Properties

Label 1728.2.bc.e.145.10
Level $1728$
Weight $2$
Character 1728.145
Analytic conductor $13.798$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1728,2,Mod(145,1728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1728.145"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1728, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 9, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1728.bc (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.7981494693\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(18\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 145.10
Character \(\chi\) \(=\) 1728.145
Dual form 1728.2.bc.e.1585.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.00302457 - 0.0112878i) q^{5} +(1.05753 - 0.610563i) q^{7} +(1.83070 + 0.490535i) q^{11} +(5.06759 - 1.35786i) q^{13} +1.54238 q^{17} +(-4.06823 - 4.06823i) q^{19} +(-5.20660 - 3.00603i) q^{23} +(4.33001 - 2.49993i) q^{25} +(-0.798708 + 2.98082i) q^{29} +(-2.92831 + 5.07198i) q^{31} +(-0.0100905 - 0.0100905i) q^{35} +(0.923082 - 0.923082i) q^{37} +(3.20829 + 1.85231i) q^{41} +(4.84015 + 1.29691i) q^{43} +(-1.31218 - 2.27277i) q^{47} +(-2.75442 + 4.77080i) q^{49} +(8.88508 - 8.88508i) q^{53} -0.0221483i q^{55} +(2.35453 + 8.78724i) q^{59} +(3.24737 - 12.1194i) q^{61} +(-0.0306545 - 0.0530952i) q^{65} +(11.8800 - 3.18324i) q^{67} -14.2363i q^{71} +4.32091i q^{73} +(2.23552 - 0.599006i) q^{77} +(0.261880 + 0.453589i) q^{79} +(2.91592 - 10.8824i) q^{83} +(-0.00466503 - 0.0174101i) q^{85} -10.7103i q^{89} +(4.53005 - 4.53005i) q^{91} +(-0.0336169 + 0.0582262i) q^{95} +(8.78820 + 15.2216i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 4 q^{5} - 2 q^{11} - 16 q^{13} + 16 q^{17} - 28 q^{19} - 4 q^{29} - 28 q^{31} - 16 q^{35} + 16 q^{37} + 10 q^{43} - 56 q^{47} + 4 q^{49} + 8 q^{53} - 14 q^{59} - 32 q^{61} + 64 q^{65} + 18 q^{67}+ \cdots + 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1728\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(703\) \(1217\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.00302457 0.0112878i −0.00135263 0.00504807i 0.965246 0.261342i \(-0.0841651\pi\)
−0.966599 + 0.256294i \(0.917498\pi\)
\(6\) 0 0
\(7\) 1.05753 0.610563i 0.399708 0.230771i −0.286650 0.958035i \(-0.592542\pi\)
0.686358 + 0.727264i \(0.259208\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.83070 + 0.490535i 0.551977 + 0.147902i 0.524018 0.851707i \(-0.324432\pi\)
0.0279594 + 0.999609i \(0.491099\pi\)
\(12\) 0 0
\(13\) 5.06759 1.35786i 1.40550 0.376602i 0.525181 0.850991i \(-0.323998\pi\)
0.880315 + 0.474389i \(0.157331\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.54238 0.374082 0.187041 0.982352i \(-0.440110\pi\)
0.187041 + 0.982352i \(0.440110\pi\)
\(18\) 0 0
\(19\) −4.06823 4.06823i −0.933317 0.933317i 0.0645950 0.997912i \(-0.479424\pi\)
−0.997912 + 0.0645950i \(0.979424\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −5.20660 3.00603i −1.08565 0.626801i −0.153236 0.988190i \(-0.548970\pi\)
−0.932415 + 0.361388i \(0.882303\pi\)
\(24\) 0 0
\(25\) 4.33001 2.49993i 0.866002 0.499986i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.798708 + 2.98082i −0.148316 + 0.553524i 0.851269 + 0.524730i \(0.175834\pi\)
−0.999585 + 0.0287946i \(0.990833\pi\)
\(30\) 0 0
\(31\) −2.92831 + 5.07198i −0.525939 + 0.910954i 0.473604 + 0.880738i \(0.342953\pi\)
−0.999543 + 0.0302159i \(0.990381\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.0100905 0.0100905i −0.00170561 0.00170561i
\(36\) 0 0
\(37\) 0.923082 0.923082i 0.151754 0.151754i −0.627147 0.778901i \(-0.715777\pi\)
0.778901 + 0.627147i \(0.215777\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.20829 + 1.85231i 0.501051 + 0.289282i 0.729147 0.684357i \(-0.239917\pi\)
−0.228096 + 0.973639i \(0.573250\pi\)
\(42\) 0 0
\(43\) 4.84015 + 1.29691i 0.738115 + 0.197777i 0.608240 0.793753i \(-0.291876\pi\)
0.129875 + 0.991530i \(0.458542\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.31218 2.27277i −0.191402 0.331517i 0.754313 0.656515i \(-0.227970\pi\)
−0.945715 + 0.324997i \(0.894637\pi\)
\(48\) 0 0
\(49\) −2.75442 + 4.77080i −0.393489 + 0.681543i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 8.88508 8.88508i 1.22046 1.22046i 0.252991 0.967469i \(-0.418586\pi\)
0.967469 0.252991i \(-0.0814144\pi\)
\(54\) 0 0
\(55\) 0.0221483i 0.00298648i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.35453 + 8.78724i 0.306534 + 1.14400i 0.931617 + 0.363443i \(0.118399\pi\)
−0.625082 + 0.780559i \(0.714935\pi\)
\(60\) 0 0
\(61\) 3.24737 12.1194i 0.415783 1.55172i −0.367478 0.930032i \(-0.619779\pi\)
0.783262 0.621692i \(-0.213555\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −0.0306545 0.0530952i −0.00380223 0.00658565i
\(66\) 0 0
\(67\) 11.8800 3.18324i 1.45137 0.388895i 0.554873 0.831935i \(-0.312767\pi\)
0.896501 + 0.443041i \(0.146100\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 14.2363i 1.68954i −0.535129 0.844771i \(-0.679737\pi\)
0.535129 0.844771i \(-0.320263\pi\)
\(72\) 0 0
\(73\) 4.32091i 0.505724i 0.967502 + 0.252862i \(0.0813718\pi\)
−0.967502 + 0.252862i \(0.918628\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.23552 0.599006i 0.254761 0.0682630i
\(78\) 0 0
\(79\) 0.261880 + 0.453589i 0.0294638 + 0.0510328i 0.880381 0.474267i \(-0.157287\pi\)
−0.850918 + 0.525299i \(0.823953\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.91592 10.8824i 0.320064 1.19450i −0.599117 0.800661i \(-0.704482\pi\)
0.919181 0.393834i \(-0.128852\pi\)
\(84\) 0 0
\(85\) −0.00466503 0.0174101i −0.000505994 0.00188839i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 10.7103i 1.13529i −0.823274 0.567644i \(-0.807855\pi\)
0.823274 0.567644i \(-0.192145\pi\)
\(90\) 0 0
\(91\) 4.53005 4.53005i 0.474879 0.474879i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −0.0336169 + 0.0582262i −0.00344902 + 0.00597388i
\(96\) 0 0
\(97\) 8.78820 + 15.2216i 0.892306 + 1.54552i 0.837104 + 0.547044i \(0.184247\pi\)
0.0552025 + 0.998475i \(0.482420\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −6.73117 1.80361i −0.669776 0.179466i −0.0921222 0.995748i \(-0.529365\pi\)
−0.577654 + 0.816282i \(0.696032\pi\)
\(102\) 0 0
\(103\) 2.20609 + 1.27369i 0.217373 + 0.125500i 0.604733 0.796428i \(-0.293280\pi\)
−0.387360 + 0.921928i \(0.626613\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.52175 3.52175i 0.340460 0.340460i −0.516080 0.856540i \(-0.672609\pi\)
0.856540 + 0.516080i \(0.172609\pi\)
\(108\) 0 0
\(109\) 3.14334 + 3.14334i 0.301077 + 0.301077i 0.841435 0.540358i \(-0.181711\pi\)
−0.540358 + 0.841435i \(0.681711\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −7.90904 + 13.6989i −0.744020 + 1.28868i 0.206631 + 0.978419i \(0.433750\pi\)
−0.950651 + 0.310262i \(0.899583\pi\)
\(114\) 0 0
\(115\) −0.0181839 + 0.0678632i −0.00169566 + 0.00632828i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.63111 0.941721i 0.149523 0.0863274i
\(120\) 0 0
\(121\) −6.41543 3.70395i −0.583221 0.336723i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −0.0826316 0.0826316i −0.00739079 0.00739079i
\(126\) 0 0
\(127\) 5.72603 0.508103 0.254052 0.967191i \(-0.418237\pi\)
0.254052 + 0.967191i \(0.418237\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 6.56224 1.75835i 0.573346 0.153628i 0.0395151 0.999219i \(-0.487419\pi\)
0.533831 + 0.845591i \(0.320752\pi\)
\(132\) 0 0
\(133\) −6.78618 1.81835i −0.588436 0.157671i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.64923 2.10688i 0.311775 0.180003i −0.335946 0.941881i \(-0.609056\pi\)
0.647720 + 0.761878i \(0.275722\pi\)
\(138\) 0 0
\(139\) 4.19392 + 15.6519i 0.355724 + 1.32758i 0.879571 + 0.475767i \(0.157830\pi\)
−0.523847 + 0.851812i \(0.675504\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 9.94332 0.831502
\(144\) 0 0
\(145\) 0.0360627 0.00299485
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1.00877 3.76477i −0.0826415 0.308422i 0.912216 0.409710i \(-0.134370\pi\)
−0.994857 + 0.101288i \(0.967704\pi\)
\(150\) 0 0
\(151\) −13.0073 + 7.50979i −1.05852 + 0.611138i −0.925023 0.379911i \(-0.875955\pi\)
−0.133499 + 0.991049i \(0.542621\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0.0661085 + 0.0177137i 0.00530996 + 0.00142280i
\(156\) 0 0
\(157\) −9.47288 + 2.53825i −0.756018 + 0.202574i −0.616186 0.787601i \(-0.711323\pi\)
−0.139832 + 0.990175i \(0.544656\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −7.34150 −0.578591
\(162\) 0 0
\(163\) −5.22606 5.22606i −0.409336 0.409336i 0.472171 0.881507i \(-0.343471\pi\)
−0.881507 + 0.472171i \(0.843471\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −6.31476 3.64583i −0.488651 0.282123i 0.235364 0.971907i \(-0.424372\pi\)
−0.724015 + 0.689785i \(0.757705\pi\)
\(168\) 0 0
\(169\) 12.5783 7.26211i 0.967565 0.558624i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 6.14659 22.9394i 0.467317 1.74405i −0.181775 0.983340i \(-0.558184\pi\)
0.649092 0.760710i \(-0.275149\pi\)
\(174\) 0 0
\(175\) 3.05273 5.28749i 0.230765 0.399697i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 11.4489 + 11.4489i 0.855732 + 0.855732i 0.990832 0.135100i \(-0.0431356\pi\)
−0.135100 + 0.990832i \(0.543136\pi\)
\(180\) 0 0
\(181\) −3.01327 + 3.01327i −0.223974 + 0.223974i −0.810170 0.586195i \(-0.800625\pi\)
0.586195 + 0.810170i \(0.300625\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −0.0132115 0.00762768i −0.000971331 0.000560798i
\(186\) 0 0
\(187\) 2.82364 + 0.756592i 0.206485 + 0.0553275i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2.25702 3.90928i −0.163313 0.282866i 0.772742 0.634720i \(-0.218885\pi\)
−0.936055 + 0.351854i \(0.885551\pi\)
\(192\) 0 0
\(193\) −1.75793 + 3.04482i −0.126539 + 0.219171i −0.922333 0.386395i \(-0.873720\pi\)
0.795795 + 0.605566i \(0.207053\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4.81922 4.81922i 0.343355 0.343355i −0.514272 0.857627i \(-0.671938\pi\)
0.857627 + 0.514272i \(0.171938\pi\)
\(198\) 0 0
\(199\) 4.66322i 0.330567i 0.986246 + 0.165284i \(0.0528539\pi\)
−0.986246 + 0.165284i \(0.947146\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.975324 + 3.63996i 0.0684543 + 0.255475i
\(204\) 0 0
\(205\) 0.0112049 0.0418171i 0.000782581 0.00292063i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −5.45211 9.44333i −0.377130 0.653209i
\(210\) 0 0
\(211\) 17.4452 4.67442i 1.20097 0.321800i 0.397760 0.917490i \(-0.369788\pi\)
0.803215 + 0.595689i \(0.203121\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0.0585574i 0.00399358i
\(216\) 0 0
\(217\) 7.15167i 0.485487i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 7.81615 2.09433i 0.525771 0.140880i
\(222\) 0 0
\(223\) −2.85769 4.94966i −0.191365 0.331454i 0.754338 0.656486i \(-0.227958\pi\)
−0.945703 + 0.325032i \(0.894625\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −5.27233 + 19.6766i −0.349937 + 1.30598i 0.536802 + 0.843709i \(0.319632\pi\)
−0.886738 + 0.462272i \(0.847034\pi\)
\(228\) 0 0
\(229\) −0.992819 3.70525i −0.0656073 0.244850i 0.925332 0.379157i \(-0.123786\pi\)
−0.990940 + 0.134307i \(0.957119\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 5.33043i 0.349208i 0.984639 + 0.174604i \(0.0558645\pi\)
−0.984639 + 0.174604i \(0.944136\pi\)
\(234\) 0 0
\(235\) −0.0216859 + 0.0216859i −0.00141463 + 0.00141463i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −13.8380 + 23.9681i −0.895104 + 1.55037i −0.0614282 + 0.998112i \(0.519566\pi\)
−0.833676 + 0.552254i \(0.813768\pi\)
\(240\) 0 0
\(241\) 0.847203 + 1.46740i 0.0545731 + 0.0945234i 0.892021 0.451993i \(-0.149287\pi\)
−0.837448 + 0.546517i \(0.815954\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0.0621830 + 0.0166619i 0.00397273 + 0.00106449i
\(246\) 0 0
\(247\) −26.1402 15.0921i −1.66326 0.960284i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0.987980 0.987980i 0.0623607 0.0623607i −0.675239 0.737599i \(-0.735959\pi\)
0.737599 + 0.675239i \(0.235959\pi\)
\(252\) 0 0
\(253\) −8.05717 8.05717i −0.506550 0.506550i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −11.8214 + 20.4753i −0.737401 + 1.27722i 0.216260 + 0.976336i \(0.430614\pi\)
−0.953662 + 0.300881i \(0.902719\pi\)
\(258\) 0 0
\(259\) 0.412584 1.53978i 0.0256367 0.0956776i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −22.2619 + 12.8529i −1.37273 + 0.792545i −0.991271 0.131841i \(-0.957911\pi\)
−0.381458 + 0.924386i \(0.624578\pi\)
\(264\) 0 0
\(265\) −0.127167 0.0734198i −0.00781180 0.00451015i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 13.6891 + 13.6891i 0.834637 + 0.834637i 0.988147 0.153510i \(-0.0490577\pi\)
−0.153510 + 0.988147i \(0.549058\pi\)
\(270\) 0 0
\(271\) 7.11000 0.431902 0.215951 0.976404i \(-0.430715\pi\)
0.215951 + 0.976404i \(0.430715\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 9.15326 2.45261i 0.551962 0.147898i
\(276\) 0 0
\(277\) −21.7174 5.81917i −1.30487 0.349640i −0.461583 0.887097i \(-0.652718\pi\)
−0.843291 + 0.537457i \(0.819385\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −19.7952 + 11.4288i −1.18088 + 0.681783i −0.956218 0.292654i \(-0.905462\pi\)
−0.224664 + 0.974436i \(0.572128\pi\)
\(282\) 0 0
\(283\) −1.59958 5.96971i −0.0950851 0.354862i 0.901947 0.431846i \(-0.142138\pi\)
−0.997032 + 0.0769838i \(0.975471\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.52381 0.267032
\(288\) 0 0
\(289\) −14.6211 −0.860063
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1.00950 3.76752i −0.0589758 0.220101i 0.930148 0.367184i \(-0.119678\pi\)
−0.989124 + 0.147083i \(0.953011\pi\)
\(294\) 0 0
\(295\) 0.0920675 0.0531552i 0.00536038 0.00309482i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −30.4667 8.16352i −1.76193 0.472109i
\(300\) 0 0
\(301\) 5.91043 1.58370i 0.340672 0.0912827i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −0.146623 −0.00839562
\(306\) 0 0
\(307\) −10.8111 10.8111i −0.617023 0.617023i 0.327743 0.944767i \(-0.393712\pi\)
−0.944767 + 0.327743i \(0.893712\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 19.5372 + 11.2798i 1.10785 + 0.639619i 0.938273 0.345897i \(-0.112425\pi\)
0.169581 + 0.985516i \(0.445759\pi\)
\(312\) 0 0
\(313\) −5.17232 + 2.98624i −0.292357 + 0.168792i −0.639004 0.769203i \(-0.720653\pi\)
0.346647 + 0.937996i \(0.387320\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4.81751 + 17.9792i −0.270579 + 1.00981i 0.688168 + 0.725551i \(0.258415\pi\)
−0.958747 + 0.284262i \(0.908252\pi\)
\(318\) 0 0
\(319\) −2.92439 + 5.06520i −0.163735 + 0.283597i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −6.27476 6.27476i −0.349137 0.349137i
\(324\) 0 0
\(325\) 18.5482 18.5482i 1.02887 1.02887i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −2.77534 1.60234i −0.153009 0.0883400i
\(330\) 0 0
\(331\) 10.1869 + 2.72957i 0.559923 + 0.150031i 0.527671 0.849449i \(-0.323065\pi\)
0.0322521 + 0.999480i \(0.489732\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −0.0718638 0.124472i −0.00392634 0.00680062i
\(336\) 0 0
\(337\) 12.1222 20.9962i 0.660336 1.14374i −0.320192 0.947353i \(-0.603747\pi\)
0.980527 0.196382i \(-0.0629194\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −7.84884 + 7.84884i −0.425038 + 0.425038i
\(342\) 0 0
\(343\) 15.2749i 0.824767i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4.97570 + 18.5696i 0.267110 + 0.996867i 0.960946 + 0.276735i \(0.0892523\pi\)
−0.693837 + 0.720132i \(0.744081\pi\)
\(348\) 0 0
\(349\) −4.19134 + 15.6423i −0.224357 + 0.837313i 0.758304 + 0.651901i \(0.226028\pi\)
−0.982661 + 0.185411i \(0.940638\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 7.69391 + 13.3262i 0.409505 + 0.709284i 0.994834 0.101512i \(-0.0323680\pi\)
−0.585329 + 0.810796i \(0.699035\pi\)
\(354\) 0 0
\(355\) −0.160697 + 0.0430587i −0.00852893 + 0.00228532i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 2.97883i 0.157217i 0.996906 + 0.0786083i \(0.0250476\pi\)
−0.996906 + 0.0786083i \(0.974952\pi\)
\(360\) 0 0
\(361\) 14.1010i 0.742159i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0.0487737 0.0130689i 0.00255293 0.000684056i
\(366\) 0 0
\(367\) −12.5585 21.7519i −0.655547 1.13544i −0.981756 0.190143i \(-0.939105\pi\)
0.326210 0.945297i \(-0.394228\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 3.97131 14.8211i 0.206180 0.769474i
\(372\) 0 0
\(373\) 7.71816 + 28.8046i 0.399631 + 1.49144i 0.813747 + 0.581220i \(0.197424\pi\)
−0.414116 + 0.910224i \(0.635909\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 16.1901i 0.833832i
\(378\) 0 0
\(379\) −10.1985 + 10.1985i −0.523864 + 0.523864i −0.918736 0.394872i \(-0.870789\pi\)
0.394872 + 0.918736i \(0.370789\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 10.5750 18.3164i 0.540356 0.935924i −0.458528 0.888680i \(-0.651623\pi\)
0.998883 0.0472436i \(-0.0150437\pi\)
\(384\) 0 0
\(385\) −0.0135230 0.0234224i −0.000689194 0.00119372i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −30.3488 8.13193i −1.53874 0.412305i −0.612884 0.790173i \(-0.709991\pi\)
−0.925860 + 0.377867i \(0.876658\pi\)
\(390\) 0 0
\(391\) −8.03056 4.63645i −0.406123 0.234475i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0.00432797 0.00432797i 0.000217764 0.000217764i
\(396\) 0 0
\(397\) −3.24113 3.24113i −0.162668 0.162668i 0.621080 0.783747i \(-0.286694\pi\)
−0.783747 + 0.621080i \(0.786694\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 10.7429 18.6073i 0.536476 0.929203i −0.462614 0.886560i \(-0.653089\pi\)
0.999090 0.0426439i \(-0.0135781\pi\)
\(402\) 0 0
\(403\) −7.95244 + 29.6789i −0.396139 + 1.47841i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.14269 1.23708i 0.106209 0.0613200i
\(408\) 0 0
\(409\) −23.1426 13.3614i −1.14433 0.660678i −0.196829 0.980438i \(-0.563064\pi\)
−0.947499 + 0.319760i \(0.896398\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 7.85515 + 7.85515i 0.386527 + 0.386527i
\(414\) 0 0
\(415\) −0.131658 −0.00646283
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −8.83989 + 2.36864i −0.431857 + 0.115716i −0.468198 0.883624i \(-0.655097\pi\)
0.0363407 + 0.999339i \(0.488430\pi\)
\(420\) 0 0
\(421\) −28.9344 7.75295i −1.41018 0.377856i −0.528188 0.849127i \(-0.677128\pi\)
−0.881988 + 0.471272i \(0.843795\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 6.67852 3.85585i 0.323956 0.187036i
\(426\) 0 0
\(427\) −3.96545 14.7993i −0.191902 0.716187i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −7.05544 −0.339849 −0.169924 0.985457i \(-0.554352\pi\)
−0.169924 + 0.985457i \(0.554352\pi\)
\(432\) 0 0
\(433\) 13.1552 0.632201 0.316100 0.948726i \(-0.397626\pi\)
0.316100 + 0.948726i \(0.397626\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 8.95243 + 33.4109i 0.428253 + 1.59826i
\(438\) 0 0
\(439\) 12.8757 7.43381i 0.614525 0.354796i −0.160209 0.987083i \(-0.551217\pi\)
0.774734 + 0.632287i \(0.217884\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −2.97678 0.797625i −0.141431 0.0378963i 0.187409 0.982282i \(-0.439991\pi\)
−0.328840 + 0.944386i \(0.606658\pi\)
\(444\) 0 0
\(445\) −0.120896 + 0.0323940i −0.00573102 + 0.00153562i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 21.8550 1.03140 0.515701 0.856769i \(-0.327532\pi\)
0.515701 + 0.856769i \(0.327532\pi\)
\(450\) 0 0
\(451\) 4.96480 + 4.96480i 0.233783 + 0.233783i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −0.0648360 0.0374331i −0.00303956 0.00175489i
\(456\) 0 0
\(457\) −2.32261 + 1.34096i −0.108647 + 0.0627275i −0.553339 0.832956i \(-0.686647\pi\)
0.444692 + 0.895684i \(0.353313\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −2.74844 + 10.2573i −0.128008 + 0.477732i −0.999929 0.0119146i \(-0.996207\pi\)
0.871921 + 0.489646i \(0.162874\pi\)
\(462\) 0 0
\(463\) −11.8249 + 20.4814i −0.549550 + 0.951849i 0.448755 + 0.893655i \(0.351868\pi\)
−0.998305 + 0.0581943i \(0.981466\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 2.22540 + 2.22540i 0.102979 + 0.102979i 0.756719 0.653740i \(-0.226801\pi\)
−0.653740 + 0.756719i \(0.726801\pi\)
\(468\) 0 0
\(469\) 10.6199 10.6199i 0.490380 0.490380i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 8.22468 + 4.74852i 0.378171 + 0.218337i
\(474\) 0 0
\(475\) −27.7858 7.44518i −1.27490 0.341608i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −6.23896 10.8062i −0.285066 0.493748i 0.687559 0.726128i \(-0.258682\pi\)
−0.972625 + 0.232380i \(0.925349\pi\)
\(480\) 0 0
\(481\) 3.42439 5.93121i 0.156139 0.270440i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0.145238 0.145238i 0.00659494 0.00659494i
\(486\) 0 0
\(487\) 12.5314i 0.567853i 0.958846 + 0.283927i \(0.0916372\pi\)
−0.958846 + 0.283927i \(0.908363\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −3.93613 14.6898i −0.177635 0.662942i −0.996088 0.0883688i \(-0.971835\pi\)
0.818453 0.574574i \(-0.194832\pi\)
\(492\) 0 0
\(493\) −1.23191 + 4.59756i −0.0554825 + 0.207064i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −8.69218 15.0553i −0.389898 0.675322i
\(498\) 0 0
\(499\) −29.4298 + 7.88570i −1.31746 + 0.353012i −0.848026 0.529955i \(-0.822209\pi\)
−0.469434 + 0.882967i \(0.655542\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 1.90106i 0.0847639i 0.999101 + 0.0423820i \(0.0134946\pi\)
−0.999101 + 0.0423820i \(0.986505\pi\)
\(504\) 0 0
\(505\) 0.0814355i 0.00362383i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −12.4896 + 3.34659i −0.553593 + 0.148335i −0.524761 0.851249i \(-0.675845\pi\)
−0.0288320 + 0.999584i \(0.509179\pi\)
\(510\) 0 0
\(511\) 2.63819 + 4.56947i 0.116706 + 0.202142i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0.00770471 0.0287544i 0.000339510 0.00126707i
\(516\) 0 0
\(517\) −1.28734 4.80444i −0.0566174 0.211299i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 1.24885i 0.0547130i −0.999626 0.0273565i \(-0.991291\pi\)
0.999626 0.0273565i \(-0.00870893\pi\)
\(522\) 0 0
\(523\) −9.58031 + 9.58031i −0.418918 + 0.418918i −0.884831 0.465913i \(-0.845726\pi\)
0.465913 + 0.884831i \(0.345726\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −4.51656 + 7.82292i −0.196745 + 0.340772i
\(528\) 0 0
\(529\) 6.57248 + 11.3839i 0.285760 + 0.494951i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 18.7735 + 5.03034i 0.813169 + 0.217888i
\(534\) 0 0
\(535\) −0.0504047 0.0291012i −0.00217918 0.00125815i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −7.38278 + 7.38278i −0.317999 + 0.317999i
\(540\) 0 0
\(541\) 13.0165 + 13.0165i 0.559622 + 0.559622i 0.929200 0.369578i \(-0.120498\pi\)
−0.369578 + 0.929200i \(0.620498\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0.0259743 0.0449887i 0.00111262 0.00192711i
\(546\) 0 0
\(547\) −2.61540 + 9.76080i −0.111826 + 0.417341i −0.999030 0.0440366i \(-0.985978\pi\)
0.887204 + 0.461378i \(0.152645\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 15.3760 8.87733i 0.655039 0.378187i
\(552\) 0 0
\(553\) 0.553890 + 0.319788i 0.0235538 + 0.0135988i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −26.6259 26.6259i −1.12818 1.12818i −0.990474 0.137702i \(-0.956029\pi\)
−0.137702 0.990474i \(-0.543971\pi\)
\(558\) 0 0
\(559\) 26.2889 1.11190
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −21.1660 + 5.67141i −0.892039 + 0.239021i −0.675594 0.737274i \(-0.736113\pi\)
−0.216445 + 0.976295i \(0.569446\pi\)
\(564\) 0 0
\(565\) 0.178552 + 0.0478429i 0.00751174 + 0.00201276i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −8.15901 + 4.71061i −0.342044 + 0.197479i −0.661175 0.750231i \(-0.729942\pi\)
0.319132 + 0.947710i \(0.396609\pi\)
\(570\) 0 0
\(571\) −7.61666 28.4258i −0.318747 1.18958i −0.920450 0.390861i \(-0.872177\pi\)
0.601702 0.798720i \(-0.294489\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −30.0595 −1.25357
\(576\) 0 0
\(577\) −42.9309 −1.78724 −0.893618 0.448828i \(-0.851842\pi\)
−0.893618 + 0.448828i \(0.851842\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −3.56071 13.2888i −0.147723 0.551310i
\(582\) 0 0
\(583\) 20.6244 11.9075i 0.854175 0.493158i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 30.3611 + 8.13523i 1.25314 + 0.335777i 0.823548 0.567247i \(-0.191992\pi\)
0.429589 + 0.903024i \(0.358658\pi\)
\(588\) 0 0
\(589\) 32.5470 8.72095i 1.34108 0.359340i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −0.434128 −0.0178275 −0.00891374 0.999960i \(-0.502837\pi\)
−0.00891374 + 0.999960i \(0.502837\pi\)
\(594\) 0 0
\(595\) −0.0155634 0.0155634i −0.000638037 0.000638037i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 3.46143 + 1.99846i 0.141430 + 0.0816547i 0.569045 0.822306i \(-0.307313\pi\)
−0.427615 + 0.903961i \(0.640646\pi\)
\(600\) 0 0
\(601\) −3.54563 + 2.04707i −0.144629 + 0.0835019i −0.570569 0.821250i \(-0.693277\pi\)
0.425939 + 0.904752i \(0.359944\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −0.0224057 + 0.0836192i −0.000910922 + 0.00339961i
\(606\) 0 0
\(607\) −16.8996 + 29.2709i −0.685932 + 1.18807i 0.287211 + 0.957867i \(0.407272\pi\)
−0.973143 + 0.230202i \(0.926061\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −9.73570 9.73570i −0.393864 0.393864i
\(612\) 0 0
\(613\) 1.73094 1.73094i 0.0699119 0.0699119i −0.671286 0.741198i \(-0.734258\pi\)
0.741198 + 0.671286i \(0.234258\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 14.9093 + 8.60788i 0.600225 + 0.346540i 0.769130 0.639092i \(-0.220690\pi\)
−0.168905 + 0.985632i \(0.554023\pi\)
\(618\) 0 0
\(619\) −6.34645 1.70053i −0.255085 0.0683499i 0.129010 0.991643i \(-0.458820\pi\)
−0.384095 + 0.923293i \(0.625487\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −6.53931 11.3264i −0.261992 0.453783i
\(624\) 0 0
\(625\) 12.4990 21.6489i 0.499959 0.865954i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1.42374 1.42374i 0.0567684 0.0567684i
\(630\) 0 0
\(631\) 13.3295i 0.530639i −0.964161 0.265319i \(-0.914523\pi\)
0.964161 0.265319i \(-0.0854774\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −0.0173188 0.0646345i −0.000687274 0.00256494i
\(636\) 0 0
\(637\) −7.48023 + 27.9166i −0.296377 + 1.10610i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −8.26044 14.3075i −0.326268 0.565113i 0.655500 0.755195i \(-0.272458\pi\)
−0.981768 + 0.190082i \(0.939124\pi\)
\(642\) 0 0
\(643\) 24.0050 6.43213i 0.946667 0.253659i 0.247719 0.968832i \(-0.420319\pi\)
0.698947 + 0.715173i \(0.253652\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 26.9660i 1.06014i 0.847954 + 0.530071i \(0.177835\pi\)
−0.847954 + 0.530071i \(0.822165\pi\)
\(648\) 0 0
\(649\) 17.2418i 0.676800i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −5.27782 + 1.41419i −0.206537 + 0.0553414i −0.360604 0.932719i \(-0.617429\pi\)
0.154067 + 0.988060i \(0.450763\pi\)
\(654\) 0 0
\(655\) −0.0396959 0.0687553i −0.00155105 0.00268649i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −0.184661 + 0.689165i −0.00719337 + 0.0268460i −0.969429 0.245371i \(-0.921090\pi\)
0.962236 + 0.272217i \(0.0877569\pi\)
\(660\) 0 0
\(661\) 9.89344 + 36.9228i 0.384810 + 1.43613i 0.838466 + 0.544954i \(0.183453\pi\)
−0.453656 + 0.891177i \(0.649880\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0.0821010i 0.00318374i
\(666\) 0 0
\(667\) 13.1190 13.1190i 0.507970 0.507970i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 11.8899 20.5940i 0.459006 0.795022i
\(672\) 0 0
\(673\) −6.39173 11.0708i −0.246383 0.426748i 0.716137 0.697960i \(-0.245909\pi\)
−0.962520 + 0.271212i \(0.912575\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 25.4595 + 6.82184i 0.978487 + 0.262185i 0.712407 0.701766i \(-0.247605\pi\)
0.266079 + 0.963951i \(0.414272\pi\)
\(678\) 0 0
\(679\) 18.5875 + 10.7315i 0.713323 + 0.411837i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 9.42670 9.42670i 0.360703 0.360703i −0.503369 0.864072i \(-0.667906\pi\)
0.864072 + 0.503369i \(0.167906\pi\)
\(684\) 0 0
\(685\) −0.0348195 0.0348195i −0.00133039 0.00133039i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 32.9613 57.0906i 1.25572 2.17498i
\(690\) 0 0
\(691\) −4.07041 + 15.1910i −0.154846 + 0.577891i 0.844273 + 0.535913i \(0.180033\pi\)
−0.999119 + 0.0419780i \(0.986634\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0.163992 0.0946807i 0.00622056 0.00359144i
\(696\) 0 0
\(697\) 4.94841 + 2.85696i 0.187434 + 0.108215i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −9.62303 9.62303i −0.363457 0.363457i 0.501627 0.865084i \(-0.332735\pi\)
−0.865084 + 0.501627i \(0.832735\pi\)
\(702\) 0 0
\(703\) −7.51063 −0.283269
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −8.21961 + 2.20244i −0.309130 + 0.0828312i
\(708\) 0 0
\(709\) 40.3893 + 10.8223i 1.51685 + 0.406439i 0.918704 0.394947i \(-0.129237\pi\)
0.598148 + 0.801386i \(0.295904\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 30.4931 17.6052i 1.14197 0.659319i
\(714\) 0 0
\(715\) −0.0300742 0.112239i −0.00112471 0.00419749i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 48.7757 1.81903 0.909514 0.415674i \(-0.136454\pi\)
0.909514 + 0.415674i \(0.136454\pi\)
\(720\) 0 0
\(721\) 3.11067 0.115847
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 3.99343 + 14.9037i 0.148312 + 0.553509i
\(726\) 0 0
\(727\) 34.9918 20.2025i 1.29777 0.749270i 0.317755 0.948173i \(-0.397071\pi\)
0.980019 + 0.198902i \(0.0637377\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 7.46535 + 2.00033i 0.276116 + 0.0739850i
\(732\) 0 0
\(733\) −28.4006 + 7.60991i −1.04900 + 0.281078i −0.741838 0.670579i \(-0.766046\pi\)
−0.307161 + 0.951658i \(0.599379\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 23.3102 0.858644
\(738\) 0 0
\(739\) −15.4222 15.4222i −0.567316 0.567316i 0.364060 0.931376i \(-0.381390\pi\)
−0.931376 + 0.364060i \(0.881390\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −21.5896 12.4647i −0.792045 0.457287i 0.0486373 0.998817i \(-0.484512\pi\)
−0.840682 + 0.541529i \(0.817845\pi\)
\(744\) 0 0
\(745\) −0.0394451 + 0.0227736i −0.00144515 + 0.000834361i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1.57409 5.87459i 0.0575161 0.214653i
\(750\) 0 0
\(751\) 21.2809 36.8596i 0.776551 1.34503i −0.157368 0.987540i \(-0.550301\pi\)
0.933919 0.357486i \(-0.116366\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0.124111 + 0.124111i 0.00451686 + 0.00451686i
\(756\) 0 0
\(757\) 1.80855 1.80855i 0.0657328 0.0657328i −0.673476 0.739209i \(-0.735200\pi\)
0.739209 + 0.673476i \(0.235200\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −18.5805 10.7275i −0.673543 0.388870i 0.123875 0.992298i \(-0.460468\pi\)
−0.797418 + 0.603428i \(0.793801\pi\)
\(762\) 0 0
\(763\) 5.24337 + 1.40496i 0.189823 + 0.0508629i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 23.8636 + 41.3330i 0.861665 + 1.49245i
\(768\) 0 0
\(769\) −9.98382 + 17.2925i −0.360026 + 0.623583i −0.987965 0.154680i \(-0.950565\pi\)
0.627939 + 0.778263i \(0.283899\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −24.8049 + 24.8049i −0.892171 + 0.892171i −0.994727 0.102557i \(-0.967298\pi\)
0.102557 + 0.994727i \(0.467298\pi\)
\(774\) 0 0
\(775\) 29.2823i 1.05185i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −5.51646 20.5877i −0.197648 0.737631i
\(780\) 0 0
\(781\) 6.98342 26.0625i 0.249886 0.932589i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0.0573027 + 0.0992512i 0.00204522 + 0.00354243i
\(786\) 0 0
\(787\) −10.3344 + 2.76911i −0.368383 + 0.0987080i −0.438261 0.898848i \(-0.644406\pi\)
0.0698783 + 0.997556i \(0.477739\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 19.3159i 0.686794i
\(792\) 0 0
\(793\) 65.8254i 2.33753i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −46.8027 + 12.5408i −1.65784 + 0.444216i −0.961792 0.273781i \(-0.911726\pi\)
−0.696046 + 0.717997i \(0.745059\pi\)
\(798\) 0 0
\(799\) −2.02389 3.50547i −0.0716000 0.124015i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −2.11956 + 7.91029i −0.0747975 + 0.279148i
\(804\) 0 0
\(805\) 0.0222048 + 0.0828696i 0.000782618 + 0.00292077i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 51.3577i 1.80564i −0.430019 0.902820i \(-0.641493\pi\)
0.430019 0.902820i \(-0.358507\pi\)
\(810\) 0 0
\(811\) 2.55652 2.55652i 0.0897715 0.0897715i −0.660795 0.750566i \(-0.729781\pi\)
0.750566 + 0.660795i \(0.229781\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −0.0431843 + 0.0747975i −0.00151268 + 0.00262004i
\(816\) 0 0
\(817\) −14.4147 24.9670i −0.504306 0.873484i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −0.179113 0.0479933i −0.00625110 0.00167498i 0.255692 0.966758i \(-0.417697\pi\)
−0.261943 + 0.965083i \(0.584363\pi\)
\(822\) 0 0
\(823\) 16.8590 + 9.73353i 0.587667 + 0.339290i 0.764174 0.645010i \(-0.223147\pi\)
−0.176508 + 0.984299i \(0.556480\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 7.70731 7.70731i 0.268009 0.268009i −0.560288 0.828298i \(-0.689310\pi\)
0.828298 + 0.560288i \(0.189310\pi\)
\(828\) 0 0
\(829\) −23.8166 23.8166i −0.827184 0.827184i 0.159942 0.987126i \(-0.448869\pi\)
−0.987126 + 0.159942i \(0.948869\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −4.24837 + 7.35839i −0.147197 + 0.254953i
\(834\) 0 0
\(835\) −0.0220541 + 0.0823071i −0.000763214 + 0.00284835i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 18.6769 10.7831i 0.644799 0.372275i −0.141662 0.989915i \(-0.545245\pi\)
0.786461 + 0.617640i \(0.211911\pi\)
\(840\) 0 0
\(841\) 16.8674 + 9.73839i 0.581634 + 0.335807i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −0.120018 0.120018i −0.00412873 0.00412873i
\(846\) 0 0
\(847\) −9.04599 −0.310824
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −7.58094 + 2.03131i −0.259871 + 0.0696323i
\(852\) 0 0
\(853\) 38.5967 + 10.3419i 1.32153 + 0.354102i 0.849549 0.527510i \(-0.176874\pi\)
0.471976 + 0.881611i \(0.343541\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −14.5777 + 8.41643i −0.497964 + 0.287500i −0.727872 0.685713i \(-0.759491\pi\)
0.229908 + 0.973212i \(0.426157\pi\)
\(858\) 0 0
\(859\) 5.55582 + 20.7346i 0.189562 + 0.707455i 0.993608 + 0.112888i \(0.0360100\pi\)
−0.804046 + 0.594568i \(0.797323\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 20.3421 0.692455 0.346227 0.938151i \(-0.387463\pi\)
0.346227 + 0.938151i \(0.387463\pi\)
\(864\) 0 0
\(865\) −0.277527 −0.00943620
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0.256922 + 0.958848i 0.00871550 + 0.0325267i
\(870\) 0 0
\(871\) 55.8806 32.2627i 1.89344 1.09318i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −0.137837 0.0369333i −0.00465974 0.00124857i
\(876\) 0 0
\(877\) −18.6156 + 4.98805i −0.628606 + 0.168434i −0.559037 0.829143i \(-0.688829\pi\)
−0.0695688 + 0.997577i \(0.522162\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −37.3378 −1.25794 −0.628972 0.777428i \(-0.716524\pi\)
−0.628972 + 0.777428i \(0.716524\pi\)
\(882\) 0 0
\(883\) 16.7468 + 16.7468i 0.563576 + 0.563576i 0.930321 0.366745i \(-0.119528\pi\)
−0.366745 + 0.930321i \(0.619528\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 36.4841 + 21.0641i 1.22502 + 0.707263i 0.965983 0.258606i \(-0.0832630\pi\)
0.259033 + 0.965869i \(0.416596\pi\)
\(888\) 0 0
\(889\) 6.05543 3.49611i 0.203093 0.117256i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −3.90788 + 14.5844i −0.130772 + 0.488049i
\(894\) 0 0
\(895\) 0.0946055 0.163862i 0.00316231 0.00547729i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −12.7798 12.7798i −0.426229 0.426229i
\(900\) 0 0
\(901\) 13.7042 13.7042i 0.456552 0.456552i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0.0431271 + 0.0248994i 0.00143359 + 0.000827685i
\(906\) 0 0
\(907\) −1.02635 0.275009i −0.0340794 0.00913154i 0.241739 0.970341i \(-0.422282\pi\)
−0.275818 + 0.961210i \(0.588949\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1.91307 + 3.31354i 0.0633829 + 0.109782i 0.895976 0.444103i \(-0.146478\pi\)
−0.832593 + 0.553886i \(0.813144\pi\)
\(912\) 0 0
\(913\) 10.6764 18.4920i 0.353336 0.611996i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 5.86616 5.86616i 0.193718 0.193718i
\(918\) 0 0
\(919\) 5.73779i 0.189272i 0.995512 + 0.0946361i \(0.0301688\pi\)
−0.995512 + 0.0946361i \(0.969831\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −19.3309 72.1438i −0.636284 2.37464i
\(924\) 0 0
\(925\) 1.68931 6.30460i 0.0555442 0.207294i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 20.2911 + 35.1451i 0.665728 + 1.15307i 0.979087 + 0.203440i \(0.0652122\pi\)
−0.313359 + 0.949635i \(0.601454\pi\)
\(930\) 0 0
\(931\) 30.6144 8.20310i 1.00335 0.268846i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0.0341611i 0.00111719i
\(936\) 0 0
\(937\) 27.9974i 0.914635i 0.889304 + 0.457317i \(0.151190\pi\)
−0.889304 + 0.457317i \(0.848810\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 36.1343 9.68215i 1.17794 0.315629i 0.383833 0.923402i \(-0.374604\pi\)
0.794111 + 0.607773i \(0.207937\pi\)
\(942\) 0 0
\(943\) −11.1362 19.2885i −0.362645 0.628119i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −4.92887 + 18.3948i −0.160167 + 0.597751i 0.838441 + 0.544993i \(0.183468\pi\)
−0.998607 + 0.0527575i \(0.983199\pi\)
\(948\) 0 0
\(949\) 5.86717 + 21.8966i 0.190456 + 0.710793i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 2.49861i 0.0809380i 0.999181 + 0.0404690i \(0.0128852\pi\)
−0.999181 + 0.0404690i \(0.987115\pi\)
\(954\) 0 0
\(955\) −0.0373008 + 0.0373008i −0.00120703 + 0.00120703i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 2.57277 4.45617i 0.0830792 0.143897i
\(960\) 0 0
\(961\) −1.64996 2.85782i −0.0532246 0.0921877i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0.0396865 + 0.0106340i 0.00127755 + 0.000342319i
\(966\) 0 0
\(967\) 3.08638 + 1.78192i 0.0992513 + 0.0573028i 0.548804 0.835951i \(-0.315083\pi\)
−0.449553 + 0.893254i \(0.648417\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −0.578866 + 0.578866i −0.0185767 + 0.0185767i −0.716334 0.697757i \(-0.754181\pi\)
0.697757 + 0.716334i \(0.254181\pi\)
\(972\) 0 0
\(973\) 13.9917 + 13.9917i 0.448553 + 0.448553i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −10.3841 + 17.9859i −0.332218 + 0.575418i −0.982946 0.183892i \(-0.941130\pi\)
0.650728 + 0.759310i \(0.274464\pi\)
\(978\) 0 0
\(979\) 5.25377 19.6074i 0.167911 0.626654i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 9.13353 5.27325i 0.291314 0.168190i −0.347220 0.937784i \(-0.612874\pi\)
0.638534 + 0.769593i \(0.279541\pi\)
\(984\) 0 0
\(985\) −0.0689747 0.0398225i −0.00219772 0.00126885i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −21.3022 21.3022i −0.677369 0.677369i
\(990\) 0 0
\(991\) 24.1374 0.766749 0.383374 0.923593i \(-0.374762\pi\)
0.383374 + 0.923593i \(0.374762\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0.0526377 0.0141042i 0.00166873 0.000447134i
\(996\) 0 0
\(997\) −22.4986 6.02848i −0.712538 0.190924i −0.115698 0.993284i \(-0.536910\pi\)
−0.596840 + 0.802361i \(0.703577\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1728.2.bc.e.145.10 72
3.2 odd 2 576.2.bb.e.337.14 72
4.3 odd 2 432.2.y.e.253.6 72
9.2 odd 6 576.2.bb.e.529.4 72
9.7 even 3 inner 1728.2.bc.e.721.9 72
12.11 even 2 144.2.x.e.13.13 72
16.5 even 4 inner 1728.2.bc.e.1009.9 72
16.11 odd 4 432.2.y.e.37.7 72
36.7 odd 6 432.2.y.e.397.7 72
36.11 even 6 144.2.x.e.61.12 yes 72
48.5 odd 4 576.2.bb.e.49.4 72
48.11 even 4 144.2.x.e.85.12 yes 72
144.11 even 12 144.2.x.e.133.13 yes 72
144.43 odd 12 432.2.y.e.181.6 72
144.101 odd 12 576.2.bb.e.241.14 72
144.133 even 12 inner 1728.2.bc.e.1585.10 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.2.x.e.13.13 72 12.11 even 2
144.2.x.e.61.12 yes 72 36.11 even 6
144.2.x.e.85.12 yes 72 48.11 even 4
144.2.x.e.133.13 yes 72 144.11 even 12
432.2.y.e.37.7 72 16.11 odd 4
432.2.y.e.181.6 72 144.43 odd 12
432.2.y.e.253.6 72 4.3 odd 2
432.2.y.e.397.7 72 36.7 odd 6
576.2.bb.e.49.4 72 48.5 odd 4
576.2.bb.e.241.14 72 144.101 odd 12
576.2.bb.e.337.14 72 3.2 odd 2
576.2.bb.e.529.4 72 9.2 odd 6
1728.2.bc.e.145.10 72 1.1 even 1 trivial
1728.2.bc.e.721.9 72 9.7 even 3 inner
1728.2.bc.e.1009.9 72 16.5 even 4 inner
1728.2.bc.e.1585.10 72 144.133 even 12 inner