# Properties

 Label 1728.3.e.v.1025.2 Level $1728$ Weight $3$ Character 1728.1025 Analytic conductor $47.085$ Analytic rank $0$ Dimension $8$ CM no Inner twists $4$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1728 = 2^{6} \cdot 3^{3}$$ Weight: $$k$$ $$=$$ $$3$$ Character orbit: $$[\chi]$$ $$=$$ 1728.e (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$47.0845896815$$ Analytic rank: $$0$$ Dimension: $$8$$ Coefficient field: 8.0.2441150464.4 Defining polynomial: $$x^{8} - 14x^{6} + 77x^{4} - 188x^{2} + 196$$ x^8 - 14*x^6 + 77*x^4 - 188*x^2 + 196 Coefficient ring: $$\Z[a_1, \ldots, a_{11}]$$ Coefficient ring index: $$2^{10}\cdot 3^{4}$$ Twist minimal: no (minimal twist has level 864) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## Embedding invariants

 Embedding label 1025.2 Root $$1.52833 + 0.500000i$$ of defining polynomial Character $$\chi$$ $$=$$ 1728.1025 Dual form 1728.3.e.v.1025.8

## $q$-expansion

 $$f(q)$$ $$=$$ $$q-7.37942i q^{5} +1.26611 q^{7} +O(q^{10})$$ $$q-7.37942i q^{5} +1.26611 q^{7} -5.82843i q^{11} +10.4853 q^{13} +18.3399i q^{17} +20.8722 q^{19} -20.4853i q^{23} -29.4558 q^{25} -11.1777i q^{29} +61.3503 q^{31} -9.34315i q^{35} +38.4264 q^{37} -33.0988i q^{41} +49.3410 q^{43} +21.5980i q^{47} -47.3970 q^{49} +77.5925i q^{53} -43.0104 q^{55} -25.7157i q^{59} +55.8823 q^{61} -77.3753i q^{65} -91.0853 q^{67} -114.770i q^{71} -120.338 q^{73} -7.37942i q^{77} -8.21107 q^{79} -150.338i q^{83} +135.338 q^{85} +118.505i q^{89} +13.2755 q^{91} -154.024i q^{95} -72.8823 q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$8 q+O(q^{10})$$ 8 * q $$8 q + 16 q^{13} - 32 q^{25} - 32 q^{37} + 96 q^{49} - 96 q^{61} - 216 q^{73} + 336 q^{85} - 40 q^{97}+O(q^{100})$$ 8 * q + 16 * q^13 - 32 * q^25 - 32 * q^37 + 96 * q^49 - 96 * q^61 - 216 * q^73 + 336 * q^85 - 40 * q^97

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1728\mathbb{Z}\right)^\times$$.

 $$n$$ $$325$$ $$703$$ $$1217$$ $$\chi(n)$$ $$1$$ $$1$$ $$-1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 0 0
$$4$$ 0 0
$$5$$ − 7.37942i − 1.47588i −0.674864 0.737942i $$-0.735798\pi$$
0.674864 0.737942i $$-0.264202\pi$$
$$6$$ 0 0
$$7$$ 1.26611 0.180873 0.0904363 0.995902i $$-0.471174\pi$$
0.0904363 + 0.995902i $$0.471174\pi$$
$$8$$ 0 0
$$9$$ 0 0
$$10$$ 0 0
$$11$$ − 5.82843i − 0.529857i −0.964268 0.264929i $$-0.914652\pi$$
0.964268 0.264929i $$-0.0853484\pi$$
$$12$$ 0 0
$$13$$ 10.4853 0.806560 0.403280 0.915077i $$-0.367870\pi$$
0.403280 + 0.915077i $$0.367870\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0 0
$$17$$ 18.3399i 1.07882i 0.842043 + 0.539410i $$0.181353\pi$$
−0.842043 + 0.539410i $$0.818647\pi$$
$$18$$ 0 0
$$19$$ 20.8722 1.09853 0.549267 0.835647i $$-0.314907\pi$$
0.549267 + 0.835647i $$0.314907\pi$$
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ − 20.4853i − 0.890664i −0.895365 0.445332i $$-0.853086\pi$$
0.895365 0.445332i $$-0.146914\pi$$
$$24$$ 0 0
$$25$$ −29.4558 −1.17823
$$26$$ 0 0
$$27$$ 0 0
$$28$$ 0 0
$$29$$ − 11.1777i − 0.385439i −0.981254 0.192720i $$-0.938269\pi$$
0.981254 0.192720i $$-0.0617308\pi$$
$$30$$ 0 0
$$31$$ 61.3503 1.97904 0.989522 0.144384i $$-0.0461200\pi$$
0.989522 + 0.144384i $$0.0461200\pi$$
$$32$$ 0 0
$$33$$ 0 0
$$34$$ 0 0
$$35$$ − 9.34315i − 0.266947i
$$36$$ 0 0
$$37$$ 38.4264 1.03855 0.519276 0.854607i $$-0.326202\pi$$
0.519276 + 0.854607i $$0.326202\pi$$
$$38$$ 0 0
$$39$$ 0 0
$$40$$ 0 0
$$41$$ − 33.0988i − 0.807287i −0.914916 0.403644i $$-0.867744\pi$$
0.914916 0.403644i $$-0.132256\pi$$
$$42$$ 0 0
$$43$$ 49.3410 1.14746 0.573732 0.819043i $$-0.305495\pi$$
0.573732 + 0.819043i $$0.305495\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ 21.5980i 0.459531i 0.973246 + 0.229766i $$0.0737960\pi$$
−0.973246 + 0.229766i $$0.926204\pi$$
$$48$$ 0 0
$$49$$ −47.3970 −0.967285
$$50$$ 0 0
$$51$$ 0 0
$$52$$ 0 0
$$53$$ 77.5925i 1.46401i 0.681299 + 0.732005i $$0.261415\pi$$
−0.681299 + 0.732005i $$0.738585\pi$$
$$54$$ 0 0
$$55$$ −43.0104 −0.782008
$$56$$ 0 0
$$57$$ 0 0
$$58$$ 0 0
$$59$$ − 25.7157i − 0.435860i −0.975964 0.217930i $$-0.930070\pi$$
0.975964 0.217930i $$-0.0699304\pi$$
$$60$$ 0 0
$$61$$ 55.8823 0.916102 0.458051 0.888926i $$-0.348548\pi$$
0.458051 + 0.888926i $$0.348548\pi$$
$$62$$ 0 0
$$63$$ 0 0
$$64$$ 0 0
$$65$$ − 77.3753i − 1.19039i
$$66$$ 0 0
$$67$$ −91.0853 −1.35948 −0.679741 0.733452i $$-0.737908\pi$$
−0.679741 + 0.733452i $$0.737908\pi$$
$$68$$ 0 0
$$69$$ 0 0
$$70$$ 0 0
$$71$$ − 114.770i − 1.61647i −0.588858 0.808236i $$-0.700422\pi$$
0.588858 0.808236i $$-0.299578\pi$$
$$72$$ 0 0
$$73$$ −120.338 −1.64847 −0.824234 0.566250i $$-0.808394\pi$$
−0.824234 + 0.566250i $$0.808394\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ 0 0
$$77$$ − 7.37942i − 0.0958366i
$$78$$ 0 0
$$79$$ −8.21107 −0.103938 −0.0519688 0.998649i $$-0.516550\pi$$
−0.0519688 + 0.998649i $$0.516550\pi$$
$$80$$ 0 0
$$81$$ 0 0
$$82$$ 0 0
$$83$$ − 150.338i − 1.81130i −0.424024 0.905651i $$-0.639383\pi$$
0.424024 0.905651i $$-0.360617\pi$$
$$84$$ 0 0
$$85$$ 135.338 1.59221
$$86$$ 0 0
$$87$$ 0 0
$$88$$ 0 0
$$89$$ 118.505i 1.33152i 0.746166 + 0.665759i $$0.231892\pi$$
−0.746166 + 0.665759i $$0.768108\pi$$
$$90$$ 0 0
$$91$$ 13.2755 0.145885
$$92$$ 0 0
$$93$$ 0 0
$$94$$ 0 0
$$95$$ − 154.024i − 1.62131i
$$96$$ 0 0
$$97$$ −72.8823 −0.751363 −0.375682 0.926749i $$-0.622591\pi$$
−0.375682 + 0.926749i $$0.622591\pi$$
$$98$$ 0 0
$$99$$ 0 0
$$100$$ 0 0
$$101$$ − 113.838i − 1.12711i −0.826079 0.563554i $$-0.809434\pi$$
0.826079 0.563554i $$-0.190566\pi$$
$$102$$ 0 0
$$103$$ −158.766 −1.54142 −0.770709 0.637187i $$-0.780098\pi$$
−0.770709 + 0.637187i $$0.780098\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ − 77.7452i − 0.726590i −0.931674 0.363295i $$-0.881652\pi$$
0.931674 0.363295i $$-0.118348\pi$$
$$108$$ 0 0
$$109$$ 15.3970 0.141257 0.0706283 0.997503i $$-0.477500\pi$$
0.0706283 + 0.997503i $$0.477500\pi$$
$$110$$ 0 0
$$111$$ 0 0
$$112$$ 0 0
$$113$$ 76.9408i 0.680892i 0.940264 + 0.340446i $$0.110578\pi$$
−0.940264 + 0.340446i $$0.889422\pi$$
$$114$$ 0 0
$$115$$ −151.170 −1.31452
$$116$$ 0 0
$$117$$ 0 0
$$118$$ 0 0
$$119$$ 23.2203i 0.195129i
$$120$$ 0 0
$$121$$ 87.0294 0.719252
$$122$$ 0 0
$$123$$ 0 0
$$124$$ 0 0
$$125$$ 32.8815i 0.263052i
$$126$$ 0 0
$$127$$ 72.0936 0.567666 0.283833 0.958874i $$-0.408394\pi$$
0.283833 + 0.958874i $$0.408394\pi$$
$$128$$ 0 0
$$129$$ 0 0
$$130$$ 0 0
$$131$$ 84.4214i 0.644438i 0.946665 + 0.322219i $$0.104429\pi$$
−0.946665 + 0.322219i $$0.895571\pi$$
$$132$$ 0 0
$$133$$ 26.4264 0.198695
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ 29.0832i 0.212286i 0.994351 + 0.106143i $$0.0338502\pi$$
−0.994351 + 0.106143i $$0.966150\pi$$
$$138$$ 0 0
$$139$$ 130.297 0.937391 0.468695 0.883360i $$-0.344724\pi$$
0.468695 + 0.883360i $$0.344724\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 0 0
$$143$$ − 61.1127i − 0.427362i
$$144$$ 0 0
$$145$$ −82.4853 −0.568864
$$146$$ 0 0
$$147$$ 0 0
$$148$$ 0 0
$$149$$ − 92.3514i − 0.619808i −0.950768 0.309904i $$-0.899703\pi$$
0.950768 0.309904i $$-0.100297\pi$$
$$150$$ 0 0
$$151$$ −44.9282 −0.297538 −0.148769 0.988872i $$-0.547531\pi$$
−0.148769 + 0.988872i $$0.547531\pi$$
$$152$$ 0 0
$$153$$ 0 0
$$154$$ 0 0
$$155$$ − 452.730i − 2.92084i
$$156$$ 0 0
$$157$$ 131.029 0.834582 0.417291 0.908773i $$-0.362980\pi$$
0.417291 + 0.908773i $$0.362980\pi$$
$$158$$ 0 0
$$159$$ 0 0
$$160$$ 0 0
$$161$$ − 25.9366i − 0.161097i
$$162$$ 0 0
$$163$$ −258.677 −1.58697 −0.793487 0.608587i $$-0.791737\pi$$
−0.793487 + 0.608587i $$0.791737\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ − 304.108i − 1.82100i −0.413505 0.910502i $$-0.635696\pi$$
0.413505 0.910502i $$-0.364304\pi$$
$$168$$ 0 0
$$169$$ −59.0589 −0.349461
$$170$$ 0 0
$$171$$ 0 0
$$172$$ 0 0
$$173$$ − 0.651690i − 0.00376699i −0.999998 0.00188350i $$-0.999400\pi$$
0.999998 0.00188350i $$-0.000599536\pi$$
$$174$$ 0 0
$$175$$ −37.2943 −0.213110
$$176$$ 0 0
$$177$$ 0 0
$$178$$ 0 0
$$179$$ 126.765i 0.708182i 0.935211 + 0.354091i $$0.115210\pi$$
−0.935211 + 0.354091i $$0.884790\pi$$
$$180$$ 0 0
$$181$$ −304.735 −1.68362 −0.841810 0.539775i $$-0.818509\pi$$
−0.841810 + 0.539775i $$0.818509\pi$$
$$182$$ 0 0
$$183$$ 0 0
$$184$$ 0 0
$$185$$ − 283.565i − 1.53278i
$$186$$ 0 0
$$187$$ 106.893 0.571620
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ 134.132i 0.702262i 0.936326 + 0.351131i $$0.114203\pi$$
−0.936326 + 0.351131i $$0.885797\pi$$
$$192$$ 0 0
$$193$$ 182.397 0.945062 0.472531 0.881314i $$-0.343340\pi$$
0.472531 + 0.881314i $$0.343340\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ 154.533i 0.784433i 0.919873 + 0.392217i $$0.128292\pi$$
−0.919873 + 0.392217i $$0.871708\pi$$
$$198$$ 0 0
$$199$$ 36.7171 0.184508 0.0922541 0.995735i $$-0.470593\pi$$
0.0922541 + 0.995735i $$0.470593\pi$$
$$200$$ 0 0
$$201$$ 0 0
$$202$$ 0 0
$$203$$ − 14.1522i − 0.0697155i
$$204$$ 0 0
$$205$$ −244.250 −1.19146
$$206$$ 0 0
$$207$$ 0 0
$$208$$ 0 0
$$209$$ − 121.652i − 0.582066i
$$210$$ 0 0
$$211$$ 359.891 1.70564 0.852822 0.522201i $$-0.174889\pi$$
0.852822 + 0.522201i $$0.174889\pi$$
$$212$$ 0 0
$$213$$ 0 0
$$214$$ 0 0
$$215$$ − 364.108i − 1.69352i
$$216$$ 0 0
$$217$$ 77.6762 0.357955
$$218$$ 0 0
$$219$$ 0 0
$$220$$ 0 0
$$221$$ 192.299i 0.870133i
$$222$$ 0 0
$$223$$ 273.870 1.22812 0.614059 0.789260i $$-0.289536\pi$$
0.614059 + 0.789260i $$0.289536\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 0 0
$$227$$ − 234.500i − 1.03304i −0.856276 0.516519i $$-0.827228\pi$$
0.856276 0.516519i $$-0.172772\pi$$
$$228$$ 0 0
$$229$$ −25.6468 −0.111995 −0.0559973 0.998431i $$-0.517834\pi$$
−0.0559973 + 0.998431i $$0.517834\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ − 1.30338i − 0.00559390i −0.999996 0.00279695i $$-0.999110\pi$$
0.999996 0.00279695i $$-0.000890298\pi$$
$$234$$ 0 0
$$235$$ 159.381 0.678215
$$236$$ 0 0
$$237$$ 0 0
$$238$$ 0 0
$$239$$ − 75.1615i − 0.314483i −0.987560 0.157242i $$-0.949740\pi$$
0.987560 0.157242i $$-0.0502601\pi$$
$$240$$ 0 0
$$241$$ 252.558 1.04796 0.523980 0.851730i $$-0.324447\pi$$
0.523980 + 0.851730i $$0.324447\pi$$
$$242$$ 0 0
$$243$$ 0 0
$$244$$ 0 0
$$245$$ 349.762i 1.42760i
$$246$$ 0 0
$$247$$ 218.850 0.886034
$$248$$ 0 0
$$249$$ 0 0
$$250$$ 0 0
$$251$$ − 246.000i − 0.980080i −0.871700 0.490040i $$-0.836982\pi$$
0.871700 0.490040i $$-0.163018\pi$$
$$252$$ 0 0
$$253$$ −119.397 −0.471925
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ 359.097i 1.39726i 0.715482 + 0.698632i $$0.246207\pi$$
−0.715482 + 0.698632i $$0.753793\pi$$
$$258$$ 0 0
$$259$$ 48.6520 0.187846
$$260$$ 0 0
$$261$$ 0 0
$$262$$ 0 0
$$263$$ 215.897i 0.820899i 0.911883 + 0.410450i $$0.134628\pi$$
−0.911883 + 0.410450i $$0.865372\pi$$
$$264$$ 0 0
$$265$$ 572.588 2.16071
$$266$$ 0 0
$$267$$ 0 0
$$268$$ 0 0
$$269$$ − 488.885i − 1.81742i −0.417432 0.908708i $$-0.637070\pi$$
0.417432 0.908708i $$-0.362930\pi$$
$$270$$ 0 0
$$271$$ 161.261 0.595059 0.297530 0.954713i $$-0.403837\pi$$
0.297530 + 0.954713i $$0.403837\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 0 0
$$275$$ 171.681i 0.624295i
$$276$$ 0 0
$$277$$ −248.617 −0.897535 −0.448768 0.893648i $$-0.648137\pi$$
−0.448768 + 0.893648i $$0.648137\pi$$
$$278$$ 0 0
$$279$$ 0 0
$$280$$ 0 0
$$281$$ 329.579i 1.17288i 0.809993 + 0.586439i $$0.199471\pi$$
−0.809993 + 0.586439i $$0.800529\pi$$
$$282$$ 0 0
$$283$$ −262.438 −0.927343 −0.463671 0.886007i $$-0.653468\pi$$
−0.463671 + 0.886007i $$0.653468\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ − 41.9066i − 0.146016i
$$288$$ 0 0
$$289$$ −47.3532 −0.163852
$$290$$ 0 0
$$291$$ 0 0
$$292$$ 0 0
$$293$$ − 335.872i − 1.14632i −0.819443 0.573161i $$-0.805717\pi$$
0.819443 0.573161i $$-0.194283\pi$$
$$294$$ 0 0
$$295$$ −189.767 −0.643279
$$296$$ 0 0
$$297$$ 0 0
$$298$$ 0 0
$$299$$ − 214.794i − 0.718374i
$$300$$ 0 0
$$301$$ 62.4710 0.207545
$$302$$ 0 0
$$303$$ 0 0
$$304$$ 0 0
$$305$$ − 412.379i − 1.35206i
$$306$$ 0 0
$$307$$ 580.045 1.88940 0.944698 0.327941i $$-0.106355\pi$$
0.944698 + 0.327941i $$0.106355\pi$$
$$308$$ 0 0
$$309$$ 0 0
$$310$$ 0 0
$$311$$ − 452.132i − 1.45380i −0.686743 0.726900i $$-0.740960\pi$$
0.686743 0.726900i $$-0.259040\pi$$
$$312$$ 0 0
$$313$$ −126.632 −0.404577 −0.202288 0.979326i $$-0.564838\pi$$
−0.202288 + 0.979326i $$0.564838\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ − 237.767i − 0.750055i −0.927014 0.375028i $$-0.877633\pi$$
0.927014 0.375028i $$-0.122367\pi$$
$$318$$ 0 0
$$319$$ −65.1487 −0.204228
$$320$$ 0 0
$$321$$ 0 0
$$322$$ 0 0
$$323$$ 382.794i 1.18512i
$$324$$ 0 0
$$325$$ −308.853 −0.950316
$$326$$ 0 0
$$327$$ 0 0
$$328$$ 0 0
$$329$$ 27.3454i 0.0831167i
$$330$$ 0 0
$$331$$ −222.611 −0.672542 −0.336271 0.941765i $$-0.609166\pi$$
−0.336271 + 0.941765i $$0.609166\pi$$
$$332$$ 0 0
$$333$$ 0 0
$$334$$ 0 0
$$335$$ 672.156i 2.00644i
$$336$$ 0 0
$$337$$ 396.794 1.17743 0.588715 0.808341i $$-0.299634\pi$$
0.588715 + 0.808341i $$0.299634\pi$$
$$338$$ 0 0
$$339$$ 0 0
$$340$$ 0 0
$$341$$ − 357.576i − 1.04861i
$$342$$ 0 0
$$343$$ −122.049 −0.355828
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ 218.387i 0.629357i 0.949198 + 0.314678i $$0.101897\pi$$
−0.949198 + 0.314678i $$0.898103\pi$$
$$348$$ 0 0
$$349$$ −499.161 −1.43026 −0.715131 0.698990i $$-0.753633\pi$$
−0.715131 + 0.698990i $$0.753633\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ 0 0
$$353$$ 423.991i 1.20111i 0.799585 + 0.600554i $$0.205053\pi$$
−0.799585 + 0.600554i $$0.794947\pi$$
$$354$$ 0 0
$$355$$ −846.933 −2.38573
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ 32.2254i 0.0897643i 0.998992 + 0.0448822i $$0.0142912\pi$$
−0.998992 + 0.0448822i $$0.985709\pi$$
$$360$$ 0 0
$$361$$ 74.6468 0.206778
$$362$$ 0 0
$$363$$ 0 0
$$364$$ 0 0
$$365$$ 888.025i 2.43295i
$$366$$ 0 0
$$367$$ −449.710 −1.22537 −0.612684 0.790328i $$-0.709910\pi$$
−0.612684 + 0.790328i $$0.709910\pi$$
$$368$$ 0 0
$$369$$ 0 0
$$370$$ 0 0
$$371$$ 98.2405i 0.264799i
$$372$$ 0 0
$$373$$ 386.368 1.03584 0.517919 0.855430i $$-0.326707\pi$$
0.517919 + 0.855430i $$0.326707\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ − 117.202i − 0.310880i
$$378$$ 0 0
$$379$$ −508.603 −1.34196 −0.670980 0.741475i $$-0.734126\pi$$
−0.670980 + 0.741475i $$0.734126\pi$$
$$380$$ 0 0
$$381$$ 0 0
$$382$$ 0 0
$$383$$ 308.142i 0.804549i 0.915519 + 0.402274i $$0.131780\pi$$
−0.915519 + 0.402274i $$0.868220\pi$$
$$384$$ 0 0
$$385$$ −54.4558 −0.141444
$$386$$ 0 0
$$387$$ 0 0
$$388$$ 0 0
$$389$$ 356.707i 0.916985i 0.888698 + 0.458492i $$0.151610\pi$$
−0.888698 + 0.458492i $$0.848390\pi$$
$$390$$ 0 0
$$391$$ 375.699 0.960866
$$392$$ 0 0
$$393$$ 0 0
$$394$$ 0 0
$$395$$ 60.5929i 0.153400i
$$396$$ 0 0
$$397$$ −524.191 −1.32038 −0.660190 0.751099i $$-0.729524\pi$$
−0.660190 + 0.751099i $$0.729524\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ 236.141i 0.588881i 0.955670 + 0.294441i $$0.0951333\pi$$
−0.955670 + 0.294441i $$0.904867\pi$$
$$402$$ 0 0
$$403$$ 643.276 1.59622
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ − 223.966i − 0.550284i
$$408$$ 0 0
$$409$$ 261.235 0.638718 0.319359 0.947634i $$-0.396532\pi$$
0.319359 + 0.947634i $$0.396532\pi$$
$$410$$ 0 0
$$411$$ 0 0
$$412$$ 0 0
$$413$$ − 32.5589i − 0.0788351i
$$414$$ 0 0
$$415$$ −1109.41 −2.67327
$$416$$ 0 0
$$417$$ 0 0
$$418$$ 0 0
$$419$$ 392.745i 0.937339i 0.883374 + 0.468670i $$0.155267\pi$$
−0.883374 + 0.468670i $$0.844733\pi$$
$$420$$ 0 0
$$421$$ 266.794 0.633715 0.316857 0.948473i $$-0.397372\pi$$
0.316857 + 0.948473i $$0.397372\pi$$
$$422$$ 0 0
$$423$$ 0 0
$$424$$ 0 0
$$425$$ − 540.218i − 1.27110i
$$426$$ 0 0
$$427$$ 70.7530 0.165698
$$428$$ 0 0
$$429$$ 0 0
$$430$$ 0 0
$$431$$ 601.029i 1.39450i 0.716828 + 0.697250i $$0.245593\pi$$
−0.716828 + 0.697250i $$0.754407\pi$$
$$432$$ 0 0
$$433$$ −605.500 −1.39838 −0.699191 0.714935i $$-0.746456\pi$$
−0.699191 + 0.714935i $$0.746456\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ − 427.572i − 0.978425i
$$438$$ 0 0
$$439$$ 333.992 0.760801 0.380401 0.924822i $$-0.375786\pi$$
0.380401 + 0.924822i $$0.375786\pi$$
$$440$$ 0 0
$$441$$ 0 0
$$442$$ 0 0
$$443$$ − 203.823i − 0.460098i −0.973179 0.230049i $$-0.926111\pi$$
0.973179 0.230049i $$-0.0738886\pi$$
$$444$$ 0 0
$$445$$ 874.500 1.96517
$$446$$ 0 0
$$447$$ 0 0
$$448$$ 0 0
$$449$$ − 733.492i − 1.63361i −0.576912 0.816806i $$-0.695742\pi$$
0.576912 0.816806i $$-0.304258\pi$$
$$450$$ 0 0
$$451$$ −192.914 −0.427747
$$452$$ 0 0
$$453$$ 0 0
$$454$$ 0 0
$$455$$ − 97.9655i − 0.215309i
$$456$$ 0 0
$$457$$ −514.765 −1.12640 −0.563200 0.826321i $$-0.690430\pi$$
−0.563200 + 0.826321i $$0.690430\pi$$
$$458$$ 0 0
$$459$$ 0 0
$$460$$ 0 0
$$461$$ 232.778i 0.504941i 0.967605 + 0.252470i $$0.0812430\pi$$
−0.967605 + 0.252470i $$0.918757\pi$$
$$462$$ 0 0
$$463$$ −72.7826 −0.157198 −0.0785989 0.996906i $$-0.525045\pi$$
−0.0785989 + 0.996906i $$0.525045\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ 304.643i 0.652340i 0.945311 + 0.326170i $$0.105758\pi$$
−0.945311 + 0.326170i $$0.894242\pi$$
$$468$$ 0 0
$$469$$ −115.324 −0.245893
$$470$$ 0 0
$$471$$ 0 0
$$472$$ 0 0
$$473$$ − 287.580i − 0.607992i
$$474$$ 0 0
$$475$$ −614.807 −1.29433
$$476$$ 0 0
$$477$$ 0 0
$$478$$ 0 0
$$479$$ 310.118i 0.647427i 0.946155 + 0.323714i $$0.104931\pi$$
−0.946155 + 0.323714i $$0.895069\pi$$
$$480$$ 0 0
$$481$$ 402.912 0.837654
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ 537.829i 1.10893i
$$486$$ 0 0
$$487$$ 744.415 1.52857 0.764287 0.644877i $$-0.223091\pi$$
0.764287 + 0.644877i $$0.223091\pi$$
$$488$$ 0 0
$$489$$ 0 0
$$490$$ 0 0
$$491$$ − 480.754i − 0.979133i −0.871966 0.489567i $$-0.837155\pi$$
0.871966 0.489567i $$-0.162845\pi$$
$$492$$ 0 0
$$493$$ 204.999 0.415820
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ − 145.311i − 0.292376i
$$498$$ 0 0
$$499$$ 694.534 1.39185 0.695926 0.718113i $$-0.254994\pi$$
0.695926 + 0.718113i $$0.254994\pi$$
$$500$$ 0 0
$$501$$ 0 0
$$502$$ 0 0
$$503$$ − 266.309i − 0.529441i −0.964325 0.264720i $$-0.914720\pi$$
0.964325 0.264720i $$-0.0852796\pi$$
$$504$$ 0 0
$$505$$ −840.058 −1.66348
$$506$$ 0 0
$$507$$ 0 0
$$508$$ 0 0
$$509$$ − 205.538i − 0.403807i −0.979405 0.201903i $$-0.935287\pi$$
0.979405 0.201903i $$-0.0647127\pi$$
$$510$$ 0 0
$$511$$ −152.361 −0.298163
$$512$$ 0 0
$$513$$ 0 0
$$514$$ 0 0
$$515$$ 1171.60i 2.27496i
$$516$$ 0 0
$$517$$ 125.882 0.243486
$$518$$ 0 0
$$519$$ 0 0
$$520$$ 0 0
$$521$$ 940.550i 1.80528i 0.430398 + 0.902639i $$0.358373\pi$$
−0.430398 + 0.902639i $$0.641627\pi$$
$$522$$ 0 0
$$523$$ 94.3064 0.180318 0.0901591 0.995927i $$-0.471262\pi$$
0.0901591 + 0.995927i $$0.471262\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ 1125.16i 2.13503i
$$528$$ 0 0
$$529$$ 109.353 0.206717
$$530$$ 0 0
$$531$$ 0 0
$$532$$ 0 0
$$533$$ − 347.050i − 0.651126i
$$534$$ 0 0
$$535$$ −573.714 −1.07236
$$536$$ 0 0
$$537$$ 0 0
$$538$$ 0 0
$$539$$ 276.250i 0.512523i
$$540$$ 0 0
$$541$$ 35.7645 0.0661081 0.0330541 0.999454i $$-0.489477\pi$$
0.0330541 + 0.999454i $$0.489477\pi$$
$$542$$ 0 0
$$543$$ 0 0
$$544$$ 0 0
$$545$$ − 113.621i − 0.208478i
$$546$$ 0 0
$$547$$ −443.305 −0.810430 −0.405215 0.914221i $$-0.632803\pi$$
−0.405215 + 0.914221i $$0.632803\pi$$
$$548$$ 0 0
$$549$$ 0 0
$$550$$ 0 0
$$551$$ − 233.304i − 0.423419i
$$552$$ 0 0
$$553$$ −10.3961 −0.0187995
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ − 438.098i − 0.786531i −0.919425 0.393266i $$-0.871345\pi$$
0.919425 0.393266i $$-0.128655\pi$$
$$558$$ 0 0
$$559$$ 517.354 0.925499
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 0 0
$$563$$ 1065.07i 1.89178i 0.324485 + 0.945891i $$0.394809\pi$$
−0.324485 + 0.945891i $$0.605191\pi$$
$$564$$ 0 0
$$565$$ 567.779 1.00492
$$566$$ 0 0
$$567$$ 0 0
$$568$$ 0 0
$$569$$ 939.141i 1.65051i 0.564759 + 0.825256i $$0.308969\pi$$
−0.564759 + 0.825256i $$0.691031\pi$$
$$570$$ 0 0
$$571$$ 294.128 0.515110 0.257555 0.966264i $$-0.417083\pi$$
0.257555 + 0.966264i $$0.417083\pi$$
$$572$$ 0 0
$$573$$ 0 0
$$574$$ 0 0
$$575$$ 603.411i 1.04941i
$$576$$ 0 0
$$577$$ −546.500 −0.947140 −0.473570 0.880756i $$-0.657035\pi$$
−0.473570 + 0.880756i $$0.657035\pi$$
$$578$$ 0 0
$$579$$ 0 0
$$580$$ 0 0
$$581$$ − 190.344i − 0.327615i
$$582$$ 0 0
$$583$$ 452.242 0.775716
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ 43.7939i 0.0746064i 0.999304 + 0.0373032i $$0.0118767\pi$$
−0.999304 + 0.0373032i $$0.988123\pi$$
$$588$$ 0 0
$$589$$ 1280.51 2.17405
$$590$$ 0 0
$$591$$ 0 0
$$592$$ 0 0
$$593$$ 823.454i 1.38862i 0.719674 + 0.694312i $$0.244291\pi$$
−0.719674 + 0.694312i $$0.755709\pi$$
$$594$$ 0 0
$$595$$ 171.353 0.287988
$$596$$ 0 0
$$597$$ 0 0
$$598$$ 0 0
$$599$$ 826.244i 1.37937i 0.724109 + 0.689686i $$0.242251\pi$$
−0.724109 + 0.689686i $$0.757749\pi$$
$$600$$ 0 0
$$601$$ −378.632 −0.630004 −0.315002 0.949091i $$-0.602005\pi$$
−0.315002 + 0.949091i $$0.602005\pi$$
$$602$$ 0 0
$$603$$ 0 0
$$604$$ 0 0
$$605$$ − 642.227i − 1.06153i
$$606$$ 0 0
$$607$$ −139.737 −0.230210 −0.115105 0.993353i $$-0.536720\pi$$
−0.115105 + 0.993353i $$0.536720\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ 226.461i 0.370640i
$$612$$ 0 0
$$613$$ 508.587 0.829669 0.414834 0.909897i $$-0.363839\pi$$
0.414834 + 0.909897i $$0.363839\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ − 429.415i − 0.695973i −0.937500 0.347986i $$-0.886866\pi$$
0.937500 0.347986i $$-0.113134\pi$$
$$618$$ 0 0
$$619$$ 720.471 1.16393 0.581964 0.813215i $$-0.302285\pi$$
0.581964 + 0.813215i $$0.302285\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ 0 0
$$623$$ 150.040i 0.240835i
$$624$$ 0 0
$$625$$ −493.749 −0.789999
$$626$$ 0 0
$$627$$ 0 0
$$628$$ 0 0
$$629$$ 704.738i 1.12041i
$$630$$ 0 0
$$631$$ 479.482 0.759877 0.379938 0.925012i $$-0.375945\pi$$
0.379938 + 0.925012i $$0.375945\pi$$
$$632$$ 0 0
$$633$$ 0 0
$$634$$ 0 0
$$635$$ − 532.009i − 0.837810i
$$636$$ 0 0
$$637$$ −496.971 −0.780174
$$638$$ 0 0
$$639$$ 0 0
$$640$$ 0 0
$$641$$ − 562.679i − 0.877815i −0.898532 0.438907i $$-0.855366\pi$$
0.898532 0.438907i $$-0.144634\pi$$
$$642$$ 0 0
$$643$$ 785.471 1.22157 0.610786 0.791796i $$-0.290854\pi$$
0.610786 + 0.791796i $$0.290854\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ 571.529i 0.883352i 0.897175 + 0.441676i $$0.145616\pi$$
−0.897175 + 0.441676i $$0.854384\pi$$
$$648$$ 0 0
$$649$$ −149.882 −0.230943
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ − 325.346i − 0.498233i −0.968474 0.249117i $$-0.919860\pi$$
0.968474 0.249117i $$-0.0801402\pi$$
$$654$$ 0 0
$$655$$ 622.981 0.951116
$$656$$ 0 0
$$657$$ 0 0
$$658$$ 0 0
$$659$$ 902.294i 1.36919i 0.728926 + 0.684593i $$0.240020\pi$$
−0.728926 + 0.684593i $$0.759980\pi$$
$$660$$ 0 0
$$661$$ 59.6325 0.0902155 0.0451078 0.998982i $$-0.485637\pi$$
0.0451078 + 0.998982i $$0.485637\pi$$
$$662$$ 0 0
$$663$$ 0 0
$$664$$ 0 0
$$665$$ − 195.012i − 0.293250i
$$666$$ 0 0
$$667$$ −228.979 −0.343297
$$668$$ 0 0
$$669$$ 0 0
$$670$$ 0 0
$$671$$ − 325.706i − 0.485403i
$$672$$ 0 0
$$673$$ −1005.17 −1.49357 −0.746787 0.665064i $$-0.768404\pi$$
−0.746787 + 0.665064i $$0.768404\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 0 0
$$677$$ 175.697i 0.259523i 0.991545 + 0.129762i $$0.0414212\pi$$
−0.991545 + 0.129762i $$0.958579\pi$$
$$678$$ 0 0
$$679$$ −92.2768 −0.135901
$$680$$ 0 0
$$681$$ 0 0
$$682$$ 0 0
$$683$$ − 768.823i − 1.12566i −0.826574 0.562828i $$-0.809713\pi$$
0.826574 0.562828i $$-0.190287\pi$$
$$684$$ 0 0
$$685$$ 214.617 0.313310
$$686$$ 0 0
$$687$$ 0 0
$$688$$ 0 0
$$689$$ 813.579i 1.18081i
$$690$$ 0 0
$$691$$ 590.714 0.854868 0.427434 0.904047i $$-0.359418\pi$$
0.427434 + 0.904047i $$0.359418\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 0 0
$$695$$ − 961.519i − 1.38348i
$$696$$ 0 0
$$697$$ 607.029 0.870917
$$698$$ 0 0
$$699$$ 0 0
$$700$$ 0 0
$$701$$ 967.139i 1.37966i 0.723974 + 0.689828i $$0.242314\pi$$
−0.723974 + 0.689828i $$0.757686\pi$$
$$702$$ 0 0
$$703$$ 802.042 1.14088
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ − 144.131i − 0.203863i
$$708$$ 0 0
$$709$$ −147.647 −0.208246 −0.104123 0.994564i $$-0.533204\pi$$
−0.104123 + 0.994564i $$0.533204\pi$$
$$710$$ 0 0
$$711$$ 0 0
$$712$$ 0 0
$$713$$ − 1256.78i − 1.76266i
$$714$$ 0 0
$$715$$ −450.976 −0.630736
$$716$$ 0 0
$$717$$ 0 0
$$718$$ 0 0
$$719$$ 627.098i 0.872181i 0.899903 + 0.436091i $$0.143637\pi$$
−0.899903 + 0.436091i $$0.856363\pi$$
$$720$$ 0 0
$$721$$ −201.015 −0.278800
$$722$$ 0 0
$$723$$ 0 0
$$724$$ 0 0
$$725$$ 329.250i 0.454138i
$$726$$ 0 0
$$727$$ −150.518 −0.207040 −0.103520 0.994627i $$-0.533011\pi$$
−0.103520 + 0.994627i $$0.533011\pi$$
$$728$$ 0 0
$$729$$ 0 0
$$730$$ 0 0
$$731$$ 904.910i 1.23791i
$$732$$ 0 0
$$733$$ 430.073 0.586730 0.293365 0.956000i $$-0.405225\pi$$
0.293365 + 0.956000i $$0.405225\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ 530.884i 0.720331i
$$738$$ 0 0
$$739$$ −347.230 −0.469865 −0.234932 0.972012i $$-0.575487\pi$$
−0.234932 + 0.972012i $$0.575487\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ 0 0
$$743$$ − 48.7797i − 0.0656523i −0.999461 0.0328261i $$-0.989549\pi$$
0.999461 0.0328261i $$-0.0104508\pi$$
$$744$$ 0 0
$$745$$ −681.500 −0.914765
$$746$$ 0 0
$$747$$ 0 0
$$748$$ 0 0
$$749$$ − 98.4338i − 0.131420i
$$750$$ 0 0
$$751$$ −323.248 −0.430424 −0.215212 0.976567i $$-0.569044\pi$$
−0.215212 + 0.976567i $$0.569044\pi$$
$$752$$ 0 0
$$753$$ 0 0
$$754$$ 0 0
$$755$$ 331.544i 0.439131i
$$756$$ 0 0
$$757$$ −452.912 −0.598298 −0.299149 0.954206i $$-0.596703\pi$$
−0.299149 + 0.954206i $$0.596703\pi$$
$$758$$ 0 0
$$759$$ 0 0
$$760$$ 0 0
$$761$$ − 824.757i − 1.08378i −0.840449 0.541890i $$-0.817709\pi$$
0.840449 0.541890i $$-0.182291\pi$$
$$762$$ 0 0
$$763$$ 19.4942 0.0255495
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ − 269.637i − 0.351547i
$$768$$ 0 0
$$769$$ 248.955 0.323739 0.161870 0.986812i $$-0.448248\pi$$
0.161870 + 0.986812i $$0.448248\pi$$
$$770$$ 0 0
$$771$$ 0 0
$$772$$ 0 0
$$773$$ − 351.066i − 0.454160i −0.973876 0.227080i $$-0.927082\pi$$
0.973876 0.227080i $$-0.0729179\pi$$
$$774$$ 0 0
$$775$$ −1807.13 −2.33178
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ − 690.843i − 0.886833i
$$780$$ 0 0
$$781$$ −668.926 −0.856499
$$782$$ 0 0
$$783$$ 0 0
$$784$$ 0 0
$$785$$ − 966.921i − 1.23175i
$$786$$ 0 0
$$787$$ −342.705 −0.435458 −0.217729 0.976009i $$-0.569865\pi$$
−0.217729 + 0.976009i $$0.569865\pi$$
$$788$$ 0 0
$$789$$ 0 0
$$790$$ 0 0
$$791$$ 97.4154i 0.123155i
$$792$$ 0 0
$$793$$ 585.941 0.738892
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ 485.087i 0.608641i 0.952570 + 0.304320i $$0.0984293\pi$$
−0.952570 + 0.304320i $$0.901571\pi$$
$$798$$ 0 0
$$799$$ −396.106 −0.495752
$$800$$ 0 0
$$801$$ 0 0
$$802$$ 0 0
$$803$$ 701.382i 0.873452i
$$804$$ 0 0
$$805$$ −191.397 −0.237760
$$806$$ 0 0
$$807$$ 0 0
$$808$$ 0 0
$$809$$ 179.278i 0.221605i 0.993842 + 0.110802i $$0.0353421\pi$$
−0.993842 + 0.110802i $$0.964658\pi$$
$$810$$ 0 0
$$811$$ 475.144 0.585874 0.292937 0.956132i $$-0.405367\pi$$
0.292937 + 0.956132i $$0.405367\pi$$
$$812$$ 0 0
$$813$$ 0 0
$$814$$ 0 0
$$815$$ 1908.89i 2.34219i
$$816$$ 0 0
$$817$$ 1029.85 1.26053
$$818$$ 0 0
$$819$$ 0 0
$$820$$ 0 0
$$821$$ − 598.056i − 0.728448i −0.931311 0.364224i $$-0.881334\pi$$
0.931311 0.364224i $$-0.118666\pi$$
$$822$$ 0 0
$$823$$ 433.288 0.526474 0.263237 0.964731i $$-0.415210\pi$$
0.263237 + 0.964731i $$0.415210\pi$$
$$824$$ 0 0
$$825$$ 0 0
$$826$$ 0 0
$$827$$ 62.2153i 0.0752301i 0.999292 + 0.0376151i $$0.0119761\pi$$
−0.999292 + 0.0376151i $$0.988024\pi$$
$$828$$ 0 0
$$829$$ −3.70563 −0.00447000 −0.00223500 0.999998i $$-0.500711\pi$$
−0.00223500 + 0.999998i $$0.500711\pi$$
$$830$$ 0 0
$$831$$ 0 0
$$832$$ 0 0
$$833$$ − 869.257i − 1.04353i
$$834$$ 0 0
$$835$$ −2244.14 −2.68759
$$836$$ 0 0
$$837$$ 0 0
$$838$$ 0 0
$$839$$ − 1382.59i − 1.64790i −0.566660 0.823952i $$-0.691765\pi$$
0.566660 0.823952i $$-0.308235\pi$$
$$840$$ 0 0
$$841$$ 716.058 0.851436
$$842$$ 0 0
$$843$$ 0 0
$$844$$ 0 0
$$845$$ 435.820i 0.515764i
$$846$$ 0 0
$$847$$ 110.189 0.130093
$$848$$ 0 0
$$849$$ 0 0
$$850$$ 0 0
$$851$$ − 787.176i − 0.925001i
$$852$$ 0 0
$$853$$ 1273.53 1.49300 0.746500 0.665385i $$-0.231733\pi$$
0.746500 + 0.665385i $$0.231733\pi$$
$$854$$ 0 0
$$855$$ 0 0
$$856$$ 0 0
$$857$$ 1009.57i 1.17802i 0.808125 + 0.589011i $$0.200483\pi$$
−0.808125 + 0.589011i $$0.799517\pi$$
$$858$$ 0 0
$$859$$ −719.633 −0.837757 −0.418878 0.908042i $$-0.637577\pi$$
−0.418878 + 0.908042i $$0.637577\pi$$
$$860$$ 0 0
$$861$$ 0 0
$$862$$ 0 0
$$863$$ − 429.608i − 0.497808i −0.968528 0.248904i $$-0.919930\pi$$
0.968528 0.248904i $$-0.0800703\pi$$
$$864$$ 0 0
$$865$$ −4.80909 −0.00555964
$$866$$ 0 0
$$867$$ 0 0
$$868$$ 0 0
$$869$$ 47.8576i 0.0550721i
$$870$$ 0 0
$$871$$ −955.055 −1.09650
$$872$$ 0 0
$$873$$ 0 0
$$874$$ 0 0
$$875$$ 41.6316i 0.0475790i
$$876$$ 0 0
$$877$$ 164.030 0.187036 0.0935178 0.995618i $$-0.470189\pi$$
0.0935178 + 0.995618i $$0.470189\pi$$
$$878$$ 0 0
$$879$$ 0 0
$$880$$ 0 0
$$881$$ − 333.265i − 0.378281i −0.981950 0.189140i $$-0.939430\pi$$
0.981950 0.189140i $$-0.0605701\pi$$
$$882$$ 0 0
$$883$$ −289.138 −0.327450 −0.163725 0.986506i $$-0.552351\pi$$
−0.163725 + 0.986506i $$0.552351\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ 0 0
$$887$$ − 483.338i − 0.544913i −0.962168 0.272457i $$-0.912164\pi$$
0.962168 0.272457i $$-0.0878361\pi$$
$$888$$ 0 0
$$889$$ 91.2784 0.102675
$$890$$ 0 0
$$891$$ 0 0
$$892$$ 0 0
$$893$$ 450.796i 0.504811i
$$894$$ 0 0
$$895$$ 935.449 1.04519
$$896$$ 0 0
$$897$$ 0 0
$$898$$ 0 0
$$899$$ − 685.759i − 0.762802i
$$900$$ 0 0
$$901$$ −1423.04 −1.57940
$$902$$ 0 0
$$903$$ 0 0
$$904$$ 0 0
$$905$$ 2248.77i 2.48483i
$$906$$ 0 0
$$907$$ 769.663 0.848581 0.424290 0.905526i $$-0.360524\pi$$
0.424290 + 0.905526i $$0.360524\pi$$
$$908$$ 0 0
$$909$$ 0 0
$$910$$ 0 0
$$911$$ 332.059i 0.364499i 0.983252 + 0.182250i $$0.0583379\pi$$
−0.983252 + 0.182250i $$0.941662\pi$$
$$912$$ 0 0
$$913$$ −876.235 −0.959731
$$914$$ 0 0
$$915$$ 0 0
$$916$$ 0 0
$$917$$ 106.887i 0.116561i
$$918$$ 0 0
$$919$$ −1339.15 −1.45718 −0.728591 0.684949i $$-0.759825\pi$$
−0.728591 + 0.684949i $$0.759825\pi$$
$$920$$ 0 0
$$921$$ 0 0
$$922$$ 0 0
$$923$$ − 1203.39i − 1.30378i
$$924$$ 0 0
$$925$$ −1131.88 −1.22366
$$926$$ 0 0
$$927$$ 0 0
$$928$$ 0 0
$$929$$ 1194.16i 1.28543i 0.766106 + 0.642714i $$0.222192\pi$$
−0.766106 + 0.642714i $$0.777808\pi$$
$$930$$ 0 0
$$931$$ −989.277 −1.06260
$$932$$ 0 0
$$933$$ 0 0
$$934$$ 0 0
$$935$$ − 788.808i − 0.843645i
$$936$$ 0 0
$$937$$ 631.705 0.674178 0.337089 0.941473i $$-0.390558\pi$$
0.337089 + 0.941473i $$0.390558\pi$$
$$938$$ 0 0
$$939$$ 0 0
$$940$$ 0 0
$$941$$ − 1616.20i − 1.71753i −0.512367 0.858766i $$-0.671231\pi$$
0.512367 0.858766i $$-0.328769\pi$$
$$942$$ 0 0
$$943$$ −678.038 −0.719022
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ 1625.50i 1.71647i 0.513256 + 0.858235i $$0.328439\pi$$
−0.513256 + 0.858235i $$0.671561\pi$$
$$948$$ 0 0
$$949$$ −1261.78 −1.32959
$$950$$ 0 0
$$951$$ 0 0
$$952$$ 0 0
$$953$$ − 143.033i − 0.150087i −0.997180 0.0750435i $$-0.976090\pi$$
0.997180 0.0750435i $$-0.0239096\pi$$
$$954$$ 0 0
$$955$$ 989.817 1.03646
$$956$$ 0 0
$$957$$ 0 0
$$958$$ 0 0
$$959$$ 36.8225i 0.0383968i
$$960$$ 0 0
$$961$$ 2802.87 2.91661
$$962$$ 0 0
$$963$$ 0 0
$$964$$ 0 0
$$965$$ − 1345.98i − 1.39480i
$$966$$ 0 0
$$967$$ 132.178 0.136689 0.0683443 0.997662i $$-0.478228\pi$$
0.0683443 + 0.997662i $$0.478228\pi$$
$$968$$ 0 0
$$969$$ 0 0
$$970$$ 0 0
$$971$$ − 1171.53i − 1.20652i −0.797543 0.603262i $$-0.793867\pi$$
0.797543 0.603262i $$-0.206133\pi$$
$$972$$ 0 0
$$973$$ 164.971 0.169548
$$974$$ 0 0
$$975$$ 0 0
$$976$$ 0 0
$$977$$ − 797.623i − 0.816400i −0.912893 0.408200i $$-0.866157\pi$$
0.912893 0.408200i $$-0.133843\pi$$
$$978$$ 0 0
$$979$$ 690.699 0.705515
$$980$$ 0 0
$$981$$ 0 0
$$982$$ 0 0
$$983$$ − 960.676i − 0.977290i −0.872483 0.488645i $$-0.837491\pi$$
0.872483 0.488645i $$-0.162509\pi$$
$$984$$ 0 0
$$985$$ 1140.37 1.15773
$$986$$ 0 0
$$987$$ 0 0
$$988$$ 0 0
$$989$$ − 1010.76i − 1.02201i
$$990$$ 0 0
$$991$$ 474.492 0.478802 0.239401 0.970921i $$-0.423049\pi$$
0.239401 + 0.970921i $$0.423049\pi$$
$$992$$ 0 0
$$993$$ 0 0
$$994$$ 0 0
$$995$$ − 270.951i − 0.272313i
$$996$$ 0 0
$$997$$ −180.219 −0.180762 −0.0903809 0.995907i $$-0.528808\pi$$
−0.0903809 + 0.995907i $$0.528808\pi$$
$$998$$ 0 0
$$999$$ 0 0
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1728.3.e.v.1025.2 8
3.2 odd 2 inner 1728.3.e.v.1025.8 8
4.3 odd 2 inner 1728.3.e.v.1025.1 8
8.3 odd 2 864.3.e.e.161.7 yes 8
8.5 even 2 864.3.e.e.161.8 yes 8
12.11 even 2 inner 1728.3.e.v.1025.7 8
24.5 odd 2 864.3.e.e.161.2 yes 8
24.11 even 2 864.3.e.e.161.1 8

By twisted newform
Twist Min Dim Char Parity Ord Type
864.3.e.e.161.1 8 24.11 even 2
864.3.e.e.161.2 yes 8 24.5 odd 2
864.3.e.e.161.7 yes 8 8.3 odd 2
864.3.e.e.161.8 yes 8 8.5 even 2
1728.3.e.v.1025.1 8 4.3 odd 2 inner
1728.3.e.v.1025.2 8 1.1 even 1 trivial
1728.3.e.v.1025.7 8 12.11 even 2 inner
1728.3.e.v.1025.8 8 3.2 odd 2 inner