Properties

Label 1728.3.b.h
Level $1728$
Weight $3$
Character orbit 1728.b
Analytic conductor $47.085$
Analytic rank $0$
Dimension $8$
CM discriminant -24
Inner twists $8$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1728.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(47.0845896815\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{24})\)
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{14}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{3} q^{5} + ( - \beta_{4} + 2 \beta_1) q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_{3} q^{5} + ( - \beta_{4} + 2 \beta_1) q^{7} + ( - \beta_{6} + 2 \beta_{2}) q^{11} + (\beta_{7} - 2) q^{25} + ( - \beta_{5} + 5 \beta_{3}) q^{29} + ( - 5 \beta_{4} + 7 \beta_1) q^{31} + ( - 4 \beta_{6} + 11 \beta_{2}) q^{35} + (5 \beta_{7} - 48) q^{49} + ( - 7 \beta_{5} - 12 \beta_{3}) q^{53} + (7 \beta_{4} - 28 \beta_1) q^{55} + (12 \beta_{6} - 4 \beta_{2}) q^{59} + ( - 7 \beta_{7} + 25) q^{73} + ( - 8 \beta_{5} - 33 \beta_{3}) q^{77} + 29 \beta_1 q^{79} + ( - 5 \beta_{6} + 24 \beta_{2}) q^{83} + ( - 2 \beta_{7} + 95) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 16 q^{25} - 384 q^{49} + 200 q^{73} + 760 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( -2\zeta_{24}^{6} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -3\zeta_{24}^{6} + 6\zeta_{24}^{2} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -4\zeta_{24}^{7} - 2\zeta_{24}^{5} + 2\zeta_{24}^{4} + 2\zeta_{24}^{3} - 2\zeta_{24} - 1 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \zeta_{24}^{6} - 6\zeta_{24}^{5} - 6\zeta_{24}^{3} + 6\zeta_{24} \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( 4\zeta_{24}^{7} + 2\zeta_{24}^{5} + 10\zeta_{24}^{4} - 2\zeta_{24}^{3} + 2\zeta_{24} - 5 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( -8\zeta_{24}^{7} - \zeta_{24}^{6} + 4\zeta_{24}^{5} + 4\zeta_{24}^{3} + 2\zeta_{24}^{2} + 4\zeta_{24} \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( -12\zeta_{24}^{5} + 12\zeta_{24}^{3} + 12\zeta_{24} \) Copy content Toggle raw display
\(\zeta_{24}\)\(=\) \( ( \beta_{7} + 3\beta_{6} + \beta_{5} + 2\beta_{4} - 5\beta_{3} - \beta_{2} + \beta_1 ) / 48 \) Copy content Toggle raw display
\(\zeta_{24}^{2}\)\(=\) \( ( 2\beta_{2} - 3\beta_1 ) / 12 \) Copy content Toggle raw display
\(\zeta_{24}^{3}\)\(=\) \( ( \beta_{7} - 2\beta_{4} - \beta_1 ) / 24 \) Copy content Toggle raw display
\(\zeta_{24}^{4}\)\(=\) \( ( \beta_{5} + \beta_{3} + 6 ) / 12 \) Copy content Toggle raw display
\(\zeta_{24}^{5}\)\(=\) \( ( -\beta_{7} + 3\beta_{6} + \beta_{5} - 2\beta_{4} - 5\beta_{3} - \beta_{2} - \beta_1 ) / 48 \) Copy content Toggle raw display
\(\zeta_{24}^{6}\)\(=\) \( ( -\beta_1 ) / 2 \) Copy content Toggle raw display
\(\zeta_{24}^{7}\)\(=\) \( ( \beta_{7} - 3\beta_{6} + \beta_{5} - 2\beta_{4} - 5\beta_{3} + \beta_{2} - \beta_1 ) / 48 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1728\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(703\) \(1217\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1567.1
0.258819 + 0.965926i
−0.965926 + 0.258819i
−0.258819 + 0.965926i
0.965926 + 0.258819i
0.965926 0.258819i
−0.258819 0.965926i
−0.965926 0.258819i
0.258819 0.965926i
0 0 0 6.63103i 0 13.4853i 0 0 0
1567.2 0 0 0 6.63103i 0 13.4853i 0 0 0
1567.3 0 0 0 3.16693i 0 3.48528i 0 0 0
1567.4 0 0 0 3.16693i 0 3.48528i 0 0 0
1567.5 0 0 0 3.16693i 0 3.48528i 0 0 0
1567.6 0 0 0 3.16693i 0 3.48528i 0 0 0
1567.7 0 0 0 6.63103i 0 13.4853i 0 0 0
1567.8 0 0 0 6.63103i 0 13.4853i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1567.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
24.h odd 2 1 CM by \(\Q(\sqrt{-6}) \)
3.b odd 2 1 inner
4.b odd 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner
12.b even 2 1 inner
24.f even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1728.3.b.h 8
3.b odd 2 1 inner 1728.3.b.h 8
4.b odd 2 1 inner 1728.3.b.h 8
8.b even 2 1 inner 1728.3.b.h 8
8.d odd 2 1 inner 1728.3.b.h 8
12.b even 2 1 inner 1728.3.b.h 8
24.f even 2 1 inner 1728.3.b.h 8
24.h odd 2 1 CM 1728.3.b.h 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1728.3.b.h 8 1.a even 1 1 trivial
1728.3.b.h 8 3.b odd 2 1 inner
1728.3.b.h 8 4.b odd 2 1 inner
1728.3.b.h 8 8.b even 2 1 inner
1728.3.b.h 8 8.d odd 2 1 inner
1728.3.b.h 8 12.b even 2 1 inner
1728.3.b.h 8 24.f even 2 1 inner
1728.3.b.h 8 24.h odd 2 1 CM

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(1728, [\chi])\):

\( T_{5}^{4} + 54T_{5}^{2} + 441 \) Copy content Toggle raw display
\( T_{7}^{4} + 194T_{7}^{2} + 2209 \) Copy content Toggle raw display
\( T_{11}^{4} - 342T_{11}^{2} + 441 \) Copy content Toggle raw display
\( T_{17} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( (T^{4} + 54 T^{2} + 441)^{2} \) Copy content Toggle raw display
$7$ \( (T^{4} + 194 T^{2} + 2209)^{2} \) Copy content Toggle raw display
$11$ \( (T^{4} - 342 T^{2} + 441)^{2} \) Copy content Toggle raw display
$13$ \( T^{8} \) Copy content Toggle raw display
$17$ \( T^{8} \) Copy content Toggle raw display
$19$ \( T^{8} \) Copy content Toggle raw display
$23$ \( T^{8} \) Copy content Toggle raw display
$29$ \( (T^{2} + 864)^{4} \) Copy content Toggle raw display
$31$ \( (T^{4} + 4322 T^{2} + 2070721)^{2} \) Copy content Toggle raw display
$37$ \( T^{8} \) Copy content Toggle raw display
$41$ \( T^{8} \) Copy content Toggle raw display
$43$ \( T^{8} \) Copy content Toggle raw display
$47$ \( T^{8} \) Copy content Toggle raw display
$53$ \( (T^{4} + 14454 T^{2} + 36324729)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} - 13824)^{4} \) Copy content Toggle raw display
$61$ \( T^{8} \) Copy content Toggle raw display
$67$ \( T^{8} \) Copy content Toggle raw display
$71$ \( T^{8} \) Copy content Toggle raw display
$73$ \( (T^{2} - 50 T - 13487)^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} + 3364)^{4} \) Copy content Toggle raw display
$83$ \( (T^{4} - 31734 T^{2} + \cdots + 122478489)^{2} \) Copy content Toggle raw display
$89$ \( T^{8} \) Copy content Toggle raw display
$97$ \( (T^{2} - 190 T + 7873)^{4} \) Copy content Toggle raw display
show more
show less