Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1728,3,Mod(703,1728)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1728, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 0]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1728.703");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1728 = 2^{6} \cdot 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 1728.g (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(47.0845896815\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Coefficient field: | 8.0.22581504.2 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{8} - 4x^{7} + 5x^{6} + 2x^{5} - 11x^{4} + 4x^{3} + 20x^{2} - 32x + 16 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{13}]\) |
Coefficient ring index: | \( 2^{14}\cdot 3^{4} \) |
Twist minimal: | no (minimal twist has level 864) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 703.4 | ||
Root | \(-1.27597 + 0.609843i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 1728.703 |
Dual form | 1728.3.g.n.703.3 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1728\mathbb{Z}\right)^\times\).
\(n\) | \(325\) | \(703\) | \(1217\) |
\(\chi(n)\) | \(1\) | \(-1\) | \(1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | −3.22512 | −0.645024 | −0.322512 | − | 0.946565i | \(-0.604527\pi\) | ||||
−0.322512 | + | 0.946565i | \(0.604527\pi\) | |||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 6.57221i | 0.938887i | 0.882963 | + | 0.469443i | \(0.155545\pi\) | ||||
−0.882963 | + | 0.469443i | \(0.844455\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 13.8903i | 1.26276i | 0.775475 | + | 0.631379i | \(0.217511\pi\) | ||||
−0.775475 | + | 0.631379i | \(0.782489\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 19.0865 | 1.46819 | 0.734095 | − | 0.679046i | \(-0.237606\pi\) | ||||
0.734095 | + | 0.679046i | \(0.237606\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | −23.0865 | −1.35803 | −0.679014 | − | 0.734125i | \(-0.737593\pi\) | ||||
−0.679014 | + | 0.734125i | \(0.737593\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 18.8425i | 0.991713i | 0.868405 | + | 0.495856i | \(0.165146\pi\) | ||||
−0.868405 | + | 0.495856i | \(0.834854\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 13.5947i | 0.591072i | 0.955332 | + | 0.295536i | \(0.0954982\pi\) | ||||
−0.955332 | + | 0.295536i | \(0.904502\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | −14.5986 | −0.583944 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 0.752110 | 0.0259348 | 0.0129674 | − | 0.999916i | \(-0.495872\pi\) | ||||
0.0129674 | + | 0.999916i | \(0.495872\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | − 46.4433i | − 1.49817i | −0.662473 | − | 0.749085i | \(-0.730493\pi\) | ||||
0.662473 | − | 0.749085i | \(-0.269507\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | − 21.1962i | − 0.605604i | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 2.68178 | 0.0724807 | 0.0362403 | − | 0.999343i | \(-0.488462\pi\) | ||||
0.0362403 | + | 0.999343i | \(0.488462\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 34.1405 | 0.832694 | 0.416347 | − | 0.909206i | \(-0.363310\pi\) | ||||
0.416347 | + | 0.909206i | \(0.363310\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 20.9127i | 0.486341i | 0.969984 | + | 0.243171i | \(0.0781875\pi\) | ||||
−0.969984 | + | 0.243171i | \(0.921812\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | − 15.4086i | − 0.327844i | −0.986473 | − | 0.163922i | \(-0.947586\pi\) | ||||
0.986473 | − | 0.163922i | \(-0.0524145\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 5.80609 | 0.118492 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | −46.8189 | −0.883376 | −0.441688 | − | 0.897169i | \(-0.645620\pi\) | ||||
−0.441688 | + | 0.897169i | \(0.645620\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | − 44.7980i | − 0.814508i | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 40.4126i | 0.684959i | 0.939525 | + | 0.342480i | \(0.111267\pi\) | ||||
−0.939525 | + | 0.342480i | \(0.888733\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 105.543 | 1.73022 | 0.865108 | − | 0.501586i | \(-0.167250\pi\) | ||||
0.865108 | + | 0.501586i | \(0.167250\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | −61.5562 | −0.947018 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 27.9369i | 0.416969i | 0.978026 | + | 0.208485i | \(0.0668531\pi\) | ||||
−0.978026 | + | 0.208485i | \(0.933147\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 24.0130i | 0.338212i | 0.985598 | + | 0.169106i | \(0.0540880\pi\) | ||||
−0.985598 | + | 0.169106i | \(0.945912\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | −120.117 | −1.64545 | −0.822723 | − | 0.568443i | \(-0.807546\pi\) | ||||
−0.822723 | + | 0.568443i | \(0.807546\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | −91.2901 | −1.18559 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | − 95.6394i | − 1.21062i | −0.795988 | − | 0.605312i | \(-0.793048\pi\) | ||||
0.795988 | − | 0.605312i | \(-0.206952\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | − 115.446i | − 1.39091i | −0.718568 | − | 0.695457i | \(-0.755202\pi\) | ||||
0.718568 | − | 0.695457i | \(-0.244798\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 74.4567 | 0.875961 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −169.589 | −1.90549 | −0.952745 | − | 0.303770i | \(-0.901755\pi\) | ||||
−0.952745 | + | 0.303770i | \(0.901755\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 125.440i | 1.37846i | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | − 60.7694i | − 0.639678i | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | −93.1142 | −0.959940 | −0.479970 | − | 0.877285i | \(-0.659352\pi\) | ||||
−0.479970 | + | 0.877285i | \(0.659352\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | −159.090 | −1.57514 | −0.787572 | − | 0.616222i | \(-0.788662\pi\) | ||||
−0.787572 | + | 0.616222i | \(0.788662\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 75.3674i | 0.731722i | 0.930669 | + | 0.365861i | \(0.119226\pi\) | ||||
−0.930669 | + | 0.365861i | \(0.880774\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | − 69.4279i | − 0.648859i | −0.945910 | − | 0.324429i | \(-0.894828\pi\) | ||||
0.945910 | − | 0.324429i | \(-0.105172\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −60.4669 | −0.554742 | −0.277371 | − | 0.960763i | \(-0.589463\pi\) | ||||
−0.277371 | + | 0.960763i | \(0.589463\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | −140.698 | −1.24512 | −0.622559 | − | 0.782573i | \(-0.713907\pi\) | ||||
−0.622559 | + | 0.782573i | \(0.713907\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | − 43.8444i | − 0.381255i | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | − 151.729i | − 1.27503i | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −71.9412 | −0.594556 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 127.710 | 1.02168 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 66.9726i | 0.527343i | 0.964612 | + | 0.263672i | \(0.0849335\pi\) | ||||
−0.964612 | + | 0.263672i | \(0.915066\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 255.148i | 1.94770i | 0.227196 | + | 0.973849i | \(0.427044\pi\) | ||||
−0.227196 | + | 0.973849i | \(0.572956\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | −123.837 | −0.931106 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 27.1946 | 0.198501 | 0.0992505 | − | 0.995062i | \(-0.468355\pi\) | ||||
0.0992505 | + | 0.995062i | \(0.468355\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 203.956i | 1.46731i | 0.679521 | + | 0.733656i | \(0.262188\pi\) | ||||
−0.679521 | + | 0.733656i | \(0.737812\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 265.117i | 1.85397i | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | −2.42564 | −0.0167286 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | −251.507 | −1.68797 | −0.843984 | − | 0.536369i | \(-0.819796\pi\) | ||||
−0.843984 | + | 0.536369i | \(0.819796\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | − 250.251i | − 1.65729i | −0.559774 | − | 0.828645i | \(-0.689112\pi\) | ||||
0.559774 | − | 0.828645i | \(-0.310888\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 149.785i | 0.966356i | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | −18.1730 | −0.115751 | −0.0578757 | − | 0.998324i | \(-0.518433\pi\) | ||||
−0.0578757 | + | 0.998324i | \(0.518433\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | −89.3469 | −0.554950 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | − 50.0180i | − 0.306859i | −0.988160 | − | 0.153429i | \(-0.950968\pi\) | ||||
0.988160 | − | 0.153429i | \(-0.0490318\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | − 84.8389i | − 0.508017i | −0.967202 | − | 0.254009i | \(-0.918251\pi\) | ||||
0.967202 | − | 0.254009i | \(-0.0817492\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 195.294 | 1.15558 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | −144.703 | −0.836433 | −0.418216 | − | 0.908347i | \(-0.637345\pi\) | ||||
−0.418216 | + | 0.908347i | \(0.637345\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | − 95.9451i | − 0.548258i | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | − 280.926i | − 1.56942i | −0.619864 | − | 0.784709i | \(-0.712812\pi\) | ||||
0.619864 | − | 0.784709i | \(-0.287188\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 295.508 | 1.63264 | 0.816320 | − | 0.577600i | \(-0.196011\pi\) | ||||
0.816320 | + | 0.577600i | \(0.196011\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | −8.64907 | −0.0467518 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | − 320.679i | − 1.71486i | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 295.982i | 1.54965i | 0.632179 | + | 0.774823i | \(0.282161\pi\) | ||||
−0.632179 | + | 0.774823i | \(0.717839\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | −18.0202 | −0.0933688 | −0.0466844 | − | 0.998910i | \(-0.514866\pi\) | ||||
−0.0466844 | + | 0.998910i | \(0.514866\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 119.020 | 0.604162 | 0.302081 | − | 0.953282i | \(-0.402319\pi\) | ||||
0.302081 | + | 0.953282i | \(0.402319\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 304.912i | 1.53222i | 0.642708 | + | 0.766111i | \(0.277811\pi\) | ||||
−0.642708 | + | 0.766111i | \(0.722189\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 4.94302i | 0.0243499i | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | −110.107 | −0.537108 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | −261.729 | −1.25229 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | − 282.143i | − 1.33717i | −0.743635 | − | 0.668585i | \(-0.766900\pi\) | ||||
0.743635 | − | 0.668585i | \(-0.233100\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | − 67.4459i | − 0.313702i | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 305.235 | 1.40661 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | −440.640 | −1.99384 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 91.9070i | 0.412139i | 0.978537 | + | 0.206070i | \(0.0660673\pi\) | ||||
−0.978537 | + | 0.206070i | \(0.933933\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 31.5125i | 0.138822i | 0.997588 | + | 0.0694108i | \(0.0221119\pi\) | ||||
−0.997588 | + | 0.0694108i | \(0.977888\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | −242.515 | −1.05902 | −0.529509 | − | 0.848304i | \(-0.677624\pi\) | ||||
−0.529509 | + | 0.848304i | \(0.677624\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | −402.297 | −1.72660 | −0.863298 | − | 0.504695i | \(-0.831605\pi\) | ||||
−0.863298 | + | 0.504695i | \(0.831605\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 49.6947i | 0.211467i | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | − 167.034i | − 0.698886i | −0.936958 | − | 0.349443i | \(-0.886371\pi\) | ||||
0.936958 | − | 0.349443i | \(-0.113629\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −21.4458 | −0.0889868 | −0.0444934 | − | 0.999010i | \(-0.514167\pi\) | ||||
−0.0444934 | + | 0.999010i | \(0.514167\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | −18.7253 | −0.0764299 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 359.638i | 1.45602i | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 22.4825i | 0.0895718i | 0.998997 | + | 0.0447859i | \(0.0142606\pi\) | ||||
−0.998997 | + | 0.0447859i | \(0.985739\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | −188.834 | −0.746380 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 437.652 | 1.70293 | 0.851463 | − | 0.524415i | \(-0.175716\pi\) | ||||
0.851463 | + | 0.524415i | \(0.175716\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 17.6252i | 0.0680511i | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | − 266.194i | − 1.01214i | −0.862491 | − | 0.506072i | \(-0.831097\pi\) | ||||
0.862491 | − | 0.506072i | \(-0.168903\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 150.997 | 0.569799 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −220.671 | −0.820338 | −0.410169 | − | 0.912010i | \(-0.634530\pi\) | ||||
−0.410169 | + | 0.912010i | \(0.634530\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 224.295i | 0.827656i | 0.910355 | + | 0.413828i | \(0.135808\pi\) | ||||
−0.910355 | + | 0.413828i | \(0.864192\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | − 202.779i | − 0.737380i | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 51.4458 | 0.185725 | 0.0928625 | − | 0.995679i | \(-0.470398\pi\) | ||||
0.0928625 | + | 0.995679i | \(0.470398\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −40.1606 | −0.142920 | −0.0714602 | − | 0.997443i | \(-0.522766\pi\) | ||||
−0.0714602 | + | 0.997443i | \(0.522766\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | − 190.774i | − 0.674112i | −0.941485 | − | 0.337056i | \(-0.890569\pi\) | ||||
0.941485 | − | 0.337056i | \(-0.109431\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 224.378i | 0.781806i | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 243.986 | 0.844241 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 115.872 | 0.395467 | 0.197733 | − | 0.980256i | \(-0.436642\pi\) | ||||
0.197733 | + | 0.980256i | \(0.436642\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | − 130.335i | − 0.441815i | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 259.474i | 0.867806i | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | −137.442 | −0.456619 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | −340.389 | −1.11603 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 497.554i | 1.62070i | 0.585949 | + | 0.810348i | \(0.300722\pi\) | ||||
−0.585949 | + | 0.810348i | \(0.699278\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | − 358.447i | − 1.15256i | −0.817252 | − | 0.576281i | \(-0.804503\pi\) | ||||
0.817252 | − | 0.576281i | \(-0.195497\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 32.9519 | 0.105278 | 0.0526388 | − | 0.998614i | \(-0.483237\pi\) | ||||
0.0526388 | + | 0.998614i | \(0.483237\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 216.101 | 0.681707 | 0.340853 | − | 0.940117i | \(-0.389284\pi\) | ||||
0.340853 | + | 0.940117i | \(0.389284\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 10.4471i | 0.0327494i | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | − 435.008i | − 1.34677i | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | −278.636 | −0.857342 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 101.269 | 0.307808 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | − 578.213i | − 1.74687i | −0.486944 | − | 0.873433i | \(-0.661888\pi\) | ||||
0.486944 | − | 0.873433i | \(-0.338112\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | − 90.0999i | − 0.268955i | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 358.117 | 1.06266 | 0.531331 | − | 0.847164i | \(-0.321692\pi\) | ||||
0.531331 | + | 0.847164i | \(0.321692\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 645.113 | 1.89183 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 360.197i | 1.05014i | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 483.855i | 1.39440i | 0.716879 | + | 0.697198i | \(0.245570\pi\) | ||||
−0.716879 | + | 0.697198i | \(0.754430\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −22.1213 | −0.0633849 | −0.0316924 | − | 0.999498i | \(-0.510090\pi\) | ||||
−0.0316924 | + | 0.999498i | \(0.510090\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 459.068 | 1.30048 | 0.650238 | − | 0.759731i | \(-0.274669\pi\) | ||||
0.650238 | + | 0.759731i | \(0.274669\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | − 77.4449i | − 0.218155i | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 414.323i | 1.15410i | 0.816708 | + | 0.577052i | \(0.195797\pi\) | ||||
−0.816708 | + | 0.577052i | \(0.804203\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 5.95856 | 0.0165057 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 387.393 | 1.06135 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | − 90.5390i | − 0.246700i | −0.992363 | − | 0.123350i | \(-0.960636\pi\) | ||||
0.992363 | − | 0.123350i | \(-0.0393638\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | − 307.704i | − 0.829390i | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | −223.011 | −0.597884 | −0.298942 | − | 0.954271i | \(-0.596634\pi\) | ||||
−0.298942 | + | 0.954271i | \(0.596634\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 14.3551 | 0.0380773 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | − 118.162i | − 0.311774i | −0.987775 | − | 0.155887i | \(-0.950176\pi\) | ||||
0.987775 | − | 0.155887i | \(-0.0498236\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | − 19.6418i | − 0.0512840i | −0.999671 | − | 0.0256420i | \(-0.991837\pi\) | ||||
0.999671 | − | 0.0256420i | \(-0.00816300\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 294.422 | 0.764731 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | −352.392 | −0.905892 | −0.452946 | − | 0.891538i | \(-0.649627\pi\) | ||||
−0.452946 | + | 0.891538i | \(0.649627\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | − 313.853i | − 0.802692i | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 308.448i | 0.780882i | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 5.66047 | 0.0142581 | 0.00712906 | − | 0.999975i | \(-0.497731\pi\) | ||||
0.00712906 | + | 0.999975i | \(0.497731\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 250.097 | 0.623683 | 0.311842 | − | 0.950134i | \(-0.399054\pi\) | ||||
0.311842 | + | 0.950134i | \(0.399054\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | − 886.439i | − 2.19960i | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 37.2509i | 0.0915255i | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −643.885 | −1.57429 | −0.787145 | − | 0.616767i | \(-0.788442\pi\) | ||||
−0.787145 | + | 0.616767i | \(0.788442\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | −265.600 | −0.643099 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 372.327i | 0.897173i | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | − 439.563i | − 1.04908i | −0.851387 | − | 0.524539i | \(-0.824238\pi\) | ||||
0.851387 | − | 0.524539i | \(-0.175762\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −65.4392 | −0.155438 | −0.0777188 | − | 0.996975i | \(-0.524764\pi\) | ||||
−0.0777188 | + | 0.996975i | \(0.524764\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 337.030 | 0.793013 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 693.651i | 1.62448i | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 299.824i | 0.695646i | 0.937560 | + | 0.347823i | \(0.113079\pi\) | ||||
−0.937560 | + | 0.347823i | \(0.886921\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | −699.217 | −1.61482 | −0.807410 | − | 0.589991i | \(-0.799131\pi\) | ||||
−0.807410 | + | 0.589991i | \(0.799131\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | −256.158 | −0.586174 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | − 744.832i | − 1.69666i | −0.529472 | − | 0.848328i | \(-0.677610\pi\) | ||||
0.529472 | − | 0.848328i | \(-0.322390\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 320.933i | 0.724455i | 0.932090 | + | 0.362227i | \(0.117984\pi\) | ||||
−0.932090 | + | 0.362227i | \(0.882016\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 546.944 | 1.22909 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 439.651 | 0.979179 | 0.489589 | − | 0.871953i | \(-0.337147\pi\) | ||||
0.489589 | + | 0.871953i | \(0.337147\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 474.222i | 1.05149i | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | − 404.560i | − 0.889143i | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | −732.044 | −1.60185 | −0.800923 | − | 0.598767i | \(-0.795658\pi\) | ||||
−0.800923 | + | 0.598767i | \(0.795658\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 381.075 | 0.826627 | 0.413314 | − | 0.910589i | \(-0.364371\pi\) | ||||
0.413314 | + | 0.910589i | \(0.364371\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 591.775i | 1.27813i | 0.769152 | + | 0.639066i | \(0.220679\pi\) | ||||
−0.769152 | + | 0.639066i | \(0.779321\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 50.8002i | 0.108780i | 0.998520 | + | 0.0543899i | \(0.0173214\pi\) | ||||
−0.998520 | + | 0.0543899i | \(0.982679\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | −183.607 | −0.391487 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | −290.484 | −0.614131 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | − 275.075i | − 0.579105i | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 844.826i | 1.76373i | 0.471503 | + | 0.881865i | \(0.343712\pi\) | ||||
−0.471503 | + | 0.881865i | \(0.656288\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 51.1858 | 0.106415 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 300.304 | 0.619184 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | − 328.276i | − 0.674077i | −0.941491 | − | 0.337039i | \(-0.890575\pi\) | ||||
0.941491 | − | 0.337039i | \(-0.109425\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 558.319i | 1.13711i | 0.822647 | + | 0.568553i | \(0.192496\pi\) | ||||
−0.822647 | + | 0.568553i | \(0.807504\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | −17.3636 | −0.0352202 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | −157.819 | −0.317543 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 507.059i | 1.01615i | 0.861313 | + | 0.508075i | \(0.169643\pi\) | ||||
−0.861313 | + | 0.508075i | \(0.830357\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | − 884.817i | − 1.75908i | −0.475825 | − | 0.879540i | \(-0.657850\pi\) | ||||
0.475825 | − | 0.879540i | \(-0.342150\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 513.083 | 1.01601 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 398.001 | 0.781928 | 0.390964 | − | 0.920406i | \(-0.372142\pi\) | ||||
0.390964 | + | 0.920406i | \(0.372142\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | − 789.437i | − 1.54489i | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | − 243.069i | − 0.471978i | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 214.031 | 0.413987 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 716.672 | 1.37557 | 0.687785 | − | 0.725914i | \(-0.258583\pi\) | ||||
0.687785 | + | 0.725914i | \(0.258583\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 706.115i | 1.35012i | 0.737761 | + | 0.675062i | \(0.235883\pi\) | ||||
−0.737761 | + | 0.675062i | \(0.764117\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 1072.21i | 2.03456i | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 344.185 | 0.650634 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 651.621 | 1.22255 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 223.913i | 0.418529i | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 80.6485i | 0.149626i | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 116.644 | 0.215609 | 0.107804 | − | 0.994172i | \(-0.465618\pi\) | ||||
0.107804 | + | 0.994172i | \(0.465618\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 195.013 | 0.357822 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 422.278i | 0.771989i | 0.922501 | + | 0.385995i | \(0.126142\pi\) | ||||
−0.922501 | + | 0.385995i | \(0.873858\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 14.1717i | 0.0257199i | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 628.562 | 1.13664 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 686.288 | 1.23212 | 0.616058 | − | 0.787701i | \(-0.288729\pi\) | ||||
0.616058 | + | 0.787701i | \(0.288729\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 399.149i | 0.714042i | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | − 439.191i | − 0.780090i | −0.920796 | − | 0.390045i | \(-0.872459\pi\) | ||||
0.920796 | − | 0.390045i | \(-0.127541\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 453.769 | 0.803130 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 406.032 | 0.713589 | 0.356794 | − | 0.934183i | \(-0.383870\pi\) | ||||
0.356794 | + | 0.934183i | \(0.383870\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | − 166.816i | − 0.292148i | −0.989274 | − | 0.146074i | \(-0.953336\pi\) | ||||
0.989274 | − | 0.146074i | \(-0.0466637\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | − 198.463i | − 0.345153i | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | −897.895 | −1.55614 | −0.778072 | − | 0.628175i | \(-0.783802\pi\) | ||||
−0.778072 | + | 0.628175i | \(0.783802\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 758.734 | 1.30591 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | − 650.330i | − 1.11549i | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | − 152.207i | − 0.259296i | −0.991560 | − | 0.129648i | \(-0.958615\pi\) | ||||
0.991560 | − | 0.129648i | \(-0.0413847\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 875.110 | 1.48576 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 964.580 | 1.62661 | 0.813305 | − | 0.581838i | \(-0.197666\pi\) | ||||
0.813305 | + | 0.581838i | \(0.197666\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 489.345i | 0.822428i | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | − 983.578i | − 1.64203i | −0.570905 | − | 0.821016i | \(-0.693407\pi\) | ||||
0.570905 | − | 0.821016i | \(-0.306593\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −443.392 | −0.737757 | −0.368878 | − | 0.929478i | \(-0.620258\pi\) | ||||
−0.368878 | + | 0.929478i | \(0.620258\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 232.019 | 0.383503 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | − 487.520i | − 0.803163i | −0.915823 | − | 0.401582i | \(-0.868461\pi\) | ||||
0.915823 | − | 0.401582i | \(-0.131539\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | − 294.097i | − 0.481337i | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 909.815 | 1.48420 | 0.742100 | − | 0.670289i | \(-0.233830\pi\) | ||||
0.742100 | + | 0.670289i | \(0.233830\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 481.557 | 0.780481 | 0.390241 | − | 0.920713i | \(-0.372392\pi\) | ||||
0.390241 | + | 0.920713i | \(0.372392\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 350.103i | 0.565594i | 0.959180 | + | 0.282797i | \(0.0912623\pi\) | ||||
−0.959180 | + | 0.282797i | \(0.908738\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | − 1114.57i | − 1.78904i | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | −46.9156 | −0.0750649 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | −61.9130 | −0.0984308 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 274.658i | 0.435274i | 0.976030 | + | 0.217637i | \(0.0698350\pi\) | ||||
−0.976030 | + | 0.217637i | \(0.930165\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | − 215.995i | − 0.340149i | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 110.818 | 0.173968 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −383.085 | −0.597636 | −0.298818 | − | 0.954310i | \(-0.596592\pi\) | ||||
−0.298818 | + | 0.954310i | \(0.596592\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 177.134i | 0.275480i | 0.990468 | + | 0.137740i | \(0.0439838\pi\) | ||||
−0.990468 | + | 0.137740i | \(0.956016\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | − 877.305i | − 1.35596i | −0.735081 | − | 0.677979i | \(-0.762856\pi\) | ||||
0.735081 | − | 0.677979i | \(-0.237144\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | −561.344 | −0.864937 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 35.3934 | 0.0542012 | 0.0271006 | − | 0.999633i | \(-0.491373\pi\) | ||||
0.0271006 | + | 0.999633i | \(0.491373\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | − 822.884i | − 1.25631i | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 556.337i | 0.844214i | 0.906546 | + | 0.422107i | \(0.138709\pi\) | ||||
−0.906546 | + | 0.422107i | \(0.861291\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −318.875 | −0.482413 | −0.241206 | − | 0.970474i | \(-0.577543\pi\) | ||||
−0.241206 | + | 0.970474i | \(0.577543\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 399.389 | 0.600586 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 10.2247i | 0.0153293i | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 1466.03i | 2.18484i | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 135.295 | 0.201033 | 0.100517 | − | 0.994935i | \(-0.467950\pi\) | ||||
0.100517 | + | 0.994935i | \(0.467950\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | −123.989 | −0.183145 | −0.0915723 | − | 0.995798i | \(-0.529189\pi\) | ||||
−0.0915723 | + | 0.995798i | \(0.529189\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | − 611.966i | − 0.901275i | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 609.347i | 0.892163i | 0.894992 | + | 0.446081i | \(0.147181\pi\) | ||||
−0.894992 | + | 0.446081i | \(0.852819\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | −87.7059 | −0.128038 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | −893.609 | −1.29696 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | − 353.682i | − 0.511840i | −0.966698 | − | 0.255920i | \(-0.917622\pi\) | ||||
0.966698 | − | 0.255920i | \(-0.0823784\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | − 657.784i | − 0.946452i | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | −788.183 | −1.13082 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | −85.2186 | −0.121567 | −0.0607836 | − | 0.998151i | \(-0.519360\pi\) | ||||
−0.0607836 | + | 0.998151i | \(0.519360\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 50.5316i | 0.0718800i | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | − 1045.57i | − 1.47888i | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 701.943 | 0.990046 | 0.495023 | − | 0.868880i | \(-0.335160\pi\) | ||||
0.495023 | + | 0.868880i | \(0.335160\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 631.381 | 0.885527 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | − 855.036i | − 1.19585i | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 993.471i | 1.38174i | 0.722979 | + | 0.690870i | \(0.242772\pi\) | ||||
−0.722979 | + | 0.690870i | \(0.757228\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | −495.330 | −0.687004 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | −10.9798 | −0.0151445 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 485.145i | 0.667325i | 0.942693 | + | 0.333662i | \(0.108285\pi\) | ||||
−0.942693 | + | 0.333662i | \(0.891715\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | − 482.800i | − 0.660465i | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | −706.167 | −0.963394 | −0.481697 | − | 0.876338i | \(-0.659979\pi\) | ||||
−0.481697 | + | 0.876338i | \(0.659979\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | −388.053 | −0.526531 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | − 414.250i | − 0.560554i | −0.959919 | − | 0.280277i | \(-0.909574\pi\) | ||||
0.959919 | − | 0.280277i | \(-0.0904264\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 1386.38i | 1.86592i | 0.359978 | + | 0.932961i | \(0.382784\pi\) | ||||
−0.359978 | + | 0.932961i | \(0.617216\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 811.141 | 1.08878 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 456.294 | 0.609205 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | − 601.365i | − 0.800752i | −0.916351 | − | 0.400376i | \(-0.868879\pi\) | ||||
0.916351 | − | 0.400376i | \(-0.131121\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 807.089i | 1.06899i | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 254.294 | 0.335924 | 0.167962 | − | 0.985794i | \(-0.446281\pi\) | ||||
0.167962 | + | 0.985794i | \(0.446281\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 466.017 | 0.612375 | 0.306187 | − | 0.951971i | \(-0.400947\pi\) | ||||
0.306187 | + | 0.951971i | \(0.400947\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | − 397.401i | − 0.520840i | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 771.334i | 1.00565i | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −365.822 | −0.475712 | −0.237856 | − | 0.971300i | \(-0.576445\pi\) | ||||
−0.237856 | + | 0.971300i | \(0.576445\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | −1426.70 | −1.84566 | −0.922830 | − | 0.385207i | \(-0.874130\pi\) | ||||
−0.922830 | + | 0.385207i | \(0.874130\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 678.007i | 0.874848i | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 643.293i | 0.825794i | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | −333.549 | −0.427079 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 58.6100 | 0.0746624 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 410.337i | 0.521394i | 0.965421 | + | 0.260697i | \(0.0839523\pi\) | ||||
−0.965421 | + | 0.260697i | \(0.916048\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | − 924.698i | − 1.16902i | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 2014.45 | 2.54029 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 738.968 | 0.927187 | 0.463594 | − | 0.886048i | \(-0.346560\pi\) | ||||
0.463594 | + | 0.886048i | \(0.346560\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 355.731i | 0.445221i | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | − 1668.47i | − 2.07780i | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 288.154 | 0.357956 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 130.444 | 0.161241 | 0.0806204 | − | 0.996745i | \(-0.474310\pi\) | ||||
0.0806204 | + | 0.996745i | \(0.474310\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 1558.44i | 1.92163i | 0.277187 | + | 0.960816i | \(0.410598\pi\) | ||||
−0.277187 | + | 0.960816i | \(0.589402\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 161.314i | 0.197931i | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | −394.048 | −0.482311 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 55.0345 | 0.0670335 | 0.0335168 | − | 0.999438i | \(-0.489329\pi\) | ||||
0.0335168 | + | 0.999438i | \(0.489329\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 293.058i | 0.356085i | 0.984023 | + | 0.178043i | \(0.0569765\pi\) | ||||
−0.984023 | + | 0.178043i | \(0.943023\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 1118.55i | 1.35253i | 0.736657 | + | 0.676267i | \(0.236403\pi\) | ||||
−0.736657 | + | 0.676267i | \(0.763597\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | −1069.30 | −1.28986 | −0.644932 | − | 0.764240i | \(-0.723115\pi\) | ||||
−0.644932 | + | 0.764240i | \(0.723115\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | −134.042 | −0.160915 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 273.616i | 0.327683i | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 41.6050i | 0.0495888i | 0.999693 | + | 0.0247944i | \(0.00789311\pi\) | ||||
−0.999693 | + | 0.0247944i | \(0.992107\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −840.434 | −0.999327 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | −629.846 | −0.745379 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | − 472.813i | − 0.558220i | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 36.4579i | 0.0428413i | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | −1302.63 | −1.52711 | −0.763555 | − | 0.645743i | \(-0.776548\pi\) | ||||
−0.763555 | + | 0.645743i | \(0.776548\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | −734.683 | −0.857273 | −0.428636 | − | 0.903477i | \(-0.641006\pi\) | ||||
−0.428636 | + | 0.903477i | \(0.641006\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 445.296i | 0.518388i | 0.965825 | + | 0.259194i | \(0.0834570\pi\) | ||||
−0.965825 | + | 0.259194i | \(0.916543\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | − 1338.23i | − 1.55067i | −0.631550 | − | 0.775335i | \(-0.717581\pi\) | ||||
0.631550 | − | 0.775335i | \(-0.282419\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 466.684 | 0.539519 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 1328.46 | 1.52873 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 533.218i | 0.612190i | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 839.338i | 0.959244i | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 329.803 | 0.376058 | 0.188029 | − | 0.982163i | \(-0.439790\pi\) | ||||
0.188029 | + | 0.982163i | \(0.439790\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 1173.32 | 1.33181 | 0.665903 | − | 0.746038i | \(-0.268046\pi\) | ||||
0.665903 | + | 0.746038i | \(0.268046\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | − 410.459i | − 0.464846i | −0.972615 | − | 0.232423i | \(-0.925335\pi\) | ||||
0.972615 | − | 0.232423i | \(-0.0746654\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | − 604.280i | − 0.681263i | −0.940197 | − | 0.340631i | \(-0.889359\pi\) | ||||
0.940197 | − | 0.340631i | \(-0.110641\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | −440.158 | −0.495116 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 290.338 | 0.325127 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 906.020i | 1.01231i | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | − 34.9305i | − 0.0388548i | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 1080.88 | 1.19965 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | −953.048 | −1.05309 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | − 735.914i | − 0.811371i | −0.914013 | − | 0.405686i | \(-0.867033\pi\) | ||||
0.914013 | − | 0.405686i | \(-0.132967\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 586.390i | 0.643677i | 0.946795 | + | 0.321838i | \(0.104301\pi\) | ||||
−0.946795 | + | 0.321838i | \(0.895699\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 1603.58 | 1.75639 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | −1676.89 | −1.82867 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | − 158.999i | − 0.173013i | −0.996251 | − | 0.0865063i | \(-0.972430\pi\) | ||||
0.996251 | − | 0.0865063i | \(-0.0275703\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 458.324i | 0.496560i | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | −39.1503 | −0.0423247 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 540.670 | 0.581992 | 0.290996 | − | 0.956724i | \(-0.406013\pi\) | ||||
0.290996 | + | 0.956724i | \(0.406013\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 109.402i | 0.117510i | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 1034.23i | 1.10613i | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 384.947 | 0.410829 | 0.205415 | − | 0.978675i | \(-0.434146\pi\) | ||||
0.205415 | + | 0.978675i | \(0.434146\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 39.6287 | 0.0421134 | 0.0210567 | − | 0.999778i | \(-0.493297\pi\) | ||||
0.0210567 | + | 0.999778i | \(0.493297\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 464.128i | 0.492182i | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | − 449.648i | − 0.474813i | −0.971410 | − | 0.237407i | \(-0.923703\pi\) | ||||
0.971410 | − | 0.237407i | \(-0.0762974\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | −2292.62 | −2.41583 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 21.5070 | 0.0225676 | 0.0112838 | − | 0.999936i | \(-0.496408\pi\) | ||||
0.0112838 | + | 0.999936i | \(0.496408\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | − 954.578i | − 0.999558i | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 178.729i | 0.186370i | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −1195.98 | −1.24452 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 58.1172 | 0.0602251 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 1355.49i | 1.40175i | 0.713283 | + | 0.700876i | \(0.247207\pi\) | ||||
−0.713283 | + | 0.700876i | \(0.752793\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 938.488i | 0.966517i | 0.875478 | + | 0.483258i | \(0.160547\pi\) | ||||
−0.875478 | + | 0.483258i | \(0.839453\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | −1340.44 | −1.37764 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | −1090.81 | −1.11649 | −0.558243 | − | 0.829678i | \(-0.688524\pi\) | ||||
−0.558243 | + | 0.829678i | \(0.688524\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | − 2355.64i | − 2.40617i | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 27.7492i | 0.0282291i | 0.999900 | + | 0.0141146i | \(0.00449296\pi\) | ||||
−0.999900 | + | 0.0141146i | \(0.995507\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | −383.853 | −0.389699 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | −284.301 | −0.287463 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 272.858i | 0.275336i | 0.990478 | + | 0.137668i | \(0.0439607\pi\) | ||||
−0.990478 | + | 0.137668i | \(0.956039\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | − 983.378i | − 0.988320i | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | −1190.35 | −1.19393 | −0.596964 | − | 0.802268i | \(-0.703626\pi\) | ||||
−0.596964 | + | 0.802268i | \(0.703626\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 1728.3.g.n.703.4 | 8 | ||
3.2 | odd | 2 | 1728.3.g.k.703.6 | 8 | |||
4.3 | odd | 2 | inner | 1728.3.g.n.703.3 | 8 | ||
8.3 | odd | 2 | 864.3.g.a.703.5 | ✓ | 8 | ||
8.5 | even | 2 | 864.3.g.a.703.6 | yes | 8 | ||
12.11 | even | 2 | 1728.3.g.k.703.5 | 8 | |||
24.5 | odd | 2 | 864.3.g.c.703.4 | yes | 8 | ||
24.11 | even | 2 | 864.3.g.c.703.3 | yes | 8 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
864.3.g.a.703.5 | ✓ | 8 | 8.3 | odd | 2 | ||
864.3.g.a.703.6 | yes | 8 | 8.5 | even | 2 | ||
864.3.g.c.703.3 | yes | 8 | 24.11 | even | 2 | ||
864.3.g.c.703.4 | yes | 8 | 24.5 | odd | 2 | ||
1728.3.g.k.703.5 | 8 | 12.11 | even | 2 | |||
1728.3.g.k.703.6 | 8 | 3.2 | odd | 2 | |||
1728.3.g.n.703.3 | 8 | 4.3 | odd | 2 | inner | ||
1728.3.g.n.703.4 | 8 | 1.1 | even | 1 | trivial |