Properties

Label 1728.3.n.a.737.4
Level $1728$
Weight $3$
Character 1728.737
Analytic conductor $47.085$
Analytic rank $0$
Dimension $8$
CM discriminant -8
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1728,3,Mod(737,1728)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1728, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1728.737");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1728.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.0845896815\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{41}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 576)
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

Embedding invariants

Embedding label 737.4
Root \(-0.965926 + 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 1728.737
Dual form 1728.3.n.a.1313.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+O(q^{10})\) \(q+(10.3048 - 17.8485i) q^{11} -15.2385i q^{17} +31.6969i q^{19} +(12.5000 - 21.6506i) q^{25} +(-5.10612 + 2.94802i) q^{41} +(-69.7018 - 40.2423i) q^{43} +(24.5000 + 42.4352i) q^{49} +(-56.7202 - 98.2423i) q^{59} +(-62.2487 + 35.9393i) q^{67} +41.6061 q^{73} +(25.4558 - 44.0908i) q^{83} -101.823i q^{89} +(96.9847 - 167.982i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 100 q^{25} - 276 q^{41} + 196 q^{49} + 568 q^{73} + 188 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1728\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(703\) \(1217\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(6\) 0 0
\(7\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 10.3048 17.8485i 0.936802 1.62259i 0.165412 0.986224i \(-0.447104\pi\)
0.771389 0.636364i \(-0.219562\pi\)
\(12\) 0 0
\(13\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 15.2385i 0.896383i −0.893938 0.448192i \(-0.852068\pi\)
0.893938 0.448192i \(-0.147932\pi\)
\(18\) 0 0
\(19\) 31.6969i 1.66826i 0.551568 + 0.834130i \(0.314030\pi\)
−0.551568 + 0.834130i \(0.685970\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(24\) 0 0
\(25\) 12.5000 21.6506i 0.500000 0.866025i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(30\) 0 0
\(31\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −5.10612 + 2.94802i −0.124540 + 0.0719030i −0.560976 0.827832i \(-0.689574\pi\)
0.436436 + 0.899735i \(0.356241\pi\)
\(42\) 0 0
\(43\) −69.7018 40.2423i −1.62097 0.935869i −0.986661 0.162791i \(-0.947950\pi\)
−0.634311 0.773078i \(-0.718716\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(48\) 0 0
\(49\) 24.5000 + 42.4352i 0.500000 + 0.866025i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −56.7202 98.2423i −0.961360 1.66512i −0.719092 0.694915i \(-0.755442\pi\)
−0.242268 0.970209i \(-0.577891\pi\)
\(60\) 0 0
\(61\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −62.2487 + 35.9393i −0.929085 + 0.536407i −0.886522 0.462687i \(-0.846886\pi\)
−0.0425626 + 0.999094i \(0.513552\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) 41.6061 0.569947 0.284973 0.958535i \(-0.408015\pi\)
0.284973 + 0.958535i \(0.408015\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 25.4558 44.0908i 0.306697 0.531215i −0.670941 0.741511i \(-0.734110\pi\)
0.977638 + 0.210296i \(0.0674429\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 101.823i 1.14408i −0.820225 0.572041i \(-0.806152\pi\)
0.820225 0.572041i \(-0.193848\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 96.9847 167.982i 0.999842 1.73178i 0.484536 0.874771i \(-0.338988\pi\)
0.515306 0.857006i \(-0.327678\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(102\) 0 0
\(103\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 94.7556 0.885566 0.442783 0.896629i \(-0.353991\pi\)
0.442783 + 0.896629i \(0.353991\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 176.363 101.823i 1.56074 0.901092i 0.563554 0.826079i \(-0.309434\pi\)
0.997183 0.0750128i \(-0.0238998\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −151.879 263.061i −1.25519 2.17406i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −127.279 220.454i −0.971597 1.68286i −0.690736 0.723107i \(-0.742713\pi\)
−0.280861 0.959748i \(-0.590620\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 237.288 + 136.998i 1.73203 + 0.999986i 0.868613 + 0.495491i \(0.165012\pi\)
0.863414 + 0.504496i \(0.168322\pi\)
\(138\) 0 0
\(139\) −229.208 + 132.333i −1.64898 + 0.952037i −0.671497 + 0.741007i \(0.734348\pi\)
−0.977480 + 0.211030i \(0.932318\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(150\) 0 0
\(151\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 322.000i 1.97546i −0.156171 0.987730i \(-0.549915\pi\)
0.156171 0.987730i \(-0.450085\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(168\) 0 0
\(169\) −84.5000 + 146.358i −0.500000 + 0.866025i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −356.382 −1.99096 −0.995480 0.0949721i \(-0.969724\pi\)
−0.995480 + 0.0949721i \(0.969724\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −271.984 157.030i −1.45446 0.839733i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(192\) 0 0
\(193\) −137.166 237.579i −0.710706 1.23098i −0.964592 0.263745i \(-0.915042\pi\)
0.253886 0.967234i \(-0.418291\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 565.742 + 326.631i 2.70690 + 1.56283i
\(210\) 0 0
\(211\) 195.722 113.000i 0.927591 0.535545i 0.0415423 0.999137i \(-0.486773\pi\)
0.886049 + 0.463592i \(0.153440\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −171.910 + 297.758i −0.757315 + 1.31171i 0.186900 + 0.982379i \(0.440156\pi\)
−0.944215 + 0.329329i \(0.893178\pi\)
\(228\) 0 0
\(229\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 460.708i 1.97729i −0.150280 0.988643i \(-0.548018\pi\)
0.150280 0.988643i \(-0.451982\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(240\) 0 0
\(241\) 239.560 414.930i 0.994026 1.72170i 0.402490 0.915425i \(-0.368145\pi\)
0.591536 0.806279i \(-0.298522\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 496.906 1.97970 0.989852 0.142099i \(-0.0453851\pi\)
0.989852 + 0.142099i \(0.0453851\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −142.531 + 82.2901i −0.554594 + 0.320195i −0.750973 0.660333i \(-0.770415\pi\)
0.196379 + 0.980528i \(0.437082\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −257.620 446.212i −0.936802 1.62259i
\(276\) 0 0
\(277\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −440.908 254.558i −1.56907 0.905902i −0.996278 0.0862000i \(-0.972528\pi\)
−0.572790 0.819702i \(-0.694139\pi\)
\(282\) 0 0
\(283\) −71.0141 + 41.0000i −0.250933 + 0.144876i −0.620191 0.784450i \(-0.712945\pi\)
0.369258 + 0.929327i \(0.379612\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 56.7878 0.196497
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 520.848i 1.69657i 0.529537 + 0.848287i \(0.322366\pi\)
−0.529537 + 0.848287i \(0.677634\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(312\) 0 0
\(313\) −15.4694 + 26.7938i −0.0494230 + 0.0856031i −0.889679 0.456587i \(-0.849072\pi\)
0.840256 + 0.542191i \(0.182405\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 483.014 1.49540
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −12.1244 7.00000i −0.0366295 0.0211480i 0.481573 0.876406i \(-0.340065\pi\)
−0.518203 + 0.855258i \(0.673399\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 325.257 + 563.362i 0.965155 + 1.67170i 0.709199 + 0.705009i \(0.249057\pi\)
0.255956 + 0.966688i \(0.417610\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −229.768 397.970i −0.662156 1.14689i −0.980048 0.198761i \(-0.936308\pi\)
0.317892 0.948127i \(-0.397025\pi\)
\(348\) 0 0
\(349\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 439.439 + 253.710i 1.24487 + 0.718725i 0.970081 0.242779i \(-0.0780591\pi\)
0.274788 + 0.961505i \(0.411392\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) −643.696 −1.78309
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 63.7582i 0.168227i 0.996456 + 0.0841137i \(0.0268059\pi\)
−0.996456 + 0.0841137i \(0.973194\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −677.379 + 391.085i −1.68922 + 0.975274i −0.734111 + 0.679029i \(0.762401\pi\)
−0.955112 + 0.296244i \(0.904266\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 239.833 + 415.402i 0.586388 + 1.01565i 0.994701 + 0.102812i \(0.0327839\pi\)
−0.408313 + 0.912842i \(0.633883\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 330.926 + 573.181i 0.789799 + 1.36797i 0.926090 + 0.377304i \(0.123149\pi\)
−0.136290 + 0.990669i \(0.543518\pi\)
\(420\) 0 0
\(421\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −329.923 190.481i −0.776290 0.448192i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 847.484 1.95724 0.978619 0.205684i \(-0.0659418\pi\)
0.978619 + 0.205684i \(0.0659418\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −409.884 + 709.939i −0.925245 + 1.60257i −0.134079 + 0.990971i \(0.542808\pi\)
−0.791166 + 0.611601i \(0.790526\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 631.184i 1.40576i −0.711311 0.702878i \(-0.751898\pi\)
0.711311 0.702878i \(-0.248102\pi\)
\(450\) 0 0
\(451\) 121.515i 0.269435i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −441.620 + 764.909i −0.966347 + 1.67376i −0.260394 + 0.965502i \(0.583852\pi\)
−0.705953 + 0.708259i \(0.749481\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(462\) 0 0
\(463\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 437.246 0.936286 0.468143 0.883653i \(-0.344923\pi\)
0.468143 + 0.883653i \(0.344923\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −1436.53 + 829.380i −3.03706 + 1.75345i
\(474\) 0 0
\(475\) 686.259 + 396.212i 1.44476 + 0.834130i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −190.124 329.304i −0.387217 0.670679i 0.604857 0.796334i \(-0.293230\pi\)
−0.992074 + 0.125655i \(0.959897\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 98.2011 56.6964i 0.196796 0.113620i −0.398364 0.917227i \(-0.630422\pi\)
0.595160 + 0.803607i \(0.297089\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 735.457i 1.41163i −0.708398 0.705813i \(-0.750582\pi\)
0.708398 0.705813i \(-0.249418\pi\)
\(522\) 0 0
\(523\) 398.000i 0.760994i −0.924782 0.380497i \(-0.875753\pi\)
0.924782 0.380497i \(-0.124247\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −264.500 + 458.127i −0.500000 + 0.866025i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1009.87 1.87360
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 735.281 + 424.515i 1.34421 + 0.776078i 0.987422 0.158108i \(-0.0505395\pi\)
0.356785 + 0.934186i \(0.383873\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 373.633 + 647.150i 0.663646 + 1.14947i 0.979651 + 0.200710i \(0.0643251\pi\)
−0.316005 + 0.948758i \(0.602342\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 57.9857 + 33.4781i 0.101908 + 0.0588367i 0.550088 0.835107i \(-0.314594\pi\)
−0.448180 + 0.893943i \(0.647928\pi\)
\(570\) 0 0
\(571\) 984.958 568.666i 1.72497 0.995912i 0.817321 0.576182i \(-0.195458\pi\)
0.907649 0.419730i \(-0.137875\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 1000.39 1.73378 0.866891 0.498498i \(-0.166115\pi\)
0.866891 + 0.498498i \(0.166115\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −564.893 + 978.424i −0.962340 + 1.66682i −0.245741 + 0.969336i \(0.579031\pi\)
−0.716599 + 0.697485i \(0.754302\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 814.587i 1.37367i 0.726813 + 0.686836i \(0.241001\pi\)
−0.726813 + 0.686836i \(0.758999\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(600\) 0 0
\(601\) −109.530 + 189.711i −0.182246 + 0.315659i −0.942645 0.333797i \(-0.891670\pi\)
0.760399 + 0.649456i \(0.225003\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −263.893 + 152.359i −0.427703 + 0.246935i −0.698368 0.715739i \(-0.746090\pi\)
0.270665 + 0.962674i \(0.412757\pi\)
\(618\) 0 0
\(619\) 583.962 + 337.150i 0.943395 + 0.544670i 0.891023 0.453958i \(-0.149988\pi\)
0.0523724 + 0.998628i \(0.483322\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −312.500 541.266i −0.500000 0.866025i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 875.893 + 505.697i 1.36645 + 0.788919i 0.990472 0.137711i \(-0.0439745\pi\)
0.375975 + 0.926630i \(0.377308\pi\)
\(642\) 0 0
\(643\) −207.479 + 119.788i −0.322674 + 0.186296i −0.652584 0.757717i \(-0.726315\pi\)
0.329910 + 0.944012i \(0.392982\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 0 0
\(649\) −2337.97 −3.60241
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −432.749 + 749.544i −0.656676 + 1.13740i 0.324795 + 0.945784i \(0.394705\pi\)
−0.981471 + 0.191611i \(0.938629\pi\)
\(660\) 0 0
\(661\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −623.000 + 1079.07i −0.925706 + 1.60337i −0.135284 + 0.990807i \(0.543195\pi\)
−0.790422 + 0.612563i \(0.790139\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −308.689 −0.451960 −0.225980 0.974132i \(-0.572558\pi\)
−0.225980 + 0.974132i \(0.572558\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −635.663 367.000i −0.919917 0.531114i −0.0363084 0.999341i \(-0.511560\pi\)
−0.883609 + 0.468226i \(0.844893\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 44.9235 + 77.8097i 0.0644526 + 0.111635i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −613.233 + 1062.15i −0.838897 + 1.45301i
\(732\) 0 0
\(733\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1481.39i 2.01003i
\(738\) 0 0
\(739\) 1410.24i 1.90831i −0.299316 0.954154i \(-0.596758\pi\)
0.299316 0.954154i \(-0.403242\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −529.090 + 305.470i −0.695256 + 0.401406i −0.805578 0.592490i \(-0.798145\pi\)
0.110322 + 0.993896i \(0.464812\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 527.000 + 912.791i 0.685306 + 1.18698i 0.973341 + 0.229364i \(0.0736647\pi\)
−0.288035 + 0.957620i \(0.593002\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −93.4433 161.848i −0.119953 0.207764i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 801.940 463.000i 1.01898 0.588310i 0.105174 0.994454i \(-0.466460\pi\)
0.913809 + 0.406144i \(0.133127\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 428.744 742.606i 0.533927 0.924789i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1539.76i 1.90329i −0.307207 0.951643i \(-0.599394\pi\)
0.307207 0.951643i \(-0.400606\pi\)
\(810\) 0 0
\(811\) 1307.21i 1.61185i 0.592019 + 0.805924i \(0.298331\pi\)
−0.592019 + 0.805924i \(0.701669\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 1275.56 2209.33i 1.56127 2.70420i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(822\) 0 0
\(823\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1069.15 1.29280 0.646400 0.762999i \(-0.276274\pi\)
0.646400 + 0.762999i \(0.276274\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 646.650 373.344i 0.776290 0.448192i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(840\) 0 0
\(841\) 420.500 + 728.327i 0.500000 + 0.866025i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1058.18 610.940i −1.23475 0.712882i −0.266733 0.963771i \(-0.585944\pi\)
−0.968016 + 0.250888i \(0.919277\pi\)
\(858\) 0 0
\(859\) 1081.85 624.606i 1.25943 0.727131i 0.286465 0.958091i \(-0.407520\pi\)
0.972963 + 0.230960i \(0.0741866\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1018.23i 1.15577i −0.816118 0.577885i \(-0.803878\pi\)
0.816118 0.577885i \(-0.196122\pi\)
\(882\) 0 0
\(883\) 983.879i 1.11425i 0.830430 + 0.557123i \(0.188095\pi\)
−0.830430 + 0.557123i \(0.811905\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 296.706 + 171.304i 0.327130 + 0.188868i 0.654566 0.756005i \(-0.272851\pi\)
−0.327436 + 0.944873i \(0.606185\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(912\) 0 0
\(913\) −524.636 908.696i −0.574628 0.995286i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1322.72 + 763.675i 1.42382 + 0.822040i 0.996622 0.0821203i \(-0.0261692\pi\)
0.427193 + 0.904160i \(0.359503\pi\)
\(930\) 0 0
\(931\) −1345.07 + 776.575i −1.44476 + 0.834130i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 718.000 0.766275 0.383138 0.923691i \(-0.374843\pi\)
0.383138 + 0.923691i \(0.374843\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 833.465 1443.60i 0.880111 1.52440i 0.0288952 0.999582i \(-0.490801\pi\)
0.851216 0.524815i \(-0.175866\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 827.376i 0.868180i −0.900869 0.434090i \(-0.857070\pi\)
0.900869 0.434090i \(-0.142930\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 480.500 832.250i 0.500000 0.866025i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −1680.09 −1.73026 −0.865132 0.501545i \(-0.832765\pi\)
−0.865132 + 0.501545i \(0.832765\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −1276.83 + 737.180i −1.30689 + 0.754535i −0.981576 0.191071i \(-0.938804\pi\)
−0.325316 + 0.945605i \(0.605471\pi\)
\(978\) 0 0
\(979\) −1817.39 1049.27i −1.85638 1.07178i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1728.3.n.a.737.4 8
3.2 odd 2 576.3.n.a.353.3 yes 8
4.3 odd 2 inner 1728.3.n.a.737.1 8
8.3 odd 2 CM 1728.3.n.a.737.4 8
8.5 even 2 inner 1728.3.n.a.737.1 8
9.4 even 3 576.3.n.a.545.2 yes 8
9.5 odd 6 inner 1728.3.n.a.1313.1 8
12.11 even 2 576.3.n.a.353.2 8
24.5 odd 2 576.3.n.a.353.2 8
24.11 even 2 576.3.n.a.353.3 yes 8
36.23 even 6 inner 1728.3.n.a.1313.4 8
36.31 odd 6 576.3.n.a.545.3 yes 8
72.5 odd 6 inner 1728.3.n.a.1313.4 8
72.13 even 6 576.3.n.a.545.3 yes 8
72.59 even 6 inner 1728.3.n.a.1313.1 8
72.67 odd 6 576.3.n.a.545.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
576.3.n.a.353.2 8 12.11 even 2
576.3.n.a.353.2 8 24.5 odd 2
576.3.n.a.353.3 yes 8 3.2 odd 2
576.3.n.a.353.3 yes 8 24.11 even 2
576.3.n.a.545.2 yes 8 9.4 even 3
576.3.n.a.545.2 yes 8 72.67 odd 6
576.3.n.a.545.3 yes 8 36.31 odd 6
576.3.n.a.545.3 yes 8 72.13 even 6
1728.3.n.a.737.1 8 4.3 odd 2 inner
1728.3.n.a.737.1 8 8.5 even 2 inner
1728.3.n.a.737.4 8 1.1 even 1 trivial
1728.3.n.a.737.4 8 8.3 odd 2 CM
1728.3.n.a.1313.1 8 9.5 odd 6 inner
1728.3.n.a.1313.1 8 72.59 even 6 inner
1728.3.n.a.1313.4 8 36.23 even 6 inner
1728.3.n.a.1313.4 8 72.5 odd 6 inner