Newspace parameters
Level: | \( N \) | \(=\) | \( 1728 = 2^{6} \cdot 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1728.r (of order \(6\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(13.7981494693\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{6})\) |
Coefficient field: | 8.0.12960000.1 |
Defining polynomial: |
\( x^{8} - 3x^{6} + 8x^{4} - 3x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{25}]\) |
Coefficient ring index: | \( 2^{4}\cdot 3^{2} \) |
Twist minimal: | no (minimal twist has level 576) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{8} - 3x^{6} + 8x^{4} - 3x^{2} + 1 \)
:
\(\beta_{1}\) | \(=\) |
\( ( \nu^{7} + 13\nu ) / 8 \)
|
\(\beta_{2}\) | \(=\) |
\( ( -3\nu^{6} + 8\nu^{4} - 24\nu^{2} + 9 ) / 8 \)
|
\(\beta_{3}\) | \(=\) |
\( ( -3\nu^{7} + 8\nu^{5} - 20\nu^{3} + \nu ) / 4 \)
|
\(\beta_{4}\) | \(=\) |
\( ( -5\nu^{6} + 24\nu^{4} - 56\nu^{2} + 39 ) / 8 \)
|
\(\beta_{5}\) | \(=\) |
\( ( -5\nu^{7} + 16\nu^{5} - 44\nu^{3} + 31\nu ) / 4 \)
|
\(\beta_{6}\) | \(=\) |
\( ( -11\nu^{6} + 24\nu^{4} - 56\nu^{2} - 15 ) / 8 \)
|
\(\beta_{7}\) | \(=\) |
\( ( 13\nu^{7} - 32\nu^{5} + 88\nu^{3} + 25\nu ) / 8 \)
|
\(\nu\) | \(=\) |
\( ( \beta_{7} + \beta_{5} - 3\beta_1 ) / 6 \)
|
\(\nu^{2}\) | \(=\) |
\( ( 2\beta_{6} + \beta_{4} - 9\beta_{2} + 9 ) / 6 \)
|
\(\nu^{3}\) | \(=\) |
\( ( 2\beta_{7} - \beta_{5} + 6\beta_{3} ) / 3 \)
|
\(\nu^{4}\) | \(=\) |
\( ( \beta_{6} + 2\beta_{4} - 7\beta_{2} ) / 2 \)
|
\(\nu^{5}\) | \(=\) |
\( ( 5\beta_{7} - 10\beta_{5} + 33\beta_{3} + 33\beta_1 ) / 6 \)
|
\(\nu^{6}\) | \(=\) |
\( ( -4\beta_{6} + 4\beta_{4} - 27 ) / 3 \)
|
\(\nu^{7}\) | \(=\) |
\( ( -13\beta_{7} - 13\beta_{5} + 87\beta_1 ) / 6 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1728\mathbb{Z}\right)^\times\).
\(n\) | \(325\) | \(703\) | \(1217\) |
\(\chi(n)\) | \(-1\) | \(1\) | \(-1 + \beta_{2}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
289.1 |
|
0 | 0 | 0 | −3.35410 | + | 1.93649i | 0 | −1.93649 | + | 3.35410i | 0 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||
289.2 | 0 | 0 | 0 | −3.35410 | + | 1.93649i | 0 | 1.93649 | − | 3.35410i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||
289.3 | 0 | 0 | 0 | 3.35410 | − | 1.93649i | 0 | −1.93649 | + | 3.35410i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||
289.4 | 0 | 0 | 0 | 3.35410 | − | 1.93649i | 0 | 1.93649 | − | 3.35410i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||
1441.1 | 0 | 0 | 0 | −3.35410 | − | 1.93649i | 0 | −1.93649 | − | 3.35410i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||
1441.2 | 0 | 0 | 0 | −3.35410 | − | 1.93649i | 0 | 1.93649 | + | 3.35410i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||
1441.3 | 0 | 0 | 0 | 3.35410 | + | 1.93649i | 0 | −1.93649 | − | 3.35410i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||
1441.4 | 0 | 0 | 0 | 3.35410 | + | 1.93649i | 0 | 1.93649 | + | 3.35410i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
8.b | even | 2 | 1 | inner |
8.d | odd | 2 | 1 | inner |
9.c | even | 3 | 1 | inner |
36.f | odd | 6 | 1 | inner |
72.n | even | 6 | 1 | inner |
72.p | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1728.2.r.d | 8 | |
3.b | odd | 2 | 1 | 576.2.r.d | ✓ | 8 | |
4.b | odd | 2 | 1 | inner | 1728.2.r.d | 8 | |
8.b | even | 2 | 1 | inner | 1728.2.r.d | 8 | |
8.d | odd | 2 | 1 | inner | 1728.2.r.d | 8 | |
9.c | even | 3 | 1 | inner | 1728.2.r.d | 8 | |
9.c | even | 3 | 1 | 5184.2.d.g | 4 | ||
9.d | odd | 6 | 1 | 576.2.r.d | ✓ | 8 | |
9.d | odd | 6 | 1 | 5184.2.d.h | 4 | ||
12.b | even | 2 | 1 | 576.2.r.d | ✓ | 8 | |
24.f | even | 2 | 1 | 576.2.r.d | ✓ | 8 | |
24.h | odd | 2 | 1 | 576.2.r.d | ✓ | 8 | |
36.f | odd | 6 | 1 | inner | 1728.2.r.d | 8 | |
36.f | odd | 6 | 1 | 5184.2.d.g | 4 | ||
36.h | even | 6 | 1 | 576.2.r.d | ✓ | 8 | |
36.h | even | 6 | 1 | 5184.2.d.h | 4 | ||
72.j | odd | 6 | 1 | 576.2.r.d | ✓ | 8 | |
72.j | odd | 6 | 1 | 5184.2.d.h | 4 | ||
72.l | even | 6 | 1 | 576.2.r.d | ✓ | 8 | |
72.l | even | 6 | 1 | 5184.2.d.h | 4 | ||
72.n | even | 6 | 1 | inner | 1728.2.r.d | 8 | |
72.n | even | 6 | 1 | 5184.2.d.g | 4 | ||
72.p | odd | 6 | 1 | inner | 1728.2.r.d | 8 | |
72.p | odd | 6 | 1 | 5184.2.d.g | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
576.2.r.d | ✓ | 8 | 3.b | odd | 2 | 1 | |
576.2.r.d | ✓ | 8 | 9.d | odd | 6 | 1 | |
576.2.r.d | ✓ | 8 | 12.b | even | 2 | 1 | |
576.2.r.d | ✓ | 8 | 24.f | even | 2 | 1 | |
576.2.r.d | ✓ | 8 | 24.h | odd | 2 | 1 | |
576.2.r.d | ✓ | 8 | 36.h | even | 6 | 1 | |
576.2.r.d | ✓ | 8 | 72.j | odd | 6 | 1 | |
576.2.r.d | ✓ | 8 | 72.l | even | 6 | 1 | |
1728.2.r.d | 8 | 1.a | even | 1 | 1 | trivial | |
1728.2.r.d | 8 | 4.b | odd | 2 | 1 | inner | |
1728.2.r.d | 8 | 8.b | even | 2 | 1 | inner | |
1728.2.r.d | 8 | 8.d | odd | 2 | 1 | inner | |
1728.2.r.d | 8 | 9.c | even | 3 | 1 | inner | |
1728.2.r.d | 8 | 36.f | odd | 6 | 1 | inner | |
1728.2.r.d | 8 | 72.n | even | 6 | 1 | inner | |
1728.2.r.d | 8 | 72.p | odd | 6 | 1 | inner | |
5184.2.d.g | 4 | 9.c | even | 3 | 1 | ||
5184.2.d.g | 4 | 36.f | odd | 6 | 1 | ||
5184.2.d.g | 4 | 72.n | even | 6 | 1 | ||
5184.2.d.g | 4 | 72.p | odd | 6 | 1 | ||
5184.2.d.h | 4 | 9.d | odd | 6 | 1 | ||
5184.2.d.h | 4 | 36.h | even | 6 | 1 | ||
5184.2.d.h | 4 | 72.j | odd | 6 | 1 | ||
5184.2.d.h | 4 | 72.l | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{4} - 15T_{5}^{2} + 225 \)
acting on \(S_{2}^{\mathrm{new}}(1728, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{8} \)
$3$
\( T^{8} \)
$5$
\( (T^{4} - 15 T^{2} + 225)^{2} \)
$7$
\( (T^{4} + 15 T^{2} + 225)^{2} \)
$11$
\( (T^{4} - 9 T^{2} + 81)^{2} \)
$13$
\( (T^{4} - 15 T^{2} + 225)^{2} \)
$17$
\( T^{8} \)
$19$
\( (T^{2} + 4)^{4} \)
$23$
\( (T^{4} + 15 T^{2} + 225)^{2} \)
$29$
\( (T^{4} - 15 T^{2} + 225)^{2} \)
$31$
\( (T^{4} + 15 T^{2} + 225)^{2} \)
$37$
\( (T^{2} + 60)^{4} \)
$41$
\( (T^{2} - 9 T + 81)^{4} \)
$43$
\( (T^{4} - 49 T^{2} + 2401)^{2} \)
$47$
\( (T^{4} + 15 T^{2} + 225)^{2} \)
$53$
\( (T^{2} + 60)^{4} \)
$59$
\( (T^{4} - 9 T^{2} + 81)^{2} \)
$61$
\( (T^{4} - 135 T^{2} + 18225)^{2} \)
$67$
\( (T^{4} - 121 T^{2} + 14641)^{2} \)
$71$
\( (T^{2} - 60)^{4} \)
$73$
\( (T - 8)^{8} \)
$79$
\( (T^{4} + 15 T^{2} + 225)^{2} \)
$83$
\( (T^{4} - 9 T^{2} + 81)^{2} \)
$89$
\( (T - 12)^{8} \)
$97$
\( (T^{2} + T + 1)^{4} \)
show more
show less