Properties

Label 1728.2.p
Level $1728$
Weight $2$
Character orbit 1728.p
Rep. character $\chi_{1728}(287,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $48$
Newform subspaces $3$
Sturm bound $576$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1728.p (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 72 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 3 \)
Sturm bound: \(576\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1728, [\chi])\).

Total New Old
Modular forms 648 48 600
Cusp forms 504 48 456
Eisenstein series 144 0 144

Trace form

\( 48 q - 24 q^{25} - 72 q^{41} + 24 q^{49}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1728, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1728.2.p.a 1728.p 72.l $16$ $13.798$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 576.2.p.a \(0\) \(0\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(\beta _{2}+\beta _{3}+\beta _{5})q^{5}+(\beta _{10}+\beta _{12}+\beta _{14}+\cdots)q^{7}+\cdots\)
1728.2.p.b 1728.p 72.l $16$ $13.798$ 16.0.\(\cdots\).3 None 576.2.p.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{3}q^{5}+\beta _{14}q^{7}+(-\beta _{7}-\beta _{10})q^{11}+\cdots\)
1728.2.p.c 1728.p 72.l $16$ $13.798$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 576.2.p.a \(0\) \(0\) \(6\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(1+\beta _{3}+\beta _{5})q^{5}+(-\beta _{14}+\beta _{15})q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1728, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1728, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(216, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(576, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(864, [\chi])\)\(^{\oplus 2}\)