Defining parameters
Level: | \( N \) | \(=\) | \( 1728 = 2^{6} \cdot 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1728.p (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 72 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(576\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1728, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 648 | 48 | 600 |
Cusp forms | 504 | 48 | 456 |
Eisenstein series | 144 | 0 | 144 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1728, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1728.2.p.a | $16$ | $13.798$ | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) | None | \(0\) | \(0\) | \(-6\) | \(0\) | \(q+(\beta _{2}+\beta _{3}+\beta _{5})q^{5}+(\beta _{10}+\beta _{12}+\beta _{14}+\cdots)q^{7}+\cdots\) |
1728.2.p.b | $16$ | $13.798$ | 16.0.\(\cdots\).3 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{3}q^{5}+\beta _{14}q^{7}+(-\beta _{7}-\beta _{10})q^{11}+\cdots\) |
1728.2.p.c | $16$ | $13.798$ | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) | None | \(0\) | \(0\) | \(6\) | \(0\) | \(q+(1+\beta _{3}+\beta _{5})q^{5}+(-\beta _{14}+\beta _{15})q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1728, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1728, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(216, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(576, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(864, [\chi])\)\(^{\oplus 2}\)