Properties

Label 1728.2.f.g.863.1
Level $1728$
Weight $2$
Character 1728.863
Analytic conductor $13.798$
Analytic rank $0$
Dimension $8$
CM discriminant -24
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1728,2,Mod(863,1728)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1728, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1728.863");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1728.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.7981494693\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 863.1
Root \(-0.965926 + 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 1728.863
Dual form 1728.2.f.g.863.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.18154 q^{5} -5.24264i q^{7} +O(q^{10})\) \(q-4.18154 q^{5} -5.24264i q^{7} -3.16693i q^{11} +12.4853 q^{25} -10.3923 q^{29} -0.757359i q^{31} +21.9223i q^{35} -20.4853 q^{49} +10.5154 q^{53} +13.2426i q^{55} +10.3923i q^{59} -1.48528 q^{73} -16.6031 q^{77} +10.0000i q^{79} +13.5592i q^{83} -17.9706 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 32 q^{25} - 96 q^{49} + 56 q^{73} - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1728\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(703\) \(1217\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −4.18154 −1.87004 −0.935021 0.354593i \(-0.884620\pi\)
−0.935021 + 0.354593i \(0.884620\pi\)
\(6\) 0 0
\(7\) − 5.24264i − 1.98153i −0.135583 0.990766i \(-0.543291\pi\)
0.135583 0.990766i \(-0.456709\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 3.16693i − 0.954865i −0.878668 0.477432i \(-0.841568\pi\)
0.878668 0.477432i \(-0.158432\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 12.4853 2.49706
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −10.3923 −1.92980 −0.964901 0.262613i \(-0.915416\pi\)
−0.964901 + 0.262613i \(0.915416\pi\)
\(30\) 0 0
\(31\) − 0.757359i − 0.136026i −0.997684 0.0680129i \(-0.978334\pi\)
0.997684 0.0680129i \(-0.0216659\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 21.9223i 3.70555i
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) −20.4853 −2.92647
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 10.5154 1.44440 0.722200 0.691684i \(-0.243131\pi\)
0.722200 + 0.691684i \(0.243131\pi\)
\(54\) 0 0
\(55\) 13.2426i 1.78564i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 10.3923i 1.35296i 0.736460 + 0.676481i \(0.236496\pi\)
−0.736460 + 0.676481i \(0.763504\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −1.48528 −0.173839 −0.0869195 0.996215i \(-0.527702\pi\)
−0.0869195 + 0.996215i \(0.527702\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −16.6031 −1.89210
\(78\) 0 0
\(79\) 10.0000i 1.12509i 0.826767 + 0.562544i \(0.190177\pi\)
−0.826767 + 0.562544i \(0.809823\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 13.5592i 1.48832i 0.668002 + 0.744160i \(0.267150\pi\)
−0.668002 + 0.744160i \(0.732850\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −17.9706 −1.82463 −0.912317 0.409484i \(-0.865709\pi\)
−0.912317 + 0.409484i \(0.865709\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −18.8785 −1.87848 −0.939239 0.343263i \(-0.888468\pi\)
−0.939239 + 0.343263i \(0.888468\pi\)
\(102\) 0 0
\(103\) − 14.0000i − 1.37946i −0.724066 0.689730i \(-0.757729\pi\)
0.724066 0.689730i \(-0.242271\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 1.13770i − 0.109986i −0.998487 0.0549930i \(-0.982486\pi\)
0.998487 0.0549930i \(-0.0175137\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0.970563 0.0882330
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −31.3000 −2.79956
\(126\) 0 0
\(127\) 6.75736i 0.599619i 0.953999 + 0.299809i \(0.0969231\pi\)
−0.953999 + 0.299809i \(0.903077\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 17.8639i − 1.56077i −0.625297 0.780387i \(-0.715022\pi\)
0.625297 0.780387i \(-0.284978\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 43.4558 3.60881
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 14.5738 1.19394 0.596968 0.802265i \(-0.296372\pi\)
0.596968 + 0.802265i \(0.296372\pi\)
\(150\) 0 0
\(151\) 20.2132i 1.64493i 0.568818 + 0.822464i \(0.307401\pi\)
−0.568818 + 0.822464i \(0.692599\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 3.16693i 0.254374i
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 8.48617 0.645192 0.322596 0.946537i \(-0.395445\pi\)
0.322596 + 0.946537i \(0.395445\pi\)
\(174\) 0 0
\(175\) − 65.4558i − 4.94800i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 21.9223i − 1.63855i −0.573400 0.819275i \(-0.694376\pi\)
0.573400 0.819275i \(-0.305624\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) −4.51472 −0.324977 −0.162488 0.986710i \(-0.551952\pi\)
−0.162488 + 0.986710i \(0.551952\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −0.123093 −0.00877002 −0.00438501 0.999990i \(-0.501396\pi\)
−0.00438501 + 0.999990i \(0.501396\pi\)
\(198\) 0 0
\(199\) − 14.2132i − 1.00755i −0.863836 0.503774i \(-0.831945\pi\)
0.863836 0.503774i \(-0.168055\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 54.4831i 3.82397i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −3.97056 −0.269539
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 26.0000i 1.74109i 0.492090 + 0.870544i \(0.336233\pi\)
−0.492090 + 0.870544i \(0.663767\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 10.3923i 0.689761i 0.938647 + 0.344881i \(0.112081\pi\)
−0.938647 + 0.344881i \(0.887919\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 10.0000 0.644157 0.322078 0.946713i \(-0.395619\pi\)
0.322078 + 0.946713i \(0.395619\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 85.6600 5.47262
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 31.1769i − 1.96787i −0.178529 0.983935i \(-0.557134\pi\)
0.178529 0.983935i \(-0.442866\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) −43.9706 −2.70109
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −10.3923 −0.633630 −0.316815 0.948487i \(-0.602613\pi\)
−0.316815 + 0.948487i \(0.602613\pi\)
\(270\) 0 0
\(271\) 32.2132i 1.95681i 0.206691 + 0.978406i \(0.433731\pi\)
−0.206691 + 0.978406i \(0.566269\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 39.5400i − 2.38435i
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 17.0000 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 31.1769 1.82137 0.910687 0.413096i \(-0.135553\pi\)
0.910687 + 0.413096i \(0.135553\pi\)
\(294\) 0 0
\(295\) − 43.4558i − 2.53010i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −25.4853 −1.44051 −0.720257 0.693708i \(-0.755976\pi\)
−0.720257 + 0.693708i \(0.755976\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −35.6046 −1.99976 −0.999878 0.0156238i \(-0.995027\pi\)
−0.999878 + 0.0156238i \(0.995027\pi\)
\(318\) 0 0
\(319\) 32.9117i 1.84270i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −22.0000 −1.19842 −0.599208 0.800593i \(-0.704518\pi\)
−0.599208 + 0.800593i \(0.704518\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −2.39850 −0.129886
\(342\) 0 0
\(343\) 70.6985i 3.81736i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 36.6193i − 1.96582i −0.184075 0.982912i \(-0.558929\pi\)
0.184075 0.982912i \(-0.441071\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 6.21076 0.325086
\(366\) 0 0
\(367\) 23.2426i 1.21326i 0.794986 + 0.606628i \(0.207478\pi\)
−0.794986 + 0.606628i \(0.792522\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 55.1285i − 2.86213i
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 69.4264 3.53830
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −14.8200 −0.751405 −0.375703 0.926740i \(-0.622599\pi\)
−0.375703 + 0.926740i \(0.622599\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 41.8154i − 2.10396i
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −38.9411 −1.92551 −0.962757 0.270367i \(-0.912855\pi\)
−0.962757 + 0.270367i \(0.912855\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 54.4831 2.68094
\(414\) 0 0
\(415\) − 56.6985i − 2.78322i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 10.3923i 0.507697i 0.967244 + 0.253849i \(0.0816965\pi\)
−0.967244 + 0.253849i \(0.918303\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) −26.9411 −1.29471 −0.647354 0.762190i \(-0.724124\pi\)
−0.647354 + 0.762190i \(0.724124\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) − 38.2132i − 1.82382i −0.410394 0.911908i \(-0.634609\pi\)
0.410394 0.911908i \(-0.365391\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 31.1769i − 1.48126i −0.671913 0.740630i \(-0.734527\pi\)
0.671913 0.740630i \(-0.265473\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 35.9706 1.68263 0.841316 0.540544i \(-0.181781\pi\)
0.841316 + 0.540544i \(0.181781\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1.90613 0.0887774 0.0443887 0.999014i \(-0.485866\pi\)
0.0443887 + 0.999014i \(0.485866\pi\)
\(462\) 0 0
\(463\) − 42.6985i − 1.98437i −0.124788 0.992183i \(-0.539825\pi\)
0.124788 0.992183i \(-0.460175\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 42.9531i 1.98763i 0.111035 + 0.993816i \(0.464583\pi\)
−0.111035 + 0.993816i \(0.535417\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 75.1446 3.41214
\(486\) 0 0
\(487\) 2.00000i 0.0906287i 0.998973 + 0.0453143i \(0.0144289\pi\)
−0.998973 + 0.0453143i \(0.985571\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 38.6485i − 1.74418i −0.489344 0.872091i \(-0.662764\pi\)
0.489344 0.872091i \(-0.337236\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 78.9411 3.51283
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −24.9662 −1.10661 −0.553303 0.832980i \(-0.686633\pi\)
−0.553303 + 0.832980i \(0.686633\pi\)
\(510\) 0 0
\(511\) 7.78680i 0.344468i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 58.5416i 2.57965i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 4.75736i 0.205679i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 64.8754i 2.79438i
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 52.4264 2.22940
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −10.2692 −0.435120 −0.217560 0.976047i \(-0.569810\pi\)
−0.217560 + 0.976047i \(0.569810\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 5.44234i 0.229367i 0.993402 + 0.114684i \(0.0365854\pi\)
−0.993402 + 0.114684i \(0.963415\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −38.0000 −1.58196 −0.790980 0.611842i \(-0.790429\pi\)
−0.790980 + 0.611842i \(0.790429\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 71.0862 2.94915
\(582\) 0 0
\(583\) − 33.3015i − 1.37921i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 30.5316i − 1.26017i −0.776525 0.630087i \(-0.783019\pi\)
0.776525 0.630087i \(-0.216981\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −43.4264 −1.77140 −0.885700 0.464258i \(-0.846321\pi\)
−0.885700 + 0.464258i \(0.846321\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −4.05845 −0.164999
\(606\) 0 0
\(607\) − 22.0000i − 0.892952i −0.894795 0.446476i \(-0.852679\pi\)
0.894795 0.446476i \(-0.147321\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 68.4558 2.73823
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) − 29.2426i − 1.16413i −0.813142 0.582066i \(-0.802245\pi\)
0.813142 0.582066i \(-0.197755\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 28.2562i − 1.12131i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 32.9117 1.29190
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −50.3016 −1.96845 −0.984226 0.176913i \(-0.943389\pi\)
−0.984226 + 0.176913i \(0.943389\pi\)
\(654\) 0 0
\(655\) 74.6985i 2.91871i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 51.3162i − 1.99900i −0.0316976 0.999498i \(-0.510091\pi\)
0.0316976 0.999498i \(-0.489909\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −50.9411 −1.96364 −0.981818 0.189824i \(-0.939208\pi\)
−0.981818 + 0.189824i \(0.939208\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −51.9615 −1.99704 −0.998522 0.0543526i \(-0.982690\pi\)
−0.998522 + 0.0543526i \(0.982690\pi\)
\(678\) 0 0
\(679\) 94.2132i 3.61557i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 51.9615i 1.98825i 0.108227 + 0.994126i \(0.465483\pi\)
−0.108227 + 0.994126i \(0.534517\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −12.7908 −0.483102 −0.241551 0.970388i \(-0.577656\pi\)
−0.241551 + 0.970388i \(0.577656\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 98.9731i 3.72227i
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) −73.3970 −2.73345
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −129.751 −4.81883
\(726\) 0 0
\(727\) 45.6690i 1.69377i 0.531775 + 0.846886i \(0.321525\pi\)
−0.531775 + 0.846886i \(0.678475\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) −60.9411 −2.23271
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −5.96458 −0.217941
\(750\) 0 0
\(751\) − 51.6690i − 1.88543i −0.333599 0.942715i \(-0.608263\pi\)
0.333599 0.942715i \(-0.391737\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 84.5223i − 3.07608i
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −55.4264 −1.99873 −0.999364 0.0356685i \(-0.988644\pi\)
−0.999364 + 0.0356685i \(0.988644\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −51.9615 −1.86893 −0.934463 0.356060i \(-0.884120\pi\)
−0.934463 + 0.356060i \(0.884120\pi\)
\(774\) 0 0
\(775\) − 9.45584i − 0.339664i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 37.8801 1.34178 0.670890 0.741557i \(-0.265912\pi\)
0.670890 + 0.741557i \(0.265912\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 4.70378i 0.165993i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 31.1769 1.08808 0.544041 0.839059i \(-0.316894\pi\)
0.544041 + 0.839059i \(0.316894\pi\)
\(822\) 0 0
\(823\) − 6.69848i − 0.233495i −0.993162 0.116747i \(-0.962753\pi\)
0.993162 0.116747i \(-0.0372467\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 10.3923i 0.361376i 0.983540 + 0.180688i \(0.0578324\pi\)
−0.983540 + 0.180688i \(0.942168\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 79.0000 2.72414
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −54.3600 −1.87004
\(846\) 0 0
\(847\) − 5.08831i − 0.174836i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) −35.4853 −1.20654
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 31.6693 1.07431
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 164.095i 5.54741i
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 35.4264 1.18816
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 91.6690i 3.06416i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 7.87071i 0.262503i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 42.9411 1.42114
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −93.6538 −3.09272
\(918\) 0 0
\(919\) − 54.6985i − 1.80434i −0.431384 0.902168i \(-0.641975\pi\)
0.431384 0.902168i \(-0.358025\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −12.0294 −0.392985 −0.196492 0.980505i \(-0.562955\pi\)
−0.196492 + 0.980505i \(0.562955\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 60.6939 1.97856 0.989282 0.146017i \(-0.0466455\pi\)
0.989282 + 0.146017i \(0.0466455\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 36.8654i 1.19797i 0.800762 + 0.598983i \(0.204428\pi\)
−0.800762 + 0.598983i \(0.795572\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 30.4264 0.981497
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 18.8785 0.607720
\(966\) 0 0
\(967\) 35.2426i 1.13333i 0.823949 + 0.566663i \(0.191766\pi\)
−0.823949 + 0.566663i \(0.808234\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 55.6208i 1.78496i 0.451090 + 0.892479i \(0.351035\pi\)
−0.451090 + 0.892479i \(0.648965\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0.514719 0.0164003
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) − 50.2132i − 1.59507i −0.603269 0.797537i \(-0.706136\pi\)
0.603269 0.797537i \(-0.293864\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 59.4331i 1.88416i
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1728.2.f.g.863.1 8
3.2 odd 2 inner 1728.2.f.g.863.7 yes 8
4.3 odd 2 inner 1728.2.f.g.863.2 yes 8
8.3 odd 2 inner 1728.2.f.g.863.8 yes 8
8.5 even 2 inner 1728.2.f.g.863.7 yes 8
12.11 even 2 inner 1728.2.f.g.863.8 yes 8
24.5 odd 2 CM 1728.2.f.g.863.1 8
24.11 even 2 inner 1728.2.f.g.863.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1728.2.f.g.863.1 8 1.1 even 1 trivial
1728.2.f.g.863.1 8 24.5 odd 2 CM
1728.2.f.g.863.2 yes 8 4.3 odd 2 inner
1728.2.f.g.863.2 yes 8 24.11 even 2 inner
1728.2.f.g.863.7 yes 8 3.2 odd 2 inner
1728.2.f.g.863.7 yes 8 8.5 even 2 inner
1728.2.f.g.863.8 yes 8 8.3 odd 2 inner
1728.2.f.g.863.8 yes 8 12.11 even 2 inner