Properties

Label 1728.3.e.g.1025.2
Level $1728$
Weight $3$
Character 1728.1025
Analytic conductor $47.085$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1728,3,Mod(1025,1728)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1728, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1728.1025");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1728.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.0845896815\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1025.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1728.1025
Dual form 1728.3.e.g.1025.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000i q^{5} -5.00000 q^{7} -15.0000i q^{11} +10.0000 q^{13} +18.0000i q^{17} -16.0000 q^{19} +12.0000i q^{23} +16.0000 q^{25} -30.0000i q^{29} +1.00000 q^{31} -15.0000i q^{35} -20.0000 q^{37} +60.0000i q^{41} +50.0000 q^{43} +6.00000i q^{47} -24.0000 q^{49} +27.0000i q^{53} +45.0000 q^{55} -30.0000i q^{59} +76.0000 q^{61} +30.0000i q^{65} -10.0000 q^{67} +90.0000i q^{71} +65.0000 q^{73} +75.0000i q^{77} -14.0000 q^{79} +3.00000i q^{83} -54.0000 q^{85} +90.0000i q^{89} -50.0000 q^{91} -48.0000i q^{95} -85.0000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 10 q^{7} + 20 q^{13} - 32 q^{19} + 32 q^{25} + 2 q^{31} - 40 q^{37} + 100 q^{43} - 48 q^{49} + 90 q^{55} + 152 q^{61} - 20 q^{67} + 130 q^{73} - 28 q^{79} - 108 q^{85} - 100 q^{91} - 170 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1728\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(703\) \(1217\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.00000i 0.600000i 0.953939 + 0.300000i \(0.0969867\pi\)
−0.953939 + 0.300000i \(0.903013\pi\)
\(6\) 0 0
\(7\) −5.00000 −0.714286 −0.357143 0.934050i \(-0.616249\pi\)
−0.357143 + 0.934050i \(0.616249\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 15.0000i − 1.36364i −0.731522 0.681818i \(-0.761190\pi\)
0.731522 0.681818i \(-0.238810\pi\)
\(12\) 0 0
\(13\) 10.0000 0.769231 0.384615 0.923077i \(-0.374334\pi\)
0.384615 + 0.923077i \(0.374334\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 18.0000i 1.05882i 0.848365 + 0.529412i \(0.177587\pi\)
−0.848365 + 0.529412i \(0.822413\pi\)
\(18\) 0 0
\(19\) −16.0000 −0.842105 −0.421053 0.907036i \(-0.638339\pi\)
−0.421053 + 0.907036i \(0.638339\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 12.0000i 0.521739i 0.965374 + 0.260870i \(0.0840093\pi\)
−0.965374 + 0.260870i \(0.915991\pi\)
\(24\) 0 0
\(25\) 16.0000 0.640000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 30.0000i − 1.03448i −0.855840 0.517241i \(-0.826959\pi\)
0.855840 0.517241i \(-0.173041\pi\)
\(30\) 0 0
\(31\) 1.00000 0.0322581 0.0161290 0.999870i \(-0.494866\pi\)
0.0161290 + 0.999870i \(0.494866\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 15.0000i − 0.428571i
\(36\) 0 0
\(37\) −20.0000 −0.540541 −0.270270 0.962784i \(-0.587113\pi\)
−0.270270 + 0.962784i \(0.587113\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 60.0000i 1.46341i 0.681619 + 0.731707i \(0.261276\pi\)
−0.681619 + 0.731707i \(0.738724\pi\)
\(42\) 0 0
\(43\) 50.0000 1.16279 0.581395 0.813621i \(-0.302507\pi\)
0.581395 + 0.813621i \(0.302507\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.00000i 0.127660i 0.997961 + 0.0638298i \(0.0203315\pi\)
−0.997961 + 0.0638298i \(0.979669\pi\)
\(48\) 0 0
\(49\) −24.0000 −0.489796
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 27.0000i 0.509434i 0.967016 + 0.254717i \(0.0819823\pi\)
−0.967016 + 0.254717i \(0.918018\pi\)
\(54\) 0 0
\(55\) 45.0000 0.818182
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 30.0000i − 0.508475i −0.967142 0.254237i \(-0.918176\pi\)
0.967142 0.254237i \(-0.0818244\pi\)
\(60\) 0 0
\(61\) 76.0000 1.24590 0.622951 0.782261i \(-0.285934\pi\)
0.622951 + 0.782261i \(0.285934\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 30.0000i 0.461538i
\(66\) 0 0
\(67\) −10.0000 −0.149254 −0.0746269 0.997212i \(-0.523777\pi\)
−0.0746269 + 0.997212i \(0.523777\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 90.0000i 1.26761i 0.773495 + 0.633803i \(0.218507\pi\)
−0.773495 + 0.633803i \(0.781493\pi\)
\(72\) 0 0
\(73\) 65.0000 0.890411 0.445205 0.895428i \(-0.353131\pi\)
0.445205 + 0.895428i \(0.353131\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 75.0000i 0.974026i
\(78\) 0 0
\(79\) −14.0000 −0.177215 −0.0886076 0.996067i \(-0.528242\pi\)
−0.0886076 + 0.996067i \(0.528242\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.00000i 0.0361446i 0.999837 + 0.0180723i \(0.00575290\pi\)
−0.999837 + 0.0180723i \(0.994247\pi\)
\(84\) 0 0
\(85\) −54.0000 −0.635294
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 90.0000i 1.01124i 0.862757 + 0.505618i \(0.168735\pi\)
−0.862757 + 0.505618i \(0.831265\pi\)
\(90\) 0 0
\(91\) −50.0000 −0.549451
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 48.0000i − 0.505263i
\(96\) 0 0
\(97\) −85.0000 −0.876289 −0.438144 0.898905i \(-0.644364\pi\)
−0.438144 + 0.898905i \(0.644364\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 195.000i 1.93069i 0.260971 + 0.965347i \(0.415957\pi\)
−0.260971 + 0.965347i \(0.584043\pi\)
\(102\) 0 0
\(103\) −170.000 −1.65049 −0.825243 0.564778i \(-0.808962\pi\)
−0.825243 + 0.564778i \(0.808962\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 189.000i 1.76636i 0.469039 + 0.883178i \(0.344600\pi\)
−0.469039 + 0.883178i \(0.655400\pi\)
\(108\) 0 0
\(109\) −164.000 −1.50459 −0.752294 0.658828i \(-0.771052\pi\)
−0.752294 + 0.658828i \(0.771052\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 24.0000i 0.212389i 0.994345 + 0.106195i \(0.0338667\pi\)
−0.994345 + 0.106195i \(0.966133\pi\)
\(114\) 0 0
\(115\) −36.0000 −0.313043
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 90.0000i − 0.756303i
\(120\) 0 0
\(121\) −104.000 −0.859504
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 123.000i 0.984000i
\(126\) 0 0
\(127\) 205.000 1.61417 0.807087 0.590433i \(-0.201043\pi\)
0.807087 + 0.590433i \(0.201043\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 15.0000i 0.114504i 0.998360 + 0.0572519i \(0.0182338\pi\)
−0.998360 + 0.0572519i \(0.981766\pi\)
\(132\) 0 0
\(133\) 80.0000 0.601504
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 138.000i 1.00730i 0.863908 + 0.503650i \(0.168010\pi\)
−0.863908 + 0.503650i \(0.831990\pi\)
\(138\) 0 0
\(139\) −28.0000 −0.201439 −0.100719 0.994915i \(-0.532114\pi\)
−0.100719 + 0.994915i \(0.532114\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 150.000i − 1.04895i
\(144\) 0 0
\(145\) 90.0000 0.620690
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 75.0000i 0.503356i 0.967811 + 0.251678i \(0.0809823\pi\)
−0.967811 + 0.251678i \(0.919018\pi\)
\(150\) 0 0
\(151\) −77.0000 −0.509934 −0.254967 0.966950i \(-0.582065\pi\)
−0.254967 + 0.966950i \(0.582065\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 3.00000i 0.0193548i
\(156\) 0 0
\(157\) 100.000 0.636943 0.318471 0.947932i \(-0.396831\pi\)
0.318471 + 0.947932i \(0.396831\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 60.0000i − 0.372671i
\(162\) 0 0
\(163\) 110.000 0.674847 0.337423 0.941353i \(-0.390445\pi\)
0.337423 + 0.941353i \(0.390445\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 78.0000i − 0.467066i −0.972349 0.233533i \(-0.924971\pi\)
0.972349 0.233533i \(-0.0750287\pi\)
\(168\) 0 0
\(169\) −69.0000 −0.408284
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 177.000i 1.02312i 0.859247 + 0.511561i \(0.170932\pi\)
−0.859247 + 0.511561i \(0.829068\pi\)
\(174\) 0 0
\(175\) −80.0000 −0.457143
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 225.000i − 1.25698i −0.777816 0.628492i \(-0.783673\pi\)
0.777816 0.628492i \(-0.216327\pi\)
\(180\) 0 0
\(181\) 16.0000 0.0883978 0.0441989 0.999023i \(-0.485926\pi\)
0.0441989 + 0.999023i \(0.485926\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 60.0000i − 0.324324i
\(186\) 0 0
\(187\) 270.000 1.44385
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 30.0000i − 0.157068i −0.996911 0.0785340i \(-0.974976\pi\)
0.996911 0.0785340i \(-0.0250239\pi\)
\(192\) 0 0
\(193\) 215.000 1.11399 0.556995 0.830516i \(-0.311954\pi\)
0.556995 + 0.830516i \(0.311954\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 207.000i 1.05076i 0.850867 + 0.525381i \(0.176077\pi\)
−0.850867 + 0.525381i \(0.823923\pi\)
\(198\) 0 0
\(199\) 223.000 1.12060 0.560302 0.828289i \(-0.310685\pi\)
0.560302 + 0.828289i \(0.310685\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 150.000i 0.738916i
\(204\) 0 0
\(205\) −180.000 −0.878049
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 240.000i 1.14833i
\(210\) 0 0
\(211\) −316.000 −1.49763 −0.748815 0.662779i \(-0.769377\pi\)
−0.748815 + 0.662779i \(0.769377\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 150.000i 0.697674i
\(216\) 0 0
\(217\) −5.00000 −0.0230415
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 180.000i 0.814480i
\(222\) 0 0
\(223\) 130.000 0.582960 0.291480 0.956577i \(-0.405852\pi\)
0.291480 + 0.956577i \(0.405852\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 42.0000i − 0.185022i −0.995712 0.0925110i \(-0.970511\pi\)
0.995712 0.0925110i \(-0.0294893\pi\)
\(228\) 0 0
\(229\) 226.000 0.986900 0.493450 0.869774i \(-0.335736\pi\)
0.493450 + 0.869774i \(0.335736\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 234.000i 1.00429i 0.864783 + 0.502146i \(0.167456\pi\)
−0.864783 + 0.502146i \(0.832544\pi\)
\(234\) 0 0
\(235\) −18.0000 −0.0765957
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 120.000i 0.502092i 0.967975 + 0.251046i \(0.0807746\pi\)
−0.967975 + 0.251046i \(0.919225\pi\)
\(240\) 0 0
\(241\) 14.0000 0.0580913 0.0290456 0.999578i \(-0.490753\pi\)
0.0290456 + 0.999578i \(0.490753\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 72.0000i − 0.293878i
\(246\) 0 0
\(247\) −160.000 −0.647773
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 90.0000i 0.358566i 0.983798 + 0.179283i \(0.0573777\pi\)
−0.983798 + 0.179283i \(0.942622\pi\)
\(252\) 0 0
\(253\) 180.000 0.711462
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 438.000i 1.70428i 0.523314 + 0.852140i \(0.324696\pi\)
−0.523314 + 0.852140i \(0.675304\pi\)
\(258\) 0 0
\(259\) 100.000 0.386100
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 276.000i 1.04943i 0.851278 + 0.524715i \(0.175828\pi\)
−0.851278 + 0.524715i \(0.824172\pi\)
\(264\) 0 0
\(265\) −81.0000 −0.305660
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 270.000i − 1.00372i −0.864950 0.501859i \(-0.832650\pi\)
0.864950 0.501859i \(-0.167350\pi\)
\(270\) 0 0
\(271\) −299.000 −1.10332 −0.551661 0.834069i \(-0.686006\pi\)
−0.551661 + 0.834069i \(0.686006\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 240.000i − 0.872727i
\(276\) 0 0
\(277\) −140.000 −0.505415 −0.252708 0.967543i \(-0.581321\pi\)
−0.252708 + 0.967543i \(0.581321\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 150.000i − 0.533808i −0.963723 0.266904i \(-0.913999\pi\)
0.963723 0.266904i \(-0.0860006\pi\)
\(282\) 0 0
\(283\) −280.000 −0.989399 −0.494700 0.869064i \(-0.664722\pi\)
−0.494700 + 0.869064i \(0.664722\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 300.000i − 1.04530i
\(288\) 0 0
\(289\) −35.0000 −0.121107
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 258.000i − 0.880546i −0.897864 0.440273i \(-0.854882\pi\)
0.897864 0.440273i \(-0.145118\pi\)
\(294\) 0 0
\(295\) 90.0000 0.305085
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 120.000i 0.401338i
\(300\) 0 0
\(301\) −250.000 −0.830565
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 228.000i 0.747541i
\(306\) 0 0
\(307\) 290.000 0.944625 0.472313 0.881431i \(-0.343419\pi\)
0.472313 + 0.881431i \(0.343419\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 480.000i 1.54341i 0.635982 + 0.771704i \(0.280595\pi\)
−0.635982 + 0.771704i \(0.719405\pi\)
\(312\) 0 0
\(313\) 185.000 0.591054 0.295527 0.955334i \(-0.404505\pi\)
0.295527 + 0.955334i \(0.404505\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 183.000i − 0.577287i −0.957437 0.288644i \(-0.906796\pi\)
0.957437 0.288644i \(-0.0932042\pi\)
\(318\) 0 0
\(319\) −450.000 −1.41066
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 288.000i − 0.891641i
\(324\) 0 0
\(325\) 160.000 0.492308
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 30.0000i − 0.0911854i
\(330\) 0 0
\(331\) −238.000 −0.719033 −0.359517 0.933139i \(-0.617058\pi\)
−0.359517 + 0.933139i \(0.617058\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 30.0000i − 0.0895522i
\(336\) 0 0
\(337\) −10.0000 −0.0296736 −0.0148368 0.999890i \(-0.504723\pi\)
−0.0148368 + 0.999890i \(0.504723\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 15.0000i − 0.0439883i
\(342\) 0 0
\(343\) 365.000 1.06414
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 69.0000i 0.198847i 0.995045 + 0.0994236i \(0.0316999\pi\)
−0.995045 + 0.0994236i \(0.968300\pi\)
\(348\) 0 0
\(349\) 256.000 0.733524 0.366762 0.930315i \(-0.380466\pi\)
0.366762 + 0.930315i \(0.380466\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 456.000i − 1.29178i −0.763428 0.645892i \(-0.776485\pi\)
0.763428 0.645892i \(-0.223515\pi\)
\(354\) 0 0
\(355\) −270.000 −0.760563
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 450.000i 1.25348i 0.779228 + 0.626741i \(0.215612\pi\)
−0.779228 + 0.626741i \(0.784388\pi\)
\(360\) 0 0
\(361\) −105.000 −0.290859
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 195.000i 0.534247i
\(366\) 0 0
\(367\) 625.000 1.70300 0.851499 0.524357i \(-0.175694\pi\)
0.851499 + 0.524357i \(0.175694\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 135.000i − 0.363881i
\(372\) 0 0
\(373\) −170.000 −0.455764 −0.227882 0.973689i \(-0.573180\pi\)
−0.227882 + 0.973689i \(0.573180\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 300.000i − 0.795756i
\(378\) 0 0
\(379\) 704.000 1.85752 0.928760 0.370682i \(-0.120876\pi\)
0.928760 + 0.370682i \(0.120876\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 618.000i − 1.61358i −0.590840 0.806789i \(-0.701204\pi\)
0.590840 0.806789i \(-0.298796\pi\)
\(384\) 0 0
\(385\) −225.000 −0.584416
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 525.000i − 1.34961i −0.737994 0.674807i \(-0.764227\pi\)
0.737994 0.674807i \(-0.235773\pi\)
\(390\) 0 0
\(391\) −216.000 −0.552430
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 42.0000i − 0.106329i
\(396\) 0 0
\(397\) 70.0000 0.176322 0.0881612 0.996106i \(-0.471901\pi\)
0.0881612 + 0.996106i \(0.471901\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 120.000i − 0.299252i −0.988743 0.149626i \(-0.952193\pi\)
0.988743 0.149626i \(-0.0478069\pi\)
\(402\) 0 0
\(403\) 10.0000 0.0248139
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 300.000i 0.737101i
\(408\) 0 0
\(409\) 269.000 0.657702 0.328851 0.944382i \(-0.393339\pi\)
0.328851 + 0.944382i \(0.393339\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 150.000i 0.363196i
\(414\) 0 0
\(415\) −9.00000 −0.0216867
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 210.000i − 0.501193i −0.968092 0.250597i \(-0.919373\pi\)
0.968092 0.250597i \(-0.0806268\pi\)
\(420\) 0 0
\(421\) −644.000 −1.52969 −0.764846 0.644214i \(-0.777185\pi\)
−0.764846 + 0.644214i \(0.777185\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 288.000i 0.677647i
\(426\) 0 0
\(427\) −380.000 −0.889930
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 270.000i − 0.626450i −0.949679 0.313225i \(-0.898591\pi\)
0.949679 0.313225i \(-0.101409\pi\)
\(432\) 0 0
\(433\) −565.000 −1.30485 −0.652425 0.757853i \(-0.726248\pi\)
−0.652425 + 0.757853i \(0.726248\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 192.000i − 0.439359i
\(438\) 0 0
\(439\) 211.000 0.480638 0.240319 0.970694i \(-0.422748\pi\)
0.240319 + 0.970694i \(0.422748\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 498.000i 1.12415i 0.827085 + 0.562077i \(0.189997\pi\)
−0.827085 + 0.562077i \(0.810003\pi\)
\(444\) 0 0
\(445\) −270.000 −0.606742
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 360.000i − 0.801782i −0.916126 0.400891i \(-0.868701\pi\)
0.916126 0.400891i \(-0.131299\pi\)
\(450\) 0 0
\(451\) 900.000 1.99557
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) − 150.000i − 0.329670i
\(456\) 0 0
\(457\) 365.000 0.798687 0.399344 0.916801i \(-0.369238\pi\)
0.399344 + 0.916801i \(0.369238\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 105.000i 0.227766i 0.993494 + 0.113883i \(0.0363289\pi\)
−0.993494 + 0.113883i \(0.963671\pi\)
\(462\) 0 0
\(463\) −215.000 −0.464363 −0.232181 0.972672i \(-0.574586\pi\)
−0.232181 + 0.972672i \(0.574586\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 63.0000i 0.134904i 0.997723 + 0.0674518i \(0.0214869\pi\)
−0.997723 + 0.0674518i \(0.978513\pi\)
\(468\) 0 0
\(469\) 50.0000 0.106610
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 750.000i − 1.58562i
\(474\) 0 0
\(475\) −256.000 −0.538947
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 750.000i − 1.56576i −0.622171 0.782881i \(-0.713749\pi\)
0.622171 0.782881i \(-0.286251\pi\)
\(480\) 0 0
\(481\) −200.000 −0.415800
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 255.000i − 0.525773i
\(486\) 0 0
\(487\) −110.000 −0.225873 −0.112936 0.993602i \(-0.536026\pi\)
−0.112936 + 0.993602i \(0.536026\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 645.000i 1.31365i 0.754045 + 0.656823i \(0.228100\pi\)
−0.754045 + 0.656823i \(0.771900\pi\)
\(492\) 0 0
\(493\) 540.000 1.09533
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 450.000i − 0.905433i
\(498\) 0 0
\(499\) −766.000 −1.53507 −0.767535 0.641007i \(-0.778517\pi\)
−0.767535 + 0.641007i \(0.778517\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 828.000i − 1.64612i −0.567952 0.823062i \(-0.692264\pi\)
0.567952 0.823062i \(-0.307736\pi\)
\(504\) 0 0
\(505\) −585.000 −1.15842
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 555.000i − 1.09037i −0.838315 0.545187i \(-0.816459\pi\)
0.838315 0.545187i \(-0.183541\pi\)
\(510\) 0 0
\(511\) −325.000 −0.636008
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 510.000i − 0.990291i
\(516\) 0 0
\(517\) 90.0000 0.174081
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 450.000i − 0.863724i −0.901940 0.431862i \(-0.857857\pi\)
0.901940 0.431862i \(-0.142143\pi\)
\(522\) 0 0
\(523\) −250.000 −0.478011 −0.239006 0.971018i \(-0.576821\pi\)
−0.239006 + 0.971018i \(0.576821\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 18.0000i 0.0341556i
\(528\) 0 0
\(529\) 385.000 0.727788
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 600.000i 1.12570i
\(534\) 0 0
\(535\) −567.000 −1.05981
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 360.000i 0.667904i
\(540\) 0 0
\(541\) 268.000 0.495379 0.247689 0.968839i \(-0.420329\pi\)
0.247689 + 0.968839i \(0.420329\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 492.000i − 0.902752i
\(546\) 0 0
\(547\) 410.000 0.749543 0.374771 0.927117i \(-0.377721\pi\)
0.374771 + 0.927117i \(0.377721\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 480.000i 0.871143i
\(552\) 0 0
\(553\) 70.0000 0.126582
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 639.000i − 1.14722i −0.819130 0.573609i \(-0.805543\pi\)
0.819130 0.573609i \(-0.194457\pi\)
\(558\) 0 0
\(559\) 500.000 0.894454
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 201.000i − 0.357016i −0.983938 0.178508i \(-0.942873\pi\)
0.983938 0.178508i \(-0.0571270\pi\)
\(564\) 0 0
\(565\) −72.0000 −0.127434
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 240.000i − 0.421793i −0.977508 0.210896i \(-0.932362\pi\)
0.977508 0.210896i \(-0.0676382\pi\)
\(570\) 0 0
\(571\) −946.000 −1.65674 −0.828371 0.560179i \(-0.810732\pi\)
−0.828371 + 0.560179i \(0.810732\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 192.000i 0.333913i
\(576\) 0 0
\(577\) 830.000 1.43847 0.719237 0.694764i \(-0.244491\pi\)
0.719237 + 0.694764i \(0.244491\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 15.0000i − 0.0258176i
\(582\) 0 0
\(583\) 405.000 0.694683
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 453.000i 0.771721i 0.922557 + 0.385860i \(0.126095\pi\)
−0.922557 + 0.385860i \(0.873905\pi\)
\(588\) 0 0
\(589\) −16.0000 −0.0271647
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 702.000i − 1.18381i −0.806007 0.591906i \(-0.798376\pi\)
0.806007 0.591906i \(-0.201624\pi\)
\(594\) 0 0
\(595\) 270.000 0.453782
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 1110.00i 1.85309i 0.376186 + 0.926544i \(0.377235\pi\)
−0.376186 + 0.926544i \(0.622765\pi\)
\(600\) 0 0
\(601\) 869.000 1.44592 0.722962 0.690888i \(-0.242780\pi\)
0.722962 + 0.690888i \(0.242780\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 312.000i − 0.515702i
\(606\) 0 0
\(607\) −530.000 −0.873147 −0.436573 0.899669i \(-0.643808\pi\)
−0.436573 + 0.899669i \(0.643808\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 60.0000i 0.0981997i
\(612\) 0 0
\(613\) 70.0000 0.114192 0.0570962 0.998369i \(-0.481816\pi\)
0.0570962 + 0.998369i \(0.481816\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 552.000i − 0.894652i −0.894371 0.447326i \(-0.852376\pi\)
0.894371 0.447326i \(-0.147624\pi\)
\(618\) 0 0
\(619\) 662.000 1.06947 0.534733 0.845021i \(-0.320412\pi\)
0.534733 + 0.845021i \(0.320412\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 450.000i − 0.722311i
\(624\) 0 0
\(625\) 31.0000 0.0496000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 360.000i − 0.572337i
\(630\) 0 0
\(631\) 331.000 0.524564 0.262282 0.964991i \(-0.415525\pi\)
0.262282 + 0.964991i \(0.415525\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 615.000i 0.968504i
\(636\) 0 0
\(637\) −240.000 −0.376766
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 60.0000i − 0.0936037i −0.998904 0.0468019i \(-0.985097\pi\)
0.998904 0.0468019i \(-0.0149029\pi\)
\(642\) 0 0
\(643\) 440.000 0.684292 0.342146 0.939647i \(-0.388846\pi\)
0.342146 + 0.939647i \(0.388846\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 972.000i 1.50232i 0.660121 + 0.751159i \(0.270505\pi\)
−0.660121 + 0.751159i \(0.729495\pi\)
\(648\) 0 0
\(649\) −450.000 −0.693374
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 483.000i − 0.739663i −0.929099 0.369832i \(-0.879415\pi\)
0.929099 0.369832i \(-0.120585\pi\)
\(654\) 0 0
\(655\) −45.0000 −0.0687023
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 825.000i − 1.25190i −0.779864 0.625948i \(-0.784712\pi\)
0.779864 0.625948i \(-0.215288\pi\)
\(660\) 0 0
\(661\) 928.000 1.40393 0.701967 0.712210i \(-0.252306\pi\)
0.701967 + 0.712210i \(0.252306\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 240.000i 0.360902i
\(666\) 0 0
\(667\) 360.000 0.539730
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) − 1140.00i − 1.69896i
\(672\) 0 0
\(673\) −985.000 −1.46360 −0.731798 0.681522i \(-0.761319\pi\)
−0.731798 + 0.681522i \(0.761319\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 354.000i − 0.522895i −0.965218 0.261448i \(-0.915800\pi\)
0.965218 0.261448i \(-0.0841998\pi\)
\(678\) 0 0
\(679\) 425.000 0.625920
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 198.000i 0.289898i 0.989439 + 0.144949i \(0.0463017\pi\)
−0.989439 + 0.144949i \(0.953698\pi\)
\(684\) 0 0
\(685\) −414.000 −0.604380
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 270.000i 0.391872i
\(690\) 0 0
\(691\) −436.000 −0.630970 −0.315485 0.948931i \(-0.602167\pi\)
−0.315485 + 0.948931i \(0.602167\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 84.0000i − 0.120863i
\(696\) 0 0
\(697\) −1080.00 −1.54950
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 135.000i − 0.192582i −0.995353 0.0962910i \(-0.969302\pi\)
0.995353 0.0962910i \(-0.0306979\pi\)
\(702\) 0 0
\(703\) 320.000 0.455192
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 975.000i − 1.37907i
\(708\) 0 0
\(709\) −32.0000 −0.0451340 −0.0225670 0.999745i \(-0.507184\pi\)
−0.0225670 + 0.999745i \(0.507184\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 12.0000i 0.0168303i
\(714\) 0 0
\(715\) 450.000 0.629371
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 900.000i 1.25174i 0.779928 + 0.625869i \(0.215256\pi\)
−0.779928 + 0.625869i \(0.784744\pi\)
\(720\) 0 0
\(721\) 850.000 1.17892
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 480.000i − 0.662069i
\(726\) 0 0
\(727\) 175.000 0.240715 0.120358 0.992731i \(-0.461596\pi\)
0.120358 + 0.992731i \(0.461596\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 900.000i 1.23119i
\(732\) 0 0
\(733\) −1160.00 −1.58254 −0.791269 0.611469i \(-0.790579\pi\)
−0.791269 + 0.611469i \(0.790579\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 150.000i 0.203528i
\(738\) 0 0
\(739\) −1006.00 −1.36130 −0.680650 0.732609i \(-0.738302\pi\)
−0.680650 + 0.732609i \(0.738302\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 114.000i − 0.153432i −0.997053 0.0767160i \(-0.975557\pi\)
0.997053 0.0767160i \(-0.0244435\pi\)
\(744\) 0 0
\(745\) −225.000 −0.302013
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 945.000i − 1.26168i
\(750\) 0 0
\(751\) −359.000 −0.478029 −0.239015 0.971016i \(-0.576824\pi\)
−0.239015 + 0.971016i \(0.576824\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 231.000i − 0.305960i
\(756\) 0 0
\(757\) 430.000 0.568032 0.284016 0.958820i \(-0.408333\pi\)
0.284016 + 0.958820i \(0.408333\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1320.00i 1.73456i 0.497821 + 0.867280i \(0.334134\pi\)
−0.497821 + 0.867280i \(0.665866\pi\)
\(762\) 0 0
\(763\) 820.000 1.07471
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 300.000i − 0.391134i
\(768\) 0 0
\(769\) 1259.00 1.63719 0.818596 0.574370i \(-0.194753\pi\)
0.818596 + 0.574370i \(0.194753\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 522.000i 0.675291i 0.941273 + 0.337646i \(0.109631\pi\)
−0.941273 + 0.337646i \(0.890369\pi\)
\(774\) 0 0
\(775\) 16.0000 0.0206452
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 960.000i − 1.23235i
\(780\) 0 0
\(781\) 1350.00 1.72855
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 300.000i 0.382166i
\(786\) 0 0
\(787\) −460.000 −0.584498 −0.292249 0.956342i \(-0.594404\pi\)
−0.292249 + 0.956342i \(0.594404\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) − 120.000i − 0.151707i
\(792\) 0 0
\(793\) 760.000 0.958386
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 237.000i 0.297365i 0.988885 + 0.148683i \(0.0475033\pi\)
−0.988885 + 0.148683i \(0.952497\pi\)
\(798\) 0 0
\(799\) −108.000 −0.135169
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 975.000i − 1.21420i
\(804\) 0 0
\(805\) 180.000 0.223602
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 810.000i 1.00124i 0.865668 + 0.500618i \(0.166894\pi\)
−0.865668 + 0.500618i \(0.833106\pi\)
\(810\) 0 0
\(811\) 272.000 0.335388 0.167694 0.985839i \(-0.446368\pi\)
0.167694 + 0.985839i \(0.446368\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 330.000i 0.404908i
\(816\) 0 0
\(817\) −800.000 −0.979192
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 390.000i − 0.475030i −0.971384 0.237515i \(-0.923667\pi\)
0.971384 0.237515i \(-0.0763330\pi\)
\(822\) 0 0
\(823\) −1205.00 −1.46416 −0.732078 0.681221i \(-0.761449\pi\)
−0.732078 + 0.681221i \(0.761449\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 18.0000i 0.0217654i 0.999941 + 0.0108827i \(0.00346414\pi\)
−0.999941 + 0.0108827i \(0.996536\pi\)
\(828\) 0 0
\(829\) −1442.00 −1.73945 −0.869723 0.493541i \(-0.835702\pi\)
−0.869723 + 0.493541i \(0.835702\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 432.000i − 0.518607i
\(834\) 0 0
\(835\) 234.000 0.280240
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 1590.00i 1.89511i 0.319588 + 0.947557i \(0.396456\pi\)
−0.319588 + 0.947557i \(0.603544\pi\)
\(840\) 0 0
\(841\) −59.0000 −0.0701546
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 207.000i − 0.244970i
\(846\) 0 0
\(847\) 520.000 0.613932
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 240.000i − 0.282021i
\(852\) 0 0
\(853\) −590.000 −0.691676 −0.345838 0.938294i \(-0.612405\pi\)
−0.345838 + 0.938294i \(0.612405\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 1302.00i − 1.51925i −0.650359 0.759627i \(-0.725382\pi\)
0.650359 0.759627i \(-0.274618\pi\)
\(858\) 0 0
\(859\) −316.000 −0.367870 −0.183935 0.982938i \(-0.558884\pi\)
−0.183935 + 0.982938i \(0.558884\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 1188.00i − 1.37659i −0.725429 0.688297i \(-0.758359\pi\)
0.725429 0.688297i \(-0.241641\pi\)
\(864\) 0 0
\(865\) −531.000 −0.613873
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 210.000i 0.241657i
\(870\) 0 0
\(871\) −100.000 −0.114811
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 615.000i − 0.702857i
\(876\) 0 0
\(877\) 550.000 0.627138 0.313569 0.949565i \(-0.398475\pi\)
0.313569 + 0.949565i \(0.398475\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 90.0000i − 0.102157i −0.998695 0.0510783i \(-0.983734\pi\)
0.998695 0.0510783i \(-0.0162658\pi\)
\(882\) 0 0
\(883\) −880.000 −0.996602 −0.498301 0.867004i \(-0.666043\pi\)
−0.498301 + 0.867004i \(0.666043\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 282.000i 0.317926i 0.987285 + 0.158963i \(0.0508150\pi\)
−0.987285 + 0.158963i \(0.949185\pi\)
\(888\) 0 0
\(889\) −1025.00 −1.15298
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 96.0000i − 0.107503i
\(894\) 0 0
\(895\) 675.000 0.754190
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 30.0000i − 0.0333704i
\(900\) 0 0
\(901\) −486.000 −0.539401
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 48.0000i 0.0530387i
\(906\) 0 0
\(907\) −1300.00 −1.43330 −0.716648 0.697435i \(-0.754325\pi\)
−0.716648 + 0.697435i \(0.754325\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) − 210.000i − 0.230516i −0.993336 0.115258i \(-0.963231\pi\)
0.993336 0.115258i \(-0.0367695\pi\)
\(912\) 0 0
\(913\) 45.0000 0.0492881
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 75.0000i − 0.0817884i
\(918\) 0 0
\(919\) −137.000 −0.149075 −0.0745375 0.997218i \(-0.523748\pi\)
−0.0745375 + 0.997218i \(0.523748\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 900.000i 0.975081i
\(924\) 0 0
\(925\) −320.000 −0.345946
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 660.000i 0.710441i 0.934782 + 0.355221i \(0.115594\pi\)
−0.934782 + 0.355221i \(0.884406\pi\)
\(930\) 0 0
\(931\) 384.000 0.412460
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 810.000i 0.866310i
\(936\) 0 0
\(937\) 605.000 0.645678 0.322839 0.946454i \(-0.395363\pi\)
0.322839 + 0.946454i \(0.395363\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1605.00i 1.70563i 0.522211 + 0.852816i \(0.325107\pi\)
−0.522211 + 0.852816i \(0.674893\pi\)
\(942\) 0 0
\(943\) −720.000 −0.763521
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 543.000i 0.573390i 0.958022 + 0.286695i \(0.0925566\pi\)
−0.958022 + 0.286695i \(0.907443\pi\)
\(948\) 0 0
\(949\) 650.000 0.684932
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 144.000i 0.151102i 0.997142 + 0.0755509i \(0.0240715\pi\)
−0.997142 + 0.0755509i \(0.975928\pi\)
\(954\) 0 0
\(955\) 90.0000 0.0942408
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) − 690.000i − 0.719499i
\(960\) 0 0
\(961\) −960.000 −0.998959
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 645.000i 0.668394i
\(966\) 0 0
\(967\) −845.000 −0.873837 −0.436918 0.899501i \(-0.643930\pi\)
−0.436918 + 0.899501i \(0.643930\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 405.000i 0.417096i 0.978012 + 0.208548i \(0.0668737\pi\)
−0.978012 + 0.208548i \(0.933126\pi\)
\(972\) 0 0
\(973\) 140.000 0.143885
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 246.000i − 0.251791i −0.992043 0.125896i \(-0.959820\pi\)
0.992043 0.125896i \(-0.0401804\pi\)
\(978\) 0 0
\(979\) 1350.00 1.37896
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) − 1038.00i − 1.05595i −0.849260 0.527976i \(-0.822951\pi\)
0.849260 0.527976i \(-0.177049\pi\)
\(984\) 0 0
\(985\) −621.000 −0.630457
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 600.000i 0.606673i
\(990\) 0 0
\(991\) 1501.00 1.51463 0.757316 0.653049i \(-0.226510\pi\)
0.757316 + 0.653049i \(0.226510\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 669.000i 0.672362i
\(996\) 0 0
\(997\) −770.000 −0.772317 −0.386158 0.922432i \(-0.626198\pi\)
−0.386158 + 0.922432i \(0.626198\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1728.3.e.g.1025.2 2
3.2 odd 2 inner 1728.3.e.g.1025.1 2
4.3 odd 2 1728.3.e.m.1025.2 2
8.3 odd 2 27.3.b.b.26.2 yes 2
8.5 even 2 432.3.e.c.161.1 2
12.11 even 2 1728.3.e.m.1025.1 2
24.5 odd 2 432.3.e.c.161.2 2
24.11 even 2 27.3.b.b.26.1 2
40.3 even 4 675.3.d.d.674.1 2
40.19 odd 2 675.3.c.h.26.1 2
40.27 even 4 675.3.d.a.674.2 2
72.5 odd 6 1296.3.q.j.593.2 4
72.11 even 6 81.3.d.b.53.1 4
72.13 even 6 1296.3.q.j.593.1 4
72.29 odd 6 1296.3.q.j.1025.1 4
72.43 odd 6 81.3.d.b.53.2 4
72.59 even 6 81.3.d.b.26.2 4
72.61 even 6 1296.3.q.j.1025.2 4
72.67 odd 6 81.3.d.b.26.1 4
120.59 even 2 675.3.c.h.26.2 2
120.83 odd 4 675.3.d.a.674.1 2
120.107 odd 4 675.3.d.d.674.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.3.b.b.26.1 2 24.11 even 2
27.3.b.b.26.2 yes 2 8.3 odd 2
81.3.d.b.26.1 4 72.67 odd 6
81.3.d.b.26.2 4 72.59 even 6
81.3.d.b.53.1 4 72.11 even 6
81.3.d.b.53.2 4 72.43 odd 6
432.3.e.c.161.1 2 8.5 even 2
432.3.e.c.161.2 2 24.5 odd 2
675.3.c.h.26.1 2 40.19 odd 2
675.3.c.h.26.2 2 120.59 even 2
675.3.d.a.674.1 2 120.83 odd 4
675.3.d.a.674.2 2 40.27 even 4
675.3.d.d.674.1 2 40.3 even 4
675.3.d.d.674.2 2 120.107 odd 4
1296.3.q.j.593.1 4 72.13 even 6
1296.3.q.j.593.2 4 72.5 odd 6
1296.3.q.j.1025.1 4 72.29 odd 6
1296.3.q.j.1025.2 4 72.61 even 6
1728.3.e.g.1025.1 2 3.2 odd 2 inner
1728.3.e.g.1025.2 2 1.1 even 1 trivial
1728.3.e.m.1025.1 2 12.11 even 2
1728.3.e.m.1025.2 2 4.3 odd 2