Properties

Label 1728.3.q.i.1601.3
Level $1728$
Weight $3$
Character 1728.1601
Analytic conductor $47.085$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1728.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(47.0845896815\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.19269881856.9
Defining polynomial: \( x^{8} - 2x^{7} + 15x^{6} - 2x^{5} + 133x^{4} - 84x^{3} + 276x^{2} + 144x + 144 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 72)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1601.3
Root \(1.91950 - 3.32468i\) of defining polynomial
Character \(\chi\) \(=\) 1728.1601
Dual form 1728.3.q.i.449.3

$q$-expansion

\(f(q)\) \(=\) \(q+(1.80902 - 1.04444i) q^{5} +(0.781452 - 1.35351i) q^{7} +O(q^{10})\) \(q+(1.80902 - 1.04444i) q^{5} +(0.781452 - 1.35351i) q^{7} +(10.8302 + 6.25280i) q^{11} +(-11.0441 - 19.1289i) q^{13} +12.6991i q^{17} -21.7686 q^{19} +(-28.7989 + 16.6271i) q^{23} +(-10.3183 + 17.8718i) q^{25} +(-25.7787 - 14.8833i) q^{29} +(-6.91549 - 11.9780i) q^{31} -3.26472i q^{35} +8.26807 q^{37} +(-43.8453 + 25.3141i) q^{41} +(35.5364 - 61.5508i) q^{43} +(57.2470 + 33.0516i) q^{47} +(23.2787 + 40.3198i) q^{49} +6.04384i q^{53} +26.1227 q^{55} +(8.01575 - 4.62789i) q^{59} +(-51.9009 + 89.8950i) q^{61} +(-39.9580 - 23.0698i) q^{65} +(-19.8853 - 34.4424i) q^{67} +18.3599i q^{71} -68.5777 q^{73} +(16.9265 - 9.77252i) q^{77} +(-13.3130 + 23.0587i) q^{79} +(-21.0376 - 12.1461i) q^{83} +(13.2634 + 22.9729i) q^{85} -111.730i q^{89} -34.5217 q^{91} +(-39.3800 + 22.7360i) q^{95} +(-2.51182 + 4.35061i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{5} - 6 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 6 q^{5} - 6 q^{7} - 36 q^{11} - 14 q^{13} + 4 q^{19} - 102 q^{23} + 10 q^{25} - 114 q^{29} + 50 q^{31} - 120 q^{37} - 264 q^{41} - 28 q^{43} + 150 q^{47} + 94 q^{49} + 244 q^{55} + 108 q^{59} - 14 q^{61} + 198 q^{65} - 20 q^{67} - 76 q^{73} + 66 q^{77} - 26 q^{79} - 246 q^{83} + 224 q^{85} + 108 q^{91} - 456 q^{95} - 236 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1728\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(703\) \(1217\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.80902 1.04444i 0.361805 0.208888i −0.308067 0.951365i \(-0.599682\pi\)
0.669872 + 0.742476i \(0.266349\pi\)
\(6\) 0 0
\(7\) 0.781452 1.35351i 0.111636 0.193359i −0.804794 0.593554i \(-0.797724\pi\)
0.916430 + 0.400195i \(0.131058\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 10.8302 + 6.25280i 0.984560 + 0.568436i 0.903644 0.428285i \(-0.140882\pi\)
0.0809165 + 0.996721i \(0.474215\pi\)
\(12\) 0 0
\(13\) −11.0441 19.1289i −0.849545 1.47145i −0.881615 0.471969i \(-0.843544\pi\)
0.0320708 0.999486i \(-0.489790\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 12.6991i 0.747005i 0.927629 + 0.373503i \(0.121843\pi\)
−0.927629 + 0.373503i \(0.878157\pi\)
\(18\) 0 0
\(19\) −21.7686 −1.14572 −0.572859 0.819654i \(-0.694166\pi\)
−0.572859 + 0.819654i \(0.694166\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −28.7989 + 16.6271i −1.25213 + 0.722916i −0.971532 0.236909i \(-0.923866\pi\)
−0.280596 + 0.959826i \(0.590532\pi\)
\(24\) 0 0
\(25\) −10.3183 + 17.8718i −0.412732 + 0.714872i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −25.7787 14.8833i −0.888920 0.513218i −0.0153306 0.999882i \(-0.504880\pi\)
−0.873589 + 0.486665i \(0.838213\pi\)
\(30\) 0 0
\(31\) −6.91549 11.9780i −0.223080 0.386386i 0.732662 0.680593i \(-0.238278\pi\)
−0.955742 + 0.294207i \(0.904945\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 3.26472i 0.0932777i
\(36\) 0 0
\(37\) 8.26807 0.223461 0.111731 0.993739i \(-0.464361\pi\)
0.111731 + 0.993739i \(0.464361\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −43.8453 + 25.3141i −1.06940 + 0.617418i −0.928017 0.372538i \(-0.878488\pi\)
−0.141382 + 0.989955i \(0.545154\pi\)
\(42\) 0 0
\(43\) 35.5364 61.5508i 0.826427 1.43141i −0.0743965 0.997229i \(-0.523703\pi\)
0.900824 0.434185i \(-0.142964\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 57.2470 + 33.0516i 1.21802 + 0.703225i 0.964495 0.264103i \(-0.0850759\pi\)
0.253527 + 0.967328i \(0.418409\pi\)
\(48\) 0 0
\(49\) 23.2787 + 40.3198i 0.475075 + 0.822854i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.04384i 0.114035i 0.998373 + 0.0570174i \(0.0181590\pi\)
−0.998373 + 0.0570174i \(0.981841\pi\)
\(54\) 0 0
\(55\) 26.1227 0.474958
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 8.01575 4.62789i 0.135860 0.0784389i −0.430529 0.902577i \(-0.641673\pi\)
0.566390 + 0.824138i \(0.308340\pi\)
\(60\) 0 0
\(61\) −51.9009 + 89.8950i −0.850834 + 1.47369i 0.0296226 + 0.999561i \(0.490569\pi\)
−0.880457 + 0.474127i \(0.842764\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −39.9580 23.0698i −0.614738 0.354919i
\(66\) 0 0
\(67\) −19.8853 34.4424i −0.296796 0.514065i 0.678605 0.734503i \(-0.262585\pi\)
−0.975401 + 0.220438i \(0.929251\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 18.3599i 0.258590i 0.991606 + 0.129295i \(0.0412714\pi\)
−0.991606 + 0.129295i \(0.958729\pi\)
\(72\) 0 0
\(73\) −68.5777 −0.939421 −0.469711 0.882820i \(-0.655642\pi\)
−0.469711 + 0.882820i \(0.655642\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 16.9265 9.77252i 0.219825 0.126916i
\(78\) 0 0
\(79\) −13.3130 + 23.0587i −0.168518 + 0.291883i −0.937899 0.346908i \(-0.887232\pi\)
0.769381 + 0.638791i \(0.220565\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −21.0376 12.1461i −0.253465 0.146338i 0.367885 0.929871i \(-0.380082\pi\)
−0.621350 + 0.783533i \(0.713415\pi\)
\(84\) 0 0
\(85\) 13.2634 + 22.9729i 0.156040 + 0.270270i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 111.730i 1.25539i −0.778459 0.627695i \(-0.783999\pi\)
0.778459 0.627695i \(-0.216001\pi\)
\(90\) 0 0
\(91\) −34.5217 −0.379359
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −39.3800 + 22.7360i −0.414526 + 0.239327i
\(96\) 0 0
\(97\) −2.51182 + 4.35061i −0.0258951 + 0.0448516i −0.878683 0.477407i \(-0.841577\pi\)
0.852787 + 0.522258i \(0.174910\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −86.1052 49.7129i −0.852527 0.492207i 0.00897555 0.999960i \(-0.497143\pi\)
−0.861503 + 0.507753i \(0.830476\pi\)
\(102\) 0 0
\(103\) −13.6160 23.5836i −0.132194 0.228967i 0.792328 0.610096i \(-0.208869\pi\)
−0.924522 + 0.381128i \(0.875536\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 127.242i 1.18918i 0.804030 + 0.594588i \(0.202685\pi\)
−0.804030 + 0.594588i \(0.797315\pi\)
\(108\) 0 0
\(109\) −55.3100 −0.507431 −0.253716 0.967279i \(-0.581653\pi\)
−0.253716 + 0.967279i \(0.581653\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −102.845 + 59.3775i −0.910131 + 0.525464i −0.880473 0.474096i \(-0.842775\pi\)
−0.0296577 + 0.999560i \(0.509442\pi\)
\(114\) 0 0
\(115\) −34.7320 + 60.1576i −0.302017 + 0.523109i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 17.1884 + 9.92372i 0.144440 + 0.0833926i
\(120\) 0 0
\(121\) 17.6950 + 30.6486i 0.146239 + 0.253294i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 95.3294i 0.762635i
\(126\) 0 0
\(127\) −74.4516 −0.586233 −0.293116 0.956077i \(-0.594692\pi\)
−0.293116 + 0.956077i \(0.594692\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 7.08499 4.09052i 0.0540839 0.0312254i −0.472714 0.881216i \(-0.656726\pi\)
0.526798 + 0.849990i \(0.323392\pi\)
\(132\) 0 0
\(133\) −17.0111 + 29.4642i −0.127903 + 0.221535i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 41.7273 + 24.0913i 0.304579 + 0.175849i 0.644498 0.764606i \(-0.277066\pi\)
−0.339919 + 0.940455i \(0.610400\pi\)
\(138\) 0 0
\(139\) 119.023 + 206.155i 0.856284 + 1.48313i 0.875449 + 0.483311i \(0.160566\pi\)
−0.0191645 + 0.999816i \(0.506101\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 276.226i 1.93165i
\(144\) 0 0
\(145\) −62.1789 −0.428820
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −246.854 + 142.521i −1.65674 + 0.956517i −0.682529 + 0.730859i \(0.739120\pi\)
−0.974207 + 0.225658i \(0.927547\pi\)
\(150\) 0 0
\(151\) 77.2434 133.790i 0.511546 0.886024i −0.488365 0.872640i \(-0.662406\pi\)
0.999910 0.0133838i \(-0.00426032\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −25.0206 14.4456i −0.161423 0.0931976i
\(156\) 0 0
\(157\) 119.947 + 207.754i 0.763993 + 1.32328i 0.940777 + 0.339026i \(0.110097\pi\)
−0.176784 + 0.984250i \(0.556569\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 51.9730i 0.322814i
\(162\) 0 0
\(163\) 111.245 0.682483 0.341241 0.939976i \(-0.389153\pi\)
0.341241 + 0.939976i \(0.389153\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 37.9116 21.8883i 0.227016 0.131068i −0.382179 0.924088i \(-0.624826\pi\)
0.609195 + 0.793021i \(0.291493\pi\)
\(168\) 0 0
\(169\) −159.443 + 276.164i −0.943452 + 1.63411i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −253.383 146.291i −1.46464 0.845611i −0.465420 0.885090i \(-0.654097\pi\)
−0.999220 + 0.0394795i \(0.987430\pi\)
\(174\) 0 0
\(175\) 16.1265 + 27.9319i 0.0921514 + 0.159611i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 194.612i 1.08722i −0.839338 0.543610i \(-0.817057\pi\)
0.839338 0.543610i \(-0.182943\pi\)
\(180\) 0 0
\(181\) −89.3906 −0.493871 −0.246935 0.969032i \(-0.579424\pi\)
−0.246935 + 0.969032i \(0.579424\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 14.9571 8.63550i 0.0808494 0.0466784i
\(186\) 0 0
\(187\) −79.4048 + 137.533i −0.424625 + 0.735472i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −44.9085 25.9279i −0.235123 0.135748i 0.377810 0.925883i \(-0.376677\pi\)
−0.612933 + 0.790135i \(0.710011\pi\)
\(192\) 0 0
\(193\) −29.7763 51.5741i −0.154281 0.267223i 0.778516 0.627625i \(-0.215973\pi\)
−0.932797 + 0.360402i \(0.882640\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 47.4968i 0.241100i 0.992707 + 0.120550i \(0.0384659\pi\)
−0.992707 + 0.120550i \(0.961534\pi\)
\(198\) 0 0
\(199\) −29.5239 −0.148361 −0.0741805 0.997245i \(-0.523634\pi\)
−0.0741805 + 0.997245i \(0.523634\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −40.2896 + 23.2612i −0.198471 + 0.114587i
\(204\) 0 0
\(205\) −52.8782 + 91.5877i −0.257942 + 0.446769i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −235.758 136.115i −1.12803 0.651268i
\(210\) 0 0
\(211\) −81.0561 140.393i −0.384152 0.665371i 0.607499 0.794320i \(-0.292173\pi\)
−0.991651 + 0.128949i \(0.958840\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 148.462i 0.690523i
\(216\) 0 0
\(217\) −21.6165 −0.0996151
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 242.920 140.250i 1.09918 0.634614i
\(222\) 0 0
\(223\) −102.706 + 177.891i −0.460564 + 0.797719i −0.998989 0.0449536i \(-0.985686\pi\)
0.538426 + 0.842673i \(0.319019\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −54.0416 31.2009i −0.238069 0.137449i 0.376220 0.926530i \(-0.377224\pi\)
−0.614289 + 0.789081i \(0.710557\pi\)
\(228\) 0 0
\(229\) 5.73790 + 9.93834i 0.0250563 + 0.0433989i 0.878282 0.478144i \(-0.158690\pi\)
−0.853225 + 0.521542i \(0.825357\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 177.096i 0.760069i −0.924972 0.380035i \(-0.875912\pi\)
0.924972 0.380035i \(-0.124088\pi\)
\(234\) 0 0
\(235\) 138.082 0.587581
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −231.234 + 133.503i −0.967505 + 0.558589i −0.898475 0.439025i \(-0.855324\pi\)
−0.0690305 + 0.997615i \(0.521991\pi\)
\(240\) 0 0
\(241\) 40.7178 70.5252i 0.168953 0.292636i −0.769099 0.639130i \(-0.779295\pi\)
0.938052 + 0.346494i \(0.112628\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 84.2233 + 48.6263i 0.343769 + 0.198475i
\(246\) 0 0
\(247\) 240.415 + 416.410i 0.973338 + 1.68587i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 311.819i 1.24231i −0.783689 0.621153i \(-0.786664\pi\)
0.783689 0.621153i \(-0.213336\pi\)
\(252\) 0 0
\(253\) −415.863 −1.64373
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −335.121 + 193.482i −1.30397 + 0.752849i −0.981083 0.193588i \(-0.937988\pi\)
−0.322889 + 0.946437i \(0.604654\pi\)
\(258\) 0 0
\(259\) 6.46110 11.1909i 0.0249463 0.0432083i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 417.095 + 240.810i 1.58591 + 0.915627i 0.993971 + 0.109646i \(0.0349718\pi\)
0.591942 + 0.805981i \(0.298362\pi\)
\(264\) 0 0
\(265\) 6.31243 + 10.9334i 0.0238205 + 0.0412583i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 225.818i 0.839474i −0.907646 0.419737i \(-0.862122\pi\)
0.907646 0.419737i \(-0.137878\pi\)
\(270\) 0 0
\(271\) 23.6619 0.0873135 0.0436567 0.999047i \(-0.486099\pi\)
0.0436567 + 0.999047i \(0.486099\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −223.498 + 129.036i −0.812718 + 0.469223i
\(276\) 0 0
\(277\) 27.9969 48.4920i 0.101072 0.175061i −0.811055 0.584970i \(-0.801106\pi\)
0.912126 + 0.409909i \(0.134440\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −122.023 70.4498i −0.434244 0.250711i 0.266909 0.963722i \(-0.413998\pi\)
−0.701153 + 0.713011i \(0.747331\pi\)
\(282\) 0 0
\(283\) −155.690 269.663i −0.550141 0.952872i −0.998264 0.0589002i \(-0.981241\pi\)
0.448123 0.893972i \(-0.352093\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 79.1271i 0.275704i
\(288\) 0 0
\(289\) 127.733 0.441983
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −273.621 + 157.975i −0.933859 + 0.539164i −0.888030 0.459786i \(-0.847926\pi\)
−0.0458290 + 0.998949i \(0.514593\pi\)
\(294\) 0 0
\(295\) 9.66712 16.7439i 0.0327699 0.0567591i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 636.116 + 367.262i 2.12748 + 1.22830i
\(300\) 0 0
\(301\) −55.5399 96.1980i −0.184518 0.319595i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 216.829i 0.710916i
\(306\) 0 0
\(307\) −379.819 −1.23720 −0.618598 0.785707i \(-0.712299\pi\)
−0.618598 + 0.785707i \(0.712299\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −335.497 + 193.699i −1.07877 + 0.622827i −0.930564 0.366130i \(-0.880683\pi\)
−0.148204 + 0.988957i \(0.547349\pi\)
\(312\) 0 0
\(313\) −100.742 + 174.491i −0.321860 + 0.557479i −0.980872 0.194654i \(-0.937642\pi\)
0.659011 + 0.752133i \(0.270975\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 319.046 + 184.201i 1.00645 + 0.581077i 0.910152 0.414275i \(-0.135965\pi\)
0.0963027 + 0.995352i \(0.469298\pi\)
\(318\) 0 0
\(319\) −186.125 322.378i −0.583463 1.01059i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 276.442i 0.855857i
\(324\) 0 0
\(325\) 455.824 1.40254
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 89.4716 51.6564i 0.271950 0.157010i
\(330\) 0 0
\(331\) 150.832 261.248i 0.455684 0.789268i −0.543043 0.839705i \(-0.682728\pi\)
0.998727 + 0.0504365i \(0.0160613\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −71.9460 41.5380i −0.214764 0.123994i
\(336\) 0 0
\(337\) 85.5075 + 148.103i 0.253732 + 0.439476i 0.964550 0.263899i \(-0.0850087\pi\)
−0.710819 + 0.703375i \(0.751675\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 172.965i 0.507227i
\(342\) 0 0
\(343\) 149.347 0.435414
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −264.744 + 152.850i −0.762950 + 0.440489i −0.830354 0.557237i \(-0.811862\pi\)
0.0674041 + 0.997726i \(0.478528\pi\)
\(348\) 0 0
\(349\) 11.1944 19.3893i 0.0320756 0.0555566i −0.849542 0.527521i \(-0.823122\pi\)
0.881618 + 0.471964i \(0.156455\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 462.657 + 267.115i 1.31064 + 0.756700i 0.982203 0.187825i \(-0.0601437\pi\)
0.328440 + 0.944525i \(0.393477\pi\)
\(354\) 0 0
\(355\) 19.1758 + 33.2134i 0.0540163 + 0.0935590i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 217.172i 0.604936i 0.953159 + 0.302468i \(0.0978106\pi\)
−0.953159 + 0.302468i \(0.902189\pi\)
\(360\) 0 0
\(361\) 112.874 0.312669
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −124.059 + 71.6253i −0.339887 + 0.196234i
\(366\) 0 0
\(367\) 51.1847 88.6546i 0.139468 0.241566i −0.787827 0.615896i \(-0.788794\pi\)
0.927295 + 0.374330i \(0.122127\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 8.18042 + 4.72297i 0.0220497 + 0.0127304i
\(372\) 0 0
\(373\) −243.458 421.682i −0.652702 1.13051i −0.982464 0.186450i \(-0.940302\pi\)
0.329762 0.944064i \(-0.393031\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 657.490i 1.74401i
\(378\) 0 0
\(379\) 553.727 1.46102 0.730510 0.682901i \(-0.239282\pi\)
0.730510 + 0.682901i \(0.239282\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 184.612 106.586i 0.482016 0.278292i −0.239240 0.970960i \(-0.576898\pi\)
0.721256 + 0.692668i \(0.243565\pi\)
\(384\) 0 0
\(385\) 20.4136 35.3574i 0.0530224 0.0918375i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −82.4958 47.6290i −0.212071 0.122439i 0.390202 0.920729i \(-0.372405\pi\)
−0.602274 + 0.798290i \(0.705738\pi\)
\(390\) 0 0
\(391\) −211.149 365.720i −0.540022 0.935346i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 55.6184i 0.140806i
\(396\) 0 0
\(397\) 481.407 1.21261 0.606306 0.795231i \(-0.292651\pi\)
0.606306 + 0.795231i \(0.292651\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 517.354 298.694i 1.29016 0.744874i 0.311477 0.950254i \(-0.399176\pi\)
0.978682 + 0.205380i \(0.0658430\pi\)
\(402\) 0 0
\(403\) −152.750 + 264.571i −0.379033 + 0.656505i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 89.5446 + 51.6986i 0.220011 + 0.127024i
\(408\) 0 0
\(409\) −53.7260 93.0562i −0.131359 0.227521i 0.792841 0.609428i \(-0.208601\pi\)
−0.924201 + 0.381907i \(0.875268\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 14.4659i 0.0350264i
\(414\) 0 0
\(415\) −50.7433 −0.122273
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −39.6993 + 22.9204i −0.0947477 + 0.0547026i −0.546625 0.837377i \(-0.684088\pi\)
0.451878 + 0.892080i \(0.350754\pi\)
\(420\) 0 0
\(421\) 5.53062 9.57932i 0.0131369 0.0227537i −0.859382 0.511334i \(-0.829152\pi\)
0.872519 + 0.488580i \(0.162485\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −226.956 131.033i −0.534013 0.308313i
\(426\) 0 0
\(427\) 81.1161 + 140.497i 0.189967 + 0.329033i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 590.788i 1.37074i −0.728196 0.685369i \(-0.759641\pi\)
0.728196 0.685369i \(-0.240359\pi\)
\(432\) 0 0
\(433\) −13.9683 −0.0322594 −0.0161297 0.999870i \(-0.505134\pi\)
−0.0161297 + 0.999870i \(0.505134\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 626.914 361.949i 1.43459 0.828258i
\(438\) 0 0
\(439\) −35.9051 + 62.1894i −0.0817883 + 0.141662i −0.904018 0.427494i \(-0.859396\pi\)
0.822230 + 0.569156i \(0.192730\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 581.028 + 335.457i 1.31158 + 0.757239i 0.982357 0.187015i \(-0.0598812\pi\)
0.329219 + 0.944254i \(0.393214\pi\)
\(444\) 0 0
\(445\) −116.695 202.122i −0.262236 0.454206i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 830.401i 1.84945i −0.380642 0.924723i \(-0.624297\pi\)
0.380642 0.924723i \(-0.375703\pi\)
\(450\) 0 0
\(451\) −633.136 −1.40385
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −62.4505 + 36.0558i −0.137254 + 0.0792435i
\(456\) 0 0
\(457\) 423.113 732.854i 0.925850 1.60362i 0.135661 0.990755i \(-0.456684\pi\)
0.790188 0.612864i \(-0.209983\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 109.019 + 62.9423i 0.236484 + 0.136534i 0.613560 0.789648i \(-0.289737\pi\)
−0.377076 + 0.926182i \(0.623070\pi\)
\(462\) 0 0
\(463\) −307.121 531.950i −0.663329 1.14892i −0.979735 0.200296i \(-0.935810\pi\)
0.316407 0.948624i \(-0.397524\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 172.270i 0.368887i −0.982843 0.184444i \(-0.940952\pi\)
0.982843 0.184444i \(-0.0590484\pi\)
\(468\) 0 0
\(469\) −62.1576 −0.132532
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 769.729 444.403i 1.62733 0.939542i
\(474\) 0 0
\(475\) 224.615 389.045i 0.472874 0.819042i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −174.532 100.766i −0.364367 0.210367i 0.306628 0.951829i \(-0.400799\pi\)
−0.670995 + 0.741462i \(0.734133\pi\)
\(480\) 0 0
\(481\) −91.3132 158.159i −0.189840 0.328813i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 10.4938i 0.0216367i
\(486\) 0 0
\(487\) 801.178 1.64513 0.822565 0.568671i \(-0.192542\pi\)
0.822565 + 0.568671i \(0.192542\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −625.711 + 361.255i −1.27436 + 0.735753i −0.975806 0.218640i \(-0.929838\pi\)
−0.298555 + 0.954392i \(0.596505\pi\)
\(492\) 0 0
\(493\) 189.005 327.366i 0.383376 0.664028i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 24.8503 + 14.3474i 0.0500007 + 0.0288679i
\(498\) 0 0
\(499\) −69.4409 120.275i −0.139160 0.241032i 0.788019 0.615651i \(-0.211107\pi\)
−0.927179 + 0.374619i \(0.877774\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 794.533i 1.57959i 0.613372 + 0.789794i \(0.289813\pi\)
−0.613372 + 0.789794i \(0.710187\pi\)
\(504\) 0 0
\(505\) −207.689 −0.411264
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −179.929 + 103.882i −0.353495 + 0.204090i −0.666224 0.745752i \(-0.732090\pi\)
0.312729 + 0.949843i \(0.398757\pi\)
\(510\) 0 0
\(511\) −53.5902 + 92.8209i −0.104873 + 0.181646i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −49.2634 28.4422i −0.0956571 0.0552276i
\(516\) 0 0
\(517\) 413.330 + 715.908i 0.799477 + 1.38474i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 248.275i 0.476535i 0.971200 + 0.238267i \(0.0765795\pi\)
−0.971200 + 0.238267i \(0.923421\pi\)
\(522\) 0 0
\(523\) −108.678 −0.207797 −0.103898 0.994588i \(-0.533132\pi\)
−0.103898 + 0.994588i \(0.533132\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 152.109 87.8204i 0.288633 0.166642i
\(528\) 0 0
\(529\) 288.420 499.557i 0.545216 0.944343i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 968.463 + 559.142i 1.81700 + 1.04905i
\(534\) 0 0
\(535\) 132.896 + 230.183i 0.248405 + 0.430249i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 582.227i 1.08020i
\(540\) 0 0
\(541\) 20.0646 0.0370880 0.0185440 0.999828i \(-0.494097\pi\)
0.0185440 + 0.999828i \(0.494097\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −100.057 + 57.7680i −0.183591 + 0.105996i
\(546\) 0 0
\(547\) 86.6937 150.158i 0.158489 0.274512i −0.775835 0.630936i \(-0.782671\pi\)
0.934324 + 0.356424i \(0.116004\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 561.167 + 323.990i 1.01845 + 0.588003i
\(552\) 0 0
\(553\) 20.8069 + 36.0386i 0.0376254 + 0.0651692i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 434.666i 0.780370i 0.920737 + 0.390185i \(0.127589\pi\)
−0.920737 + 0.390185i \(0.872411\pi\)
\(558\) 0 0
\(559\) −1569.87 −2.80835
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −86.8277 + 50.1300i −0.154223 + 0.0890409i −0.575126 0.818065i \(-0.695047\pi\)
0.420902 + 0.907106i \(0.361714\pi\)
\(564\) 0 0
\(565\) −124.032 + 214.830i −0.219526 + 0.380231i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −44.1556 25.4932i −0.0776020 0.0448036i 0.460697 0.887558i \(-0.347600\pi\)
−0.538299 + 0.842754i \(0.680933\pi\)
\(570\) 0 0
\(571\) 430.481 + 745.615i 0.753907 + 1.30581i 0.945916 + 0.324412i \(0.105166\pi\)
−0.192009 + 0.981393i \(0.561500\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 686.252i 1.19348i
\(576\) 0 0
\(577\) 59.3431 0.102848 0.0514239 0.998677i \(-0.483624\pi\)
0.0514239 + 0.998677i \(0.483624\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −32.8797 + 18.9831i −0.0565916 + 0.0326732i
\(582\) 0 0
\(583\) −37.7909 + 65.4558i −0.0648215 + 0.112274i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −534.777 308.754i −0.911034 0.525986i −0.0302706 0.999542i \(-0.509637\pi\)
−0.880764 + 0.473556i \(0.842970\pi\)
\(588\) 0 0
\(589\) 150.541 + 260.744i 0.255587 + 0.442690i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 342.310i 0.577251i 0.957442 + 0.288626i \(0.0931983\pi\)
−0.957442 + 0.288626i \(0.906802\pi\)
\(594\) 0 0
\(595\) 41.4589 0.0696789
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 379.292 218.984i 0.633209 0.365583i −0.148785 0.988870i \(-0.547536\pi\)
0.781994 + 0.623286i \(0.214203\pi\)
\(600\) 0 0
\(601\) 304.452 527.327i 0.506576 0.877416i −0.493395 0.869806i \(-0.664244\pi\)
0.999971 0.00761053i \(-0.00242253\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 64.0212 + 36.9627i 0.105820 + 0.0610953i
\(606\) 0 0
\(607\) 540.751 + 936.608i 0.890858 + 1.54301i 0.838848 + 0.544365i \(0.183230\pi\)
0.0520102 + 0.998647i \(0.483437\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1460.10i 2.38968i
\(612\) 0 0
\(613\) 222.279 0.362609 0.181304 0.983427i \(-0.441968\pi\)
0.181304 + 0.983427i \(0.441968\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 31.0310 17.9158i 0.0502934 0.0290369i −0.474642 0.880179i \(-0.657423\pi\)
0.524936 + 0.851142i \(0.324089\pi\)
\(618\) 0 0
\(619\) −161.494 + 279.717i −0.260896 + 0.451885i −0.966480 0.256741i \(-0.917351\pi\)
0.705584 + 0.708626i \(0.250685\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −151.228 87.3114i −0.242741 0.140147i
\(624\) 0 0
\(625\) −158.391 274.342i −0.253426 0.438947i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 104.997i 0.166927i
\(630\) 0 0
\(631\) 794.037 1.25838 0.629189 0.777252i \(-0.283387\pi\)
0.629189 + 0.777252i \(0.283387\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −134.685 + 77.7602i −0.212102 + 0.122457i
\(636\) 0 0
\(637\) 514.183 890.591i 0.807194 1.39810i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 753.063 + 434.781i 1.17483 + 0.678286i 0.954812 0.297211i \(-0.0960566\pi\)
0.220013 + 0.975497i \(0.429390\pi\)
\(642\) 0 0
\(643\) 31.2519 + 54.1299i 0.0486033 + 0.0841834i 0.889304 0.457317i \(-0.151190\pi\)
−0.840700 + 0.541501i \(0.817856\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 761.439i 1.17688i −0.808542 0.588438i \(-0.799743\pi\)
0.808542 0.588438i \(-0.200257\pi\)
\(648\) 0 0
\(649\) 115.749 0.178350
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 129.622 74.8371i 0.198502 0.114605i −0.397455 0.917622i \(-0.630106\pi\)
0.595956 + 0.803017i \(0.296773\pi\)
\(654\) 0 0
\(655\) 8.54461 14.7997i 0.0130452 0.0225950i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 564.273 + 325.783i 0.856256 + 0.494360i 0.862757 0.505619i \(-0.168736\pi\)
−0.00650063 + 0.999979i \(0.502069\pi\)
\(660\) 0 0
\(661\) −596.672 1033.47i −0.902681 1.56349i −0.824000 0.566590i \(-0.808262\pi\)
−0.0786818 0.996900i \(-0.525071\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 71.0685i 0.106870i
\(666\) 0 0
\(667\) 989.865 1.48405
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −1124.19 + 649.051i −1.67539 + 0.967290i
\(672\) 0 0
\(673\) −74.7771 + 129.518i −0.111110 + 0.192448i −0.916218 0.400680i \(-0.868774\pi\)
0.805108 + 0.593128i \(0.202107\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −607.487 350.733i −0.897322 0.518069i −0.0209919 0.999780i \(-0.506682\pi\)
−0.876331 + 0.481710i \(0.840016\pi\)
\(678\) 0 0
\(679\) 3.92574 + 6.79958i 0.00578165 + 0.0100141i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 503.096i 0.736597i −0.929708 0.368299i \(-0.879940\pi\)
0.929708 0.368299i \(-0.120060\pi\)
\(684\) 0 0
\(685\) 100.648 0.146931
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 115.612 66.7487i 0.167797 0.0968776i
\(690\) 0 0
\(691\) −329.413 + 570.561i −0.476720 + 0.825703i −0.999644 0.0266761i \(-0.991508\pi\)
0.522924 + 0.852379i \(0.324841\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 430.633 + 248.626i 0.619615 + 0.357735i
\(696\) 0 0
\(697\) −321.466 556.796i −0.461214 0.798846i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 172.963i 0.246738i −0.992361 0.123369i \(-0.960630\pi\)
0.992361 0.123369i \(-0.0393698\pi\)
\(702\) 0 0
\(703\) −179.985 −0.256024
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −134.574 + 77.6964i −0.190345 + 0.109896i
\(708\) 0 0
\(709\) 527.267 913.254i 0.743677 1.28809i −0.207133 0.978313i \(-0.566413\pi\)
0.950810 0.309774i \(-0.100253\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 398.317 + 229.969i 0.558650 + 0.322537i
\(714\) 0 0
\(715\) −288.501 499.699i −0.403498 0.698879i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1164.78i 1.62000i −0.586432 0.809998i \(-0.699468\pi\)
0.586432 0.809998i \(-0.300532\pi\)
\(720\) 0 0
\(721\) −42.5611 −0.0590306
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 531.983 307.141i 0.733770 0.423642i
\(726\) 0 0
\(727\) 492.209 852.530i 0.677041 1.17267i −0.298827 0.954307i \(-0.596595\pi\)
0.975868 0.218362i \(-0.0700712\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 781.639 + 451.280i 1.06927 + 0.617345i
\(732\) 0 0
\(733\) −246.459 426.879i −0.336233 0.582372i 0.647488 0.762076i \(-0.275820\pi\)
−0.983721 + 0.179703i \(0.942486\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 497.355i 0.674837i
\(738\) 0 0
\(739\) −571.150 −0.772869 −0.386435 0.922317i \(-0.626293\pi\)
−0.386435 + 0.922317i \(0.626293\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −910.255 + 525.536i −1.22511 + 0.707316i −0.966002 0.258533i \(-0.916761\pi\)
−0.259105 + 0.965849i \(0.583427\pi\)
\(744\) 0 0
\(745\) −297.709 + 515.648i −0.399610 + 0.692144i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 172.224 + 99.4334i 0.229938 + 0.132755i
\(750\) 0 0
\(751\) 42.3053 + 73.2749i 0.0563319 + 0.0975698i 0.892816 0.450421i \(-0.148726\pi\)
−0.836484 + 0.547991i \(0.815393\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 322.705i 0.427423i
\(756\) 0 0
\(757\) −1007.63 −1.33109 −0.665543 0.746360i \(-0.731800\pi\)
−0.665543 + 0.746360i \(0.731800\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −393.981 + 227.465i −0.517715 + 0.298903i −0.735999 0.676983i \(-0.763287\pi\)
0.218285 + 0.975885i \(0.429954\pi\)
\(762\) 0 0
\(763\) −43.2221 + 74.8629i −0.0566476 + 0.0981165i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −177.053 102.222i −0.230838 0.133275i
\(768\) 0 0
\(769\) 352.232 + 610.084i 0.458039 + 0.793347i 0.998857 0.0477927i \(-0.0152187\pi\)
−0.540818 + 0.841139i \(0.681885\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1021.43i 1.32138i −0.750658 0.660691i \(-0.770263\pi\)
0.750658 0.660691i \(-0.229737\pi\)
\(774\) 0 0
\(775\) 285.424 0.368289
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 954.453 551.054i 1.22523 0.707386i
\(780\) 0 0
\(781\) −114.801 + 198.840i −0.146992 + 0.254597i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 433.974 + 250.555i 0.552833 + 0.319178i
\(786\) 0 0
\(787\) −202.007 349.886i −0.256680 0.444582i 0.708671 0.705539i \(-0.249295\pi\)
−0.965350 + 0.260957i \(0.915962\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 185.603i 0.234643i
\(792\) 0 0
\(793\) 2292.79 2.89129
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 765.042 441.697i 0.959902 0.554200i 0.0637592 0.997965i \(-0.479691\pi\)
0.896143 + 0.443766i \(0.146358\pi\)
\(798\) 0 0
\(799\) −419.725 + 726.985i −0.525313 + 0.909869i