Properties

Label 1728.2.s.c
Level $1728$
Weight $2$
Character orbit 1728.s
Analytic conductor $13.798$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1728.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(13.7981494693\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{6} + 2) q^{5} + ( - \zeta_{6} - 1) q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \zeta_{6} + 2) q^{5} + ( - \zeta_{6} - 1) q^{7} + ( - 3 \zeta_{6} + 3) q^{11} - 5 \zeta_{6} q^{13} + (8 \zeta_{6} - 4) q^{17} + ( - 4 \zeta_{6} + 2) q^{19} - 9 \zeta_{6} q^{23} + (2 \zeta_{6} - 2) q^{25} + (\zeta_{6} + 1) q^{29} + (3 \zeta_{6} - 6) q^{31} - 3 q^{35} - 2 q^{37} + ( - 3 \zeta_{6} + 6) q^{41} + ( - 3 \zeta_{6} - 3) q^{43} + (3 \zeta_{6} - 3) q^{47} - 4 \zeta_{6} q^{49} + ( - 6 \zeta_{6} + 3) q^{55} - 3 \zeta_{6} q^{59} + (\zeta_{6} - 1) q^{61} + ( - 5 \zeta_{6} - 5) q^{65} + (5 \zeta_{6} - 10) q^{67} + 12 q^{71} - 2 q^{73} + (3 \zeta_{6} - 6) q^{77} + ( - 5 \zeta_{6} - 5) q^{79} + ( - 15 \zeta_{6} + 15) q^{83} + 12 \zeta_{6} q^{85} + ( - 8 \zeta_{6} + 4) q^{89} + (10 \zeta_{6} - 5) q^{91} - 6 \zeta_{6} q^{95} + ( - 5 \zeta_{6} + 5) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{5} - 3 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 3 q^{5} - 3 q^{7} + 3 q^{11} - 5 q^{13} - 9 q^{23} - 2 q^{25} + 3 q^{29} - 9 q^{31} - 6 q^{35} - 4 q^{37} + 9 q^{41} - 9 q^{43} - 3 q^{47} - 4 q^{49} - 3 q^{59} - q^{61} - 15 q^{65} - 15 q^{67} + 24 q^{71} - 4 q^{73} - 9 q^{77} - 15 q^{79} + 15 q^{83} + 12 q^{85} - 6 q^{95} + 5 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1728\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(703\) \(1217\)
\(\chi(n)\) \(1\) \(-1\) \(\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
575.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0 0 1.50000 0.866025i 0 −1.50000 0.866025i 0 0 0
1151.1 0 0 0 1.50000 + 0.866025i 0 −1.50000 + 0.866025i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
36.h even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1728.2.s.c 2
3.b odd 2 1 576.2.s.b 2
4.b odd 2 1 1728.2.s.d 2
8.b even 2 1 432.2.s.a 2
8.d odd 2 1 432.2.s.b 2
9.c even 3 1 576.2.s.c 2
9.c even 3 1 5184.2.c.b 2
9.d odd 6 1 1728.2.s.d 2
9.d odd 6 1 5184.2.c.d 2
12.b even 2 1 576.2.s.c 2
24.f even 2 1 144.2.s.c yes 2
24.h odd 2 1 144.2.s.b 2
36.f odd 6 1 576.2.s.b 2
36.f odd 6 1 5184.2.c.d 2
36.h even 6 1 inner 1728.2.s.c 2
36.h even 6 1 5184.2.c.b 2
72.j odd 6 1 432.2.s.b 2
72.j odd 6 1 1296.2.c.a 2
72.l even 6 1 432.2.s.a 2
72.l even 6 1 1296.2.c.c 2
72.n even 6 1 144.2.s.c yes 2
72.n even 6 1 1296.2.c.c 2
72.p odd 6 1 144.2.s.b 2
72.p odd 6 1 1296.2.c.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
144.2.s.b 2 24.h odd 2 1
144.2.s.b 2 72.p odd 6 1
144.2.s.c yes 2 24.f even 2 1
144.2.s.c yes 2 72.n even 6 1
432.2.s.a 2 8.b even 2 1
432.2.s.a 2 72.l even 6 1
432.2.s.b 2 8.d odd 2 1
432.2.s.b 2 72.j odd 6 1
576.2.s.b 2 3.b odd 2 1
576.2.s.b 2 36.f odd 6 1
576.2.s.c 2 9.c even 3 1
576.2.s.c 2 12.b even 2 1
1296.2.c.a 2 72.j odd 6 1
1296.2.c.a 2 72.p odd 6 1
1296.2.c.c 2 72.l even 6 1
1296.2.c.c 2 72.n even 6 1
1728.2.s.c 2 1.a even 1 1 trivial
1728.2.s.c 2 36.h even 6 1 inner
1728.2.s.d 2 4.b odd 2 1
1728.2.s.d 2 9.d odd 6 1
5184.2.c.b 2 9.c even 3 1
5184.2.c.b 2 36.h even 6 1
5184.2.c.d 2 9.d odd 6 1
5184.2.c.d 2 36.f odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1728, [\chi])\):

\( T_{5}^{2} - 3T_{5} + 3 \) Copy content Toggle raw display
\( T_{7}^{2} + 3T_{7} + 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 3T + 3 \) Copy content Toggle raw display
$7$ \( T^{2} + 3T + 3 \) Copy content Toggle raw display
$11$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$13$ \( T^{2} + 5T + 25 \) Copy content Toggle raw display
$17$ \( T^{2} + 48 \) Copy content Toggle raw display
$19$ \( T^{2} + 12 \) Copy content Toggle raw display
$23$ \( T^{2} + 9T + 81 \) Copy content Toggle raw display
$29$ \( T^{2} - 3T + 3 \) Copy content Toggle raw display
$31$ \( T^{2} + 9T + 27 \) Copy content Toggle raw display
$37$ \( (T + 2)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 9T + 27 \) Copy content Toggle raw display
$43$ \( T^{2} + 9T + 27 \) Copy content Toggle raw display
$47$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$61$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$67$ \( T^{2} + 15T + 75 \) Copy content Toggle raw display
$71$ \( (T - 12)^{2} \) Copy content Toggle raw display
$73$ \( (T + 2)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 15T + 75 \) Copy content Toggle raw display
$83$ \( T^{2} - 15T + 225 \) Copy content Toggle raw display
$89$ \( T^{2} + 48 \) Copy content Toggle raw display
$97$ \( T^{2} - 5T + 25 \) Copy content Toggle raw display
show more
show less