Properties

Label 1728.3.q.d.449.1
Level $1728$
Weight $3$
Character 1728.449
Analytic conductor $47.085$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1728.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(47.0845896815\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 18)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 449.1
Root \(1.22474 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1728.449
Dual form 1728.3.q.d.1601.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-4.50000 - 2.59808i) q^{5} +(-3.17423 - 5.49794i) q^{7} +O(q^{10})\) \(q+(-4.50000 - 2.59808i) q^{5} +(-3.17423 - 5.49794i) q^{7} +(8.17423 - 4.71940i) q^{11} +(9.84847 - 17.0580i) q^{13} -1.90702i q^{17} -4.69694 q^{19} +(-8.17423 - 4.71940i) q^{23} +(1.00000 + 1.73205i) q^{25} +(-2.84847 + 1.64456i) q^{29} +(20.5227 - 35.5464i) q^{31} +32.9876i q^{35} -17.3031 q^{37} +(53.5454 + 30.9145i) q^{41} +(0.477296 + 0.826701i) q^{43} +(12.2196 - 7.05501i) q^{47} +(4.34847 - 7.53177i) q^{49} +9.53512i q^{53} -49.0454 q^{55} +(79.2650 + 45.7637i) q^{59} +(-37.5454 - 65.0306i) q^{61} +(-88.6362 + 51.1741i) q^{65} +(15.4773 - 26.8075i) q^{67} +85.9026i q^{71} -96.0908 q^{73} +(-51.8939 - 29.9609i) q^{77} +(-14.8712 - 25.7576i) q^{79} +(-76.1288 + 43.9530i) q^{83} +(-4.95459 + 8.58161i) q^{85} -41.3766i q^{89} -125.045 q^{91} +(21.1362 + 12.2030i) q^{95} +(-47.9393 - 83.0333i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 18 q^{5} + 2 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 18 q^{5} + 2 q^{7} + 18 q^{11} + 10 q^{13} + 40 q^{19} - 18 q^{23} + 4 q^{25} + 18 q^{29} + 38 q^{31} - 128 q^{37} + 126 q^{41} + 46 q^{43} - 54 q^{47} - 12 q^{49} - 108 q^{55} + 126 q^{59} - 62 q^{61} - 90 q^{65} + 106 q^{67} - 208 q^{73} - 90 q^{77} + 14 q^{79} - 378 q^{83} - 108 q^{85} - 412 q^{91} - 180 q^{95} + 14 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1728\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(703\) \(1217\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −4.50000 2.59808i −0.900000 0.519615i −0.0227998 0.999740i \(-0.507258\pi\)
−0.877200 + 0.480125i \(0.840591\pi\)
\(6\) 0 0
\(7\) −3.17423 5.49794i −0.453462 0.785419i 0.545136 0.838347i \(-0.316478\pi\)
−0.998598 + 0.0529281i \(0.983145\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 8.17423 4.71940i 0.743112 0.429036i −0.0800876 0.996788i \(-0.525520\pi\)
0.823200 + 0.567752i \(0.192187\pi\)
\(12\) 0 0
\(13\) 9.84847 17.0580i 0.757575 1.31216i −0.186510 0.982453i \(-0.559718\pi\)
0.944084 0.329704i \(-0.106949\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.90702i 0.112178i −0.998426 0.0560889i \(-0.982137\pi\)
0.998426 0.0560889i \(-0.0178630\pi\)
\(18\) 0 0
\(19\) −4.69694 −0.247207 −0.123604 0.992332i \(-0.539445\pi\)
−0.123604 + 0.992332i \(0.539445\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −8.17423 4.71940i −0.355402 0.205191i 0.311660 0.950194i \(-0.399115\pi\)
−0.667062 + 0.745002i \(0.732448\pi\)
\(24\) 0 0
\(25\) 1.00000 + 1.73205i 0.0400000 + 0.0692820i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.84847 + 1.64456i −0.0982231 + 0.0567091i −0.548307 0.836277i \(-0.684727\pi\)
0.450084 + 0.892986i \(0.351394\pi\)
\(30\) 0 0
\(31\) 20.5227 35.5464i 0.662023 1.14666i −0.318061 0.948070i \(-0.603032\pi\)
0.980083 0.198587i \(-0.0636351\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 32.9876i 0.942503i
\(36\) 0 0
\(37\) −17.3031 −0.467650 −0.233825 0.972279i \(-0.575124\pi\)
−0.233825 + 0.972279i \(0.575124\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 53.5454 + 30.9145i 1.30599 + 0.754011i 0.981424 0.191853i \(-0.0614498\pi\)
0.324562 + 0.945864i \(0.394783\pi\)
\(42\) 0 0
\(43\) 0.477296 + 0.826701i 0.0110999 + 0.0192256i 0.871522 0.490356i \(-0.163133\pi\)
−0.860422 + 0.509582i \(0.829800\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 12.2196 7.05501i 0.259992 0.150107i −0.364339 0.931267i \(-0.618705\pi\)
0.624331 + 0.781160i \(0.285372\pi\)
\(48\) 0 0
\(49\) 4.34847 7.53177i 0.0887443 0.153710i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 9.53512i 0.179908i 0.995946 + 0.0899539i \(0.0286720\pi\)
−0.995946 + 0.0899539i \(0.971328\pi\)
\(54\) 0 0
\(55\) −49.0454 −0.891735
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 79.2650 + 45.7637i 1.34348 + 0.775656i 0.987316 0.158769i \(-0.0507526\pi\)
0.356160 + 0.934425i \(0.384086\pi\)
\(60\) 0 0
\(61\) −37.5454 65.0306i −0.615498 1.06607i −0.990297 0.138968i \(-0.955621\pi\)
0.374798 0.927106i \(-0.377712\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −88.6362 + 51.1741i −1.36363 + 0.787295i
\(66\) 0 0
\(67\) 15.4773 26.8075i 0.231004 0.400111i −0.727100 0.686532i \(-0.759132\pi\)
0.958104 + 0.286421i \(0.0924655\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 85.9026i 1.20990i 0.796265 + 0.604948i \(0.206806\pi\)
−0.796265 + 0.604948i \(0.793194\pi\)
\(72\) 0 0
\(73\) −96.0908 −1.31631 −0.658156 0.752881i \(-0.728663\pi\)
−0.658156 + 0.752881i \(0.728663\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −51.8939 29.9609i −0.673946 0.389103i
\(78\) 0 0
\(79\) −14.8712 25.7576i −0.188243 0.326046i 0.756422 0.654084i \(-0.226946\pi\)
−0.944664 + 0.328038i \(0.893612\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −76.1288 + 43.9530i −0.917215 + 0.529554i −0.882745 0.469852i \(-0.844307\pi\)
−0.0344693 + 0.999406i \(0.510974\pi\)
\(84\) 0 0
\(85\) −4.95459 + 8.58161i −0.0582893 + 0.100960i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 41.3766i 0.464905i −0.972608 0.232453i \(-0.925325\pi\)
0.972608 0.232453i \(-0.0746751\pi\)
\(90\) 0 0
\(91\) −125.045 −1.37413
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 21.1362 + 12.2030i 0.222487 + 0.128453i
\(96\) 0 0
\(97\) −47.9393 83.0333i −0.494219 0.856013i 0.505758 0.862675i \(-0.331213\pi\)
−0.999978 + 0.00666202i \(0.997879\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −136.772 + 78.9656i −1.35418 + 0.781838i −0.988832 0.149032i \(-0.952384\pi\)
−0.365350 + 0.930870i \(0.619051\pi\)
\(102\) 0 0
\(103\) −14.5681 + 25.2327i −0.141438 + 0.244978i −0.928038 0.372485i \(-0.878506\pi\)
0.786600 + 0.617462i \(0.211839\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 171.805i 1.60566i −0.596210 0.802829i \(-0.703327\pi\)
0.596210 0.802829i \(-0.296673\pi\)
\(108\) 0 0
\(109\) −116.272 −1.06672 −0.533360 0.845888i \(-0.679071\pi\)
−0.533360 + 0.845888i \(0.679071\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −175.166 101.132i −1.55014 0.894976i −0.998129 0.0611424i \(-0.980526\pi\)
−0.552015 0.833834i \(-0.686141\pi\)
\(114\) 0 0
\(115\) 24.5227 + 42.4746i 0.213241 + 0.369344i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −10.4847 + 6.05334i −0.0881067 + 0.0508684i
\(120\) 0 0
\(121\) −15.9546 + 27.6342i −0.131856 + 0.228382i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 119.512i 0.956092i
\(126\) 0 0
\(127\) 10.0908 0.0794552 0.0397276 0.999211i \(-0.487351\pi\)
0.0397276 + 0.999211i \(0.487351\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 4.29567 + 2.48010i 0.0327913 + 0.0189321i 0.516306 0.856404i \(-0.327307\pi\)
−0.483515 + 0.875336i \(0.660640\pi\)
\(132\) 0 0
\(133\) 14.9092 + 25.8235i 0.112099 + 0.194161i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −203.242 + 117.342i −1.48352 + 0.856511i −0.999825 0.0187249i \(-0.994039\pi\)
−0.483696 + 0.875236i \(0.660706\pi\)
\(138\) 0 0
\(139\) 53.2650 92.2578i 0.383202 0.663725i −0.608316 0.793695i \(-0.708155\pi\)
0.991518 + 0.129970i \(0.0414881\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 185.915i 1.30011i
\(144\) 0 0
\(145\) 17.0908 0.117868
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −91.0301 52.5563i −0.610940 0.352727i 0.162393 0.986726i \(-0.448079\pi\)
−0.773333 + 0.634000i \(0.781412\pi\)
\(150\) 0 0
\(151\) 142.614 + 247.014i 0.944460 + 1.63585i 0.756828 + 0.653614i \(0.226748\pi\)
0.187632 + 0.982239i \(0.439919\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −184.704 + 106.639i −1.19164 + 0.687994i
\(156\) 0 0
\(157\) −98.5908 + 170.764i −0.627967 + 1.08767i 0.359992 + 0.932955i \(0.382779\pi\)
−0.987959 + 0.154715i \(0.950554\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 59.9219i 0.372186i
\(162\) 0 0
\(163\) 249.060 1.52798 0.763988 0.645230i \(-0.223238\pi\)
0.763988 + 0.645230i \(0.223238\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 41.9472 + 24.2182i 0.251181 + 0.145019i 0.620305 0.784361i \(-0.287009\pi\)
−0.369124 + 0.929380i \(0.620342\pi\)
\(168\) 0 0
\(169\) −109.485 189.633i −0.647838 1.12209i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 86.9847 50.2206i 0.502802 0.290293i −0.227068 0.973879i \(-0.572914\pi\)
0.729870 + 0.683586i \(0.239581\pi\)
\(174\) 0 0
\(175\) 6.34847 10.9959i 0.0362770 0.0628336i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 285.071i 1.59257i −0.604919 0.796287i \(-0.706794\pi\)
0.604919 0.796287i \(-0.293206\pi\)
\(180\) 0 0
\(181\) −37.1214 −0.205091 −0.102545 0.994728i \(-0.532699\pi\)
−0.102545 + 0.994728i \(0.532699\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 77.8638 + 44.9547i 0.420885 + 0.242998i
\(186\) 0 0
\(187\) −9.00000 15.5885i −0.0481283 0.0833607i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 15.5227 8.96204i 0.0812707 0.0469217i −0.458814 0.888532i \(-0.651726\pi\)
0.540085 + 0.841611i \(0.318392\pi\)
\(192\) 0 0
\(193\) 47.7270 82.6657i 0.247290 0.428319i −0.715483 0.698630i \(-0.753793\pi\)
0.962773 + 0.270311i \(0.0871265\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 160.363i 0.814026i 0.913422 + 0.407013i \(0.133430\pi\)
−0.913422 + 0.407013i \(0.866570\pi\)
\(198\) 0 0
\(199\) 6.51531 0.0327402 0.0163701 0.999866i \(-0.494789\pi\)
0.0163701 + 0.999866i \(0.494789\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 18.0834 + 10.4405i 0.0890809 + 0.0514309i
\(204\) 0 0
\(205\) −160.636 278.230i −0.783591 1.35722i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −38.3939 + 22.1667i −0.183703 + 0.106061i
\(210\) 0 0
\(211\) −77.2196 + 133.748i −0.365970 + 0.633878i −0.988931 0.148374i \(-0.952596\pi\)
0.622961 + 0.782253i \(0.285929\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4.96021i 0.0230707i
\(216\) 0 0
\(217\) −260.576 −1.20081
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −32.5301 18.7813i −0.147195 0.0849831i
\(222\) 0 0
\(223\) −46.3865 80.3437i −0.208011 0.360286i 0.743077 0.669206i \(-0.233366\pi\)
−0.951088 + 0.308920i \(0.900032\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 147.053 84.9010i 0.647810 0.374013i −0.139807 0.990179i \(-0.544648\pi\)
0.787617 + 0.616166i \(0.211315\pi\)
\(228\) 0 0
\(229\) 203.772 352.944i 0.889836 1.54124i 0.0497675 0.998761i \(-0.484152\pi\)
0.840068 0.542480i \(-0.182515\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 15.2562i 0.0654772i −0.999464 0.0327386i \(-0.989577\pi\)
0.999464 0.0327386i \(-0.0104229\pi\)
\(234\) 0 0
\(235\) −73.3179 −0.311991
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −48.9620 28.2682i −0.204862 0.118277i 0.394059 0.919085i \(-0.371070\pi\)
−0.598921 + 0.800808i \(0.704404\pi\)
\(240\) 0 0
\(241\) −42.1061 72.9299i −0.174714 0.302614i 0.765348 0.643617i \(-0.222567\pi\)
−0.940062 + 0.341003i \(0.889233\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −39.1362 + 22.5953i −0.159740 + 0.0922258i
\(246\) 0 0
\(247\) −46.2577 + 80.1206i −0.187278 + 0.324375i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 218.903i 0.872123i 0.899917 + 0.436062i \(0.143627\pi\)
−0.899917 + 0.436062i \(0.856373\pi\)
\(252\) 0 0
\(253\) −89.0908 −0.352138
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 11.1061 + 6.41212i 0.0432145 + 0.0249499i 0.521452 0.853281i \(-0.325391\pi\)
−0.478237 + 0.878231i \(0.658724\pi\)
\(258\) 0 0
\(259\) 54.9240 + 95.1311i 0.212062 + 0.367302i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −291.386 + 168.232i −1.10793 + 0.639666i −0.938293 0.345840i \(-0.887594\pi\)
−0.169640 + 0.985506i \(0.554261\pi\)
\(264\) 0 0
\(265\) 24.7730 42.9080i 0.0934829 0.161917i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 60.4468i 0.224709i 0.993668 + 0.112355i \(0.0358393\pi\)
−0.993668 + 0.112355i \(0.964161\pi\)
\(270\) 0 0
\(271\) 274.636 1.01342 0.506708 0.862118i \(-0.330862\pi\)
0.506708 + 0.862118i \(0.330862\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 16.3485 + 9.43879i 0.0594490 + 0.0343229i
\(276\) 0 0
\(277\) −24.5000 42.4352i −0.0884477 0.153196i 0.818407 0.574638i \(-0.194857\pi\)
−0.906855 + 0.421442i \(0.861524\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 297.121 171.543i 1.05737 0.610473i 0.132666 0.991161i \(-0.457646\pi\)
0.924704 + 0.380688i \(0.124313\pi\)
\(282\) 0 0
\(283\) −171.704 + 297.401i −0.606729 + 1.05089i 0.385047 + 0.922897i \(0.374185\pi\)
−0.991776 + 0.127988i \(0.959148\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 392.519i 1.36766i
\(288\) 0 0
\(289\) 285.363 0.987416
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −248.076 143.226i −0.846674 0.488828i 0.0128532 0.999917i \(-0.495909\pi\)
−0.859527 + 0.511090i \(0.829242\pi\)
\(294\) 0 0
\(295\) −237.795 411.873i −0.806085 1.39618i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −161.007 + 92.9577i −0.538486 + 0.310895i
\(300\) 0 0
\(301\) 3.03010 5.24829i 0.0100668 0.0174362i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 390.183i 1.27929i
\(306\) 0 0
\(307\) −154.091 −0.501924 −0.250962 0.967997i \(-0.580747\pi\)
−0.250962 + 0.967997i \(0.580747\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 62.3411 + 35.9926i 0.200454 + 0.115732i 0.596867 0.802340i \(-0.296412\pi\)
−0.396413 + 0.918072i \(0.629745\pi\)
\(312\) 0 0
\(313\) 183.803 + 318.356i 0.587230 + 1.01711i 0.994593 + 0.103846i \(0.0331150\pi\)
−0.407363 + 0.913266i \(0.633552\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −93.1821 + 53.7987i −0.293950 + 0.169712i −0.639722 0.768607i \(-0.720950\pi\)
0.345772 + 0.938319i \(0.387617\pi\)
\(318\) 0 0
\(319\) −15.5227 + 26.8861i −0.0486605 + 0.0842825i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 8.95717i 0.0277312i
\(324\) 0 0
\(325\) 39.3939 0.121212
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −77.5760 44.7885i −0.235793 0.136135i
\(330\) 0 0
\(331\) 8.59873 + 14.8934i 0.0259780 + 0.0449953i 0.878722 0.477334i \(-0.158397\pi\)
−0.852744 + 0.522329i \(0.825063\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −139.296 + 80.4224i −0.415808 + 0.240067i
\(336\) 0 0
\(337\) −182.197 + 315.574i −0.540644 + 0.936422i 0.458223 + 0.888837i \(0.348486\pi\)
−0.998867 + 0.0475854i \(0.984847\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 387.419i 1.13613i
\(342\) 0 0
\(343\) −366.287 −1.06789
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 505.234 + 291.697i 1.45601 + 0.840626i 0.998811 0.0487402i \(-0.0155206\pi\)
0.457196 + 0.889366i \(0.348854\pi\)
\(348\) 0 0
\(349\) 156.379 + 270.856i 0.448076 + 0.776091i 0.998261 0.0589524i \(-0.0187760\pi\)
−0.550185 + 0.835043i \(0.685443\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 32.5760 18.8078i 0.0922834 0.0532798i −0.453148 0.891435i \(-0.649699\pi\)
0.545431 + 0.838155i \(0.316366\pi\)
\(354\) 0 0
\(355\) 223.182 386.562i 0.628681 1.08891i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 294.028i 0.819019i 0.912306 + 0.409510i \(0.134300\pi\)
−0.912306 + 0.409510i \(0.865700\pi\)
\(360\) 0 0
\(361\) −338.939 −0.938889
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 432.409 + 249.651i 1.18468 + 0.683976i
\(366\) 0 0
\(367\) 16.6135 + 28.7755i 0.0452684 + 0.0784072i 0.887772 0.460284i \(-0.152252\pi\)
−0.842503 + 0.538691i \(0.818919\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 52.4235 30.2667i 0.141303 0.0815814i
\(372\) 0 0
\(373\) −112.515 + 194.881i −0.301648 + 0.522470i −0.976509 0.215475i \(-0.930870\pi\)
0.674861 + 0.737945i \(0.264203\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 64.7858i 0.171846i
\(378\) 0 0
\(379\) 166.334 0.438875 0.219438 0.975627i \(-0.429578\pi\)
0.219438 + 0.975627i \(0.429578\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 638.249 + 368.493i 1.66645 + 0.962124i 0.969530 + 0.244972i \(0.0787787\pi\)
0.696917 + 0.717152i \(0.254555\pi\)
\(384\) 0 0
\(385\) 155.682 + 269.648i 0.404368 + 0.700386i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −146.682 + 84.6867i −0.377074 + 0.217704i −0.676544 0.736402i \(-0.736523\pi\)
0.299471 + 0.954106i \(0.403190\pi\)
\(390\) 0 0
\(391\) −9.00000 + 15.5885i −0.0230179 + 0.0398682i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 154.546i 0.391255i
\(396\) 0 0
\(397\) 256.272 0.645523 0.322761 0.946480i \(-0.395389\pi\)
0.322761 + 0.946480i \(0.395389\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −226.364 130.691i −0.564498 0.325913i 0.190451 0.981697i \(-0.439005\pi\)
−0.754949 + 0.655784i \(0.772338\pi\)
\(402\) 0 0
\(403\) −404.234 700.155i −1.00306 1.73736i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −141.439 + 81.6600i −0.347517 + 0.200639i
\(408\) 0 0
\(409\) 221.894 384.331i 0.542528 0.939686i −0.456230 0.889862i \(-0.650801\pi\)
0.998758 0.0498240i \(-0.0158660\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 581.059i 1.40692i
\(414\) 0 0
\(415\) 456.773 1.10066
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 9.32525 + 5.38394i 0.0222560 + 0.0128495i 0.511087 0.859529i \(-0.329243\pi\)
−0.488831 + 0.872379i \(0.662576\pi\)
\(420\) 0 0
\(421\) 127.152 + 220.233i 0.302023 + 0.523119i 0.976594 0.215091i \(-0.0690048\pi\)
−0.674571 + 0.738210i \(0.735672\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 3.30306 1.90702i 0.00777191 0.00448711i
\(426\) 0 0
\(427\) −238.356 + 412.844i −0.558210 + 0.966849i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 698.663i 1.62103i −0.585719 0.810514i \(-0.699188\pi\)
0.585719 0.810514i \(-0.300812\pi\)
\(432\) 0 0
\(433\) 211.728 0.488978 0.244489 0.969652i \(-0.421380\pi\)
0.244489 + 0.969652i \(0.421380\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 38.3939 + 22.1667i 0.0878578 + 0.0507247i
\(438\) 0 0
\(439\) −139.931 242.368i −0.318750 0.552092i 0.661477 0.749965i \(-0.269930\pi\)
−0.980228 + 0.197874i \(0.936596\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −477.400 + 275.627i −1.07765 + 0.622183i −0.930262 0.366895i \(-0.880421\pi\)
−0.147391 + 0.989078i \(0.547087\pi\)
\(444\) 0 0
\(445\) −107.499 + 186.195i −0.241572 + 0.418415i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 542.865i 1.20905i −0.796585 0.604527i \(-0.793362\pi\)
0.796585 0.604527i \(-0.206638\pi\)
\(450\) 0 0
\(451\) 583.590 1.29399
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 562.704 + 324.877i 1.23671 + 0.714016i
\(456\) 0 0
\(457\) −46.1821 79.9898i −0.101055 0.175032i 0.811065 0.584957i \(-0.198888\pi\)
−0.912120 + 0.409924i \(0.865555\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −199.030 + 114.910i −0.431736 + 0.249263i −0.700086 0.714059i \(-0.746855\pi\)
0.268350 + 0.963321i \(0.413522\pi\)
\(462\) 0 0
\(463\) 255.401 442.368i 0.551623 0.955438i −0.446535 0.894766i \(-0.647342\pi\)
0.998158 0.0606723i \(-0.0193245\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 833.657i 1.78513i −0.450915 0.892567i \(-0.648902\pi\)
0.450915 0.892567i \(-0.351098\pi\)
\(468\) 0 0
\(469\) −196.514 −0.419007
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 7.80306 + 4.50510i 0.0164970 + 0.00952452i
\(474\) 0 0
\(475\) −4.69694 8.13534i −0.00988829 0.0171270i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −569.144 + 328.595i −1.18819 + 0.686003i −0.957895 0.287118i \(-0.907303\pi\)
−0.230296 + 0.973121i \(0.573969\pi\)
\(480\) 0 0
\(481\) −170.409 + 295.156i −0.354280 + 0.613631i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 498.200i 1.02722i
\(486\) 0 0
\(487\) −351.666 −0.722107 −0.361054 0.932545i \(-0.617583\pi\)
−0.361054 + 0.932545i \(0.617583\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 212.539 + 122.709i 0.432869 + 0.249917i 0.700568 0.713586i \(-0.252930\pi\)
−0.267699 + 0.963503i \(0.586263\pi\)
\(492\) 0 0
\(493\) 3.13622 + 5.43210i 0.00636151 + 0.0110185i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 472.287 272.675i 0.950276 0.548642i
\(498\) 0 0
\(499\) 315.113 545.792i 0.631489 1.09377i −0.355758 0.934578i \(-0.615777\pi\)
0.987247 0.159193i \(-0.0508892\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 286.891i 0.570360i −0.958474 0.285180i \(-0.907947\pi\)
0.958474 0.285180i \(-0.0920534\pi\)
\(504\) 0 0
\(505\) 820.635 1.62502
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 755.454 + 436.161i 1.48419 + 0.856898i 0.999838 0.0179741i \(-0.00572163\pi\)
0.484353 + 0.874873i \(0.339055\pi\)
\(510\) 0 0
\(511\) 305.015 + 528.301i 0.596898 + 1.03386i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 131.113 75.6981i 0.254588 0.146987i
\(516\) 0 0
\(517\) 66.5908 115.339i 0.128802 0.223092i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 206.132i 0.395646i −0.980238 0.197823i \(-0.936613\pi\)
0.980238 0.197823i \(-0.0633872\pi\)
\(522\) 0 0
\(523\) −884.817 −1.69181 −0.845906 0.533333i \(-0.820939\pi\)
−0.845906 + 0.533333i \(0.820939\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −67.7878 39.1373i −0.128630 0.0742643i
\(528\) 0 0
\(529\) −219.955 380.973i −0.415793 0.720175i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1054.68 608.920i 1.97876 1.14244i
\(534\) 0 0
\(535\) −446.363 + 773.124i −0.834324 + 1.44509i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 82.0886i 0.152298i
\(540\) 0 0
\(541\) 509.151 0.941129 0.470565 0.882365i \(-0.344050\pi\)
0.470565 + 0.882365i \(0.344050\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 523.226 + 302.085i 0.960048 + 0.554284i
\(546\) 0 0
\(547\) 274.022 + 474.620i 0.500955 + 0.867679i 0.999999 + 0.00110267i \(0.000350992\pi\)
−0.499045 + 0.866576i \(0.666316\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 13.3791 7.72442i 0.0242815 0.0140189i
\(552\) 0 0
\(553\) −94.4092 + 163.522i −0.170722 + 0.295699i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 406.542i 0.729879i −0.931031 0.364939i \(-0.881090\pi\)
0.931031 0.364939i \(-0.118910\pi\)
\(558\) 0 0
\(559\) 18.8025 0.0336360
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −525.220 303.236i −0.932895 0.538607i −0.0451687 0.998979i \(-0.514383\pi\)
−0.887726 + 0.460372i \(0.847716\pi\)
\(564\) 0 0
\(565\) 525.499 + 910.191i 0.930087 + 1.61096i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 224.954 129.877i 0.395350 0.228255i −0.289126 0.957291i \(-0.593365\pi\)
0.684476 + 0.729036i \(0.260031\pi\)
\(570\) 0 0
\(571\) −43.9166 + 76.0657i −0.0769117 + 0.133215i −0.901916 0.431911i \(-0.857839\pi\)
0.825004 + 0.565126i \(0.191173\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 18.8776i 0.0328306i
\(576\) 0 0
\(577\) −132.091 −0.228927 −0.114463 0.993427i \(-0.536515\pi\)
−0.114463 + 0.993427i \(0.536515\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 483.302 + 279.034i 0.831844 + 0.480266i
\(582\) 0 0
\(583\) 45.0000 + 77.9423i 0.0771870 + 0.133692i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −491.614 + 283.833i −0.837502 + 0.483532i −0.856414 0.516289i \(-0.827313\pi\)
0.0189125 + 0.999821i \(0.493980\pi\)
\(588\) 0 0
\(589\) −96.3939 + 166.959i −0.163657 + 0.283462i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 77.0321i 0.129902i 0.997888 + 0.0649512i \(0.0206892\pi\)
−0.997888 + 0.0649512i \(0.979311\pi\)
\(594\) 0 0
\(595\) 62.9082 0.105728
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 764.917 + 441.625i 1.27699 + 0.737270i 0.976294 0.216450i \(-0.0694479\pi\)
0.300696 + 0.953720i \(0.402781\pi\)
\(600\) 0 0
\(601\) 397.545 + 688.569i 0.661473 + 1.14571i 0.980229 + 0.197868i \(0.0634018\pi\)
−0.318755 + 0.947837i \(0.603265\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 143.591 82.9025i 0.237341 0.137029i
\(606\) 0 0
\(607\) 148.372 256.987i 0.244434 0.423373i −0.717538 0.696519i \(-0.754731\pi\)
0.961972 + 0.273147i \(0.0880644\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 277.924i 0.454868i
\(612\) 0 0
\(613\) 517.181 0.843688 0.421844 0.906668i \(-0.361383\pi\)
0.421844 + 0.906668i \(0.361383\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 229.909 + 132.738i 0.372623 + 0.215134i 0.674604 0.738180i \(-0.264314\pi\)
−0.301981 + 0.953314i \(0.597648\pi\)
\(618\) 0 0
\(619\) −98.5227 170.646i −0.159164 0.275681i 0.775403 0.631466i \(-0.217547\pi\)
−0.934568 + 0.355786i \(0.884213\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −227.486 + 131.339i −0.365146 + 0.210817i
\(624\) 0 0
\(625\) 335.500 581.103i 0.536800 0.929765i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 32.9973i 0.0524600i
\(630\) 0 0
\(631\) −160.879 −0.254958 −0.127479 0.991841i \(-0.540689\pi\)
−0.127479 + 0.991841i \(0.540689\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −45.4087 26.2167i −0.0715097 0.0412862i
\(636\) 0 0
\(637\) −85.6515 148.353i −0.134461 0.232893i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 267.894 154.669i 0.417931 0.241293i −0.276261 0.961083i \(-0.589095\pi\)
0.694192 + 0.719790i \(0.255762\pi\)
\(642\) 0 0
\(643\) 197.296 341.726i 0.306836 0.531456i −0.670832 0.741609i \(-0.734063\pi\)
0.977668 + 0.210153i \(0.0673963\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 418.736i 0.647196i −0.946195 0.323598i \(-0.895108\pi\)
0.946195 0.323598i \(-0.104892\pi\)
\(648\) 0 0
\(649\) 863.908 1.33114
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −459.621 265.363i −0.703861 0.406375i 0.104923 0.994480i \(-0.466540\pi\)
−0.808784 + 0.588106i \(0.799874\pi\)
\(654\) 0 0
\(655\) −12.8870 22.3209i −0.0196748 0.0340778i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 310.204 179.096i 0.470719 0.271770i −0.245822 0.969315i \(-0.579058\pi\)
0.716541 + 0.697545i \(0.245724\pi\)
\(660\) 0 0
\(661\) −111.136 + 192.493i −0.168133 + 0.291214i −0.937763 0.347275i \(-0.887107\pi\)
0.769631 + 0.638489i \(0.220440\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 154.941i 0.232994i
\(666\) 0 0
\(667\) 31.0454 0.0465448
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −613.810 354.383i −0.914769 0.528142i
\(672\) 0 0
\(673\) 144.606 + 250.464i 0.214867 + 0.372161i 0.953231 0.302241i \(-0.0977348\pi\)
−0.738364 + 0.674402i \(0.764401\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 402.227 232.226i 0.594131 0.343022i −0.172598 0.984992i \(-0.555216\pi\)
0.766729 + 0.641971i \(0.221883\pi\)
\(678\) 0 0
\(679\) −304.341 + 527.134i −0.448220 + 0.776339i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1126.36i 1.64913i 0.565767 + 0.824565i \(0.308580\pi\)
−0.565767 + 0.824565i \(0.691420\pi\)
\(684\) 0 0
\(685\) 1219.45 1.78022
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 162.650 + 93.9063i 0.236067 + 0.136294i
\(690\) 0 0
\(691\) 518.841 + 898.658i 0.750855 + 1.30052i 0.947409 + 0.320025i \(0.103691\pi\)
−0.196554 + 0.980493i \(0.562975\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −479.385 + 276.773i −0.689763 + 0.398235i
\(696\) 0 0
\(697\) 58.9546 102.112i 0.0845833 0.146503i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 778.180i 1.11010i −0.831817 0.555050i \(-0.812699\pi\)
0.831817 0.555050i \(-0.187301\pi\)
\(702\) 0 0
\(703\) 81.2714 0.115607
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 868.296 + 501.311i 1.22814 + 0.709068i
\(708\) 0 0
\(709\) −586.014 1015.01i −0.826536 1.43160i −0.900739 0.434360i \(-0.856975\pi\)
0.0742031 0.997243i \(-0.476359\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −335.515 + 193.710i −0.470568 + 0.271682i
\(714\) 0 0
\(715\) −483.022 + 836.619i −0.675556 + 1.17010i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 515.416i 0.716851i −0.933558 0.358426i \(-0.883314\pi\)
0.933558 0.358426i \(-0.116686\pi\)
\(720\) 0 0
\(721\) 184.970 0.256547
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −5.69694 3.28913i −0.00785785 0.00453673i
\(726\) 0 0
\(727\) 420.704 + 728.681i 0.578685 + 1.00231i 0.995630 + 0.0933809i \(0.0297674\pi\)
−0.416945 + 0.908932i \(0.636899\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1.57654 0.910215i 0.00215669 0.00124516i
\(732\) 0 0
\(733\) 303.181 525.125i 0.413617 0.716405i −0.581665 0.813428i \(-0.697599\pi\)
0.995282 + 0.0970229i \(0.0309320\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 292.174i 0.396437i
\(738\) 0 0
\(739\) 389.362 0.526877 0.263439 0.964676i \(-0.415143\pi\)
0.263439 + 0.964676i \(0.415143\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −904.779 522.375i −1.21774 0.703061i −0.253304 0.967387i \(-0.581517\pi\)
−0.964434 + 0.264325i \(0.914851\pi\)
\(744\) 0 0
\(745\) 273.090 + 473.006i 0.366564 + 0.634908i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −944.574 + 545.350i −1.26111 + 0.728105i
\(750\) 0 0
\(751\) 645.916 1118.76i 0.860074 1.48969i −0.0117826 0.999931i \(-0.503751\pi\)
0.871857 0.489761i \(-0.162916\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1482.08i 1.96302i
\(756\) 0 0
\(757\) −1042.36 −1.37697 −0.688483 0.725252i \(-0.741723\pi\)
−0.688483 + 0.725252i \(0.741723\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 281.607 + 162.586i 0.370048 + 0.213647i 0.673479 0.739206i \(-0.264799\pi\)
−0.303431 + 0.952853i \(0.598132\pi\)
\(762\) 0 0
\(763\) 369.076 + 639.258i 0.483717 + 0.837822i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1561.28 901.405i 2.03557 1.17523i
\(768\) 0 0
\(769\) −171.348 + 296.783i −0.222819 + 0.385934i −0.955663 0.294463i \(-0.904859\pi\)
0.732844 + 0.680397i \(0.238193\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 532.579i 0.688977i 0.938791 + 0.344488i \(0.111948\pi\)
−0.938791 + 0.344488i \(0.888052\pi\)
\(774\) 0 0
\(775\) 82.0908 0.105924
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −251.499 145.203i −0.322849 0.186397i
\(780\) 0 0
\(781\) 405.409 + 702.188i 0.519089 + 0.899089i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 887.317 512.293i 1.13034 0.652602i
\(786\) 0 0
\(787\) −51.9768 + 90.0264i −0.0660442 + 0.114392i −0.897157 0.441712i \(-0.854371\pi\)
0.831113 + 0.556104i \(0.187704\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1284.07i 1.62335i
\(792\) 0 0
\(793\) −1479.06 −1.86514
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −956.331 552.138i −1.19991 0.692770i −0.239378 0.970927i \(-0.576943\pi\)
−0.960536 + 0.278156i \(0.910277\pi\)
\(798\) 0