
\(781\) −185.885 + 321.963i −0.238010 + 0.412245i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 8.49274 + 4.90329i 0.0108188 + 0.00624622i
\(786\) 0 0
\(787\) −366.731 635.196i −0.465986 0.807111i 0.533260 0.845951i \(-0.320967\pi\)
−0.999245 + 0.0388408i \(0.987633\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 340.602i 0.430597i
\(792\) 0 0
\(793\) −31.7300 −0.0400126
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 853.500 492.768i 1.07089 0.618279i 0.142466 0.989800i \(-0.454497\pi\)
0.928425 + 0.371521i \(0.121164\pi\)
\(798\) 0 0
\(799\) 506.653 877.549i 0.634109 1.09831i