Properties

Label 1728.2.a.f.1.1
Level $1728$
Weight $2$
Character 1728.1
Self dual yes
Analytic conductor $13.798$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1728.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(13.7981494693\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 864)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1728.1

$q$-expansion

\(f(q)\) \(=\) \(q-2.00000 q^{5} -1.00000 q^{7} +O(q^{10})\) \(q-2.00000 q^{5} -1.00000 q^{7} +2.00000 q^{11} -1.00000 q^{13} +6.00000 q^{17} -5.00000 q^{19} +6.00000 q^{23} -1.00000 q^{25} -8.00000 q^{29} -8.00000 q^{31} +2.00000 q^{35} +5.00000 q^{37} +8.00000 q^{41} -4.00000 q^{43} -10.0000 q^{47} -6.00000 q^{49} -4.00000 q^{53} -4.00000 q^{55} -14.0000 q^{59} -3.00000 q^{61} +2.00000 q^{65} -13.0000 q^{67} -4.00000 q^{71} +9.00000 q^{73} -2.00000 q^{77} -11.0000 q^{79} +12.0000 q^{83} -12.0000 q^{85} -2.00000 q^{89} +1.00000 q^{91} +10.0000 q^{95} +1.00000 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.00000 −0.894427 −0.447214 0.894427i \(-0.647584\pi\)
−0.447214 + 0.894427i \(0.647584\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964 −0.188982 0.981981i \(-0.560519\pi\)
−0.188982 + 0.981981i \(0.560519\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350 −0.138675 0.990338i \(-0.544284\pi\)
−0.138675 + 0.990338i \(0.544284\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.00000 1.45521 0.727607 0.685994i \(-0.240633\pi\)
0.727607 + 0.685994i \(0.240633\pi\)
\(18\) 0 0
\(19\) −5.00000 −1.14708 −0.573539 0.819178i \(-0.694430\pi\)
−0.573539 + 0.819178i \(0.694430\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −8.00000 −1.48556 −0.742781 0.669534i \(-0.766494\pi\)
−0.742781 + 0.669534i \(0.766494\pi\)
\(30\) 0 0
\(31\) −8.00000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.00000 0.338062
\(36\) 0 0
\(37\) 5.00000 0.821995 0.410997 0.911636i \(-0.365181\pi\)
0.410997 + 0.911636i \(0.365181\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 8.00000 1.24939 0.624695 0.780869i \(-0.285223\pi\)
0.624695 + 0.780869i \(0.285223\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −10.0000 −1.45865 −0.729325 0.684167i \(-0.760166\pi\)
−0.729325 + 0.684167i \(0.760166\pi\)
\(48\) 0 0
\(49\) −6.00000 −0.857143
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −4.00000 −0.549442 −0.274721 0.961524i \(-0.588586\pi\)
−0.274721 + 0.961524i \(0.588586\pi\)
\(54\) 0 0
\(55\) −4.00000 −0.539360
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −14.0000 −1.82264 −0.911322 0.411693i \(-0.864937\pi\)
−0.911322 + 0.411693i \(0.864937\pi\)
\(60\) 0 0
\(61\) −3.00000 −0.384111 −0.192055 0.981384i \(-0.561515\pi\)
−0.192055 + 0.981384i \(0.561515\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.00000 0.248069
\(66\) 0 0
\(67\) −13.0000 −1.58820 −0.794101 0.607785i \(-0.792058\pi\)
−0.794101 + 0.607785i \(0.792058\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −4.00000 −0.474713 −0.237356 0.971423i \(-0.576281\pi\)
−0.237356 + 0.971423i \(0.576281\pi\)
\(72\) 0 0
\(73\) 9.00000 1.05337 0.526685 0.850060i \(-0.323435\pi\)
0.526685 + 0.850060i \(0.323435\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.00000 −0.227921
\(78\) 0 0
\(79\) −11.0000 −1.23760 −0.618798 0.785550i \(-0.712380\pi\)
−0.618798 + 0.785550i \(0.712380\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 0 0
\(85\) −12.0000 −1.30158
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −2.00000 −0.212000 −0.106000 0.994366i \(-0.533804\pi\)
−0.106000 + 0.994366i \(0.533804\pi\)
\(90\) 0 0
\(91\) 1.00000 0.104828
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 10.0000 1.02598
\(96\) 0 0
\(97\) 1.00000 0.101535 0.0507673 0.998711i \(-0.483833\pi\)
0.0507673 + 0.998711i \(0.483833\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 3.00000 0.295599 0.147799 0.989017i \(-0.452781\pi\)
0.147799 + 0.989017i \(0.452781\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.00000 −0.193347 −0.0966736 0.995316i \(-0.530820\pi\)
−0.0966736 + 0.995316i \(0.530820\pi\)
\(108\) 0 0
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −10.0000 −0.940721 −0.470360 0.882474i \(-0.655876\pi\)
−0.470360 + 0.882474i \(0.655876\pi\)
\(114\) 0 0
\(115\) −12.0000 −1.11901
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −6.00000 −0.550019
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) −20.0000 −1.77471 −0.887357 0.461084i \(-0.847461\pi\)
−0.887357 + 0.461084i \(0.847461\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −16.0000 −1.39793 −0.698963 0.715158i \(-0.746355\pi\)
−0.698963 + 0.715158i \(0.746355\pi\)
\(132\) 0 0
\(133\) 5.00000 0.433555
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −6.00000 −0.512615 −0.256307 0.966595i \(-0.582506\pi\)
−0.256307 + 0.966595i \(0.582506\pi\)
\(138\) 0 0
\(139\) 5.00000 0.424094 0.212047 0.977259i \(-0.431987\pi\)
0.212047 + 0.977259i \(0.431987\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2.00000 −0.167248
\(144\) 0 0
\(145\) 16.0000 1.32873
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 12.0000 0.983078 0.491539 0.870855i \(-0.336434\pi\)
0.491539 + 0.870855i \(0.336434\pi\)
\(150\) 0 0
\(151\) 9.00000 0.732410 0.366205 0.930534i \(-0.380657\pi\)
0.366205 + 0.930534i \(0.380657\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 16.0000 1.28515
\(156\) 0 0
\(157\) −2.00000 −0.159617 −0.0798087 0.996810i \(-0.525431\pi\)
−0.0798087 + 0.996810i \(0.525431\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −6.00000 −0.472866
\(162\) 0 0
\(163\) −11.0000 −0.861586 −0.430793 0.902451i \(-0.641766\pi\)
−0.430793 + 0.902451i \(0.641766\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 14.0000 1.08335 0.541676 0.840587i \(-0.317790\pi\)
0.541676 + 0.840587i \(0.317790\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 24.0000 1.82469 0.912343 0.409426i \(-0.134271\pi\)
0.912343 + 0.409426i \(0.134271\pi\)
\(174\) 0 0
\(175\) 1.00000 0.0755929
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) 19.0000 1.41226 0.706129 0.708083i \(-0.250440\pi\)
0.706129 + 0.708083i \(0.250440\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −10.0000 −0.735215
\(186\) 0 0
\(187\) 12.0000 0.877527
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −6.00000 −0.434145 −0.217072 0.976156i \(-0.569651\pi\)
−0.217072 + 0.976156i \(0.569651\pi\)
\(192\) 0 0
\(193\) −21.0000 −1.51161 −0.755807 0.654795i \(-0.772755\pi\)
−0.755807 + 0.654795i \(0.772755\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2.00000 −0.142494 −0.0712470 0.997459i \(-0.522698\pi\)
−0.0712470 + 0.997459i \(0.522698\pi\)
\(198\) 0 0
\(199\) 19.0000 1.34687 0.673437 0.739244i \(-0.264817\pi\)
0.673437 + 0.739244i \(0.264817\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 8.00000 0.561490
\(204\) 0 0
\(205\) −16.0000 −1.11749
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −10.0000 −0.691714
\(210\) 0 0
\(211\) 1.00000 0.0688428 0.0344214 0.999407i \(-0.489041\pi\)
0.0344214 + 0.999407i \(0.489041\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 8.00000 0.545595
\(216\) 0 0
\(217\) 8.00000 0.543075
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −6.00000 −0.403604
\(222\) 0 0
\(223\) −16.0000 −1.07144 −0.535720 0.844396i \(-0.679960\pi\)
−0.535720 + 0.844396i \(0.679960\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −12.0000 −0.796468 −0.398234 0.917284i \(-0.630377\pi\)
−0.398234 + 0.917284i \(0.630377\pi\)
\(228\) 0 0
\(229\) −26.0000 −1.71813 −0.859064 0.511868i \(-0.828954\pi\)
−0.859064 + 0.511868i \(0.828954\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −24.0000 −1.57229 −0.786146 0.618041i \(-0.787927\pi\)
−0.786146 + 0.618041i \(0.787927\pi\)
\(234\) 0 0
\(235\) 20.0000 1.30466
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) 0 0
\(241\) 13.0000 0.837404 0.418702 0.908124i \(-0.362485\pi\)
0.418702 + 0.908124i \(0.362485\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 12.0000 0.766652
\(246\) 0 0
\(247\) 5.00000 0.318142
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 12.0000 0.754434
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −4.00000 −0.249513 −0.124757 0.992187i \(-0.539815\pi\)
−0.124757 + 0.992187i \(0.539815\pi\)
\(258\) 0 0
\(259\) −5.00000 −0.310685
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −12.0000 −0.739952 −0.369976 0.929041i \(-0.620634\pi\)
−0.369976 + 0.929041i \(0.620634\pi\)
\(264\) 0 0
\(265\) 8.00000 0.491436
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −6.00000 −0.365826 −0.182913 0.983129i \(-0.558553\pi\)
−0.182913 + 0.983129i \(0.558553\pi\)
\(270\) 0 0
\(271\) 21.0000 1.27566 0.637830 0.770178i \(-0.279832\pi\)
0.637830 + 0.770178i \(0.279832\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.00000 −0.120605
\(276\) 0 0
\(277\) 2.00000 0.120168 0.0600842 0.998193i \(-0.480863\pi\)
0.0600842 + 0.998193i \(0.480863\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 24.0000 1.43172 0.715860 0.698244i \(-0.246035\pi\)
0.715860 + 0.698244i \(0.246035\pi\)
\(282\) 0 0
\(283\) 20.0000 1.18888 0.594438 0.804141i \(-0.297374\pi\)
0.594438 + 0.804141i \(0.297374\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −8.00000 −0.472225
\(288\) 0 0
\(289\) 19.0000 1.11765
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 18.0000 1.05157 0.525786 0.850617i \(-0.323771\pi\)
0.525786 + 0.850617i \(0.323771\pi\)
\(294\) 0 0
\(295\) 28.0000 1.63022
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −6.00000 −0.346989
\(300\) 0 0
\(301\) 4.00000 0.230556
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 6.00000 0.343559
\(306\) 0 0
\(307\) −12.0000 −0.684876 −0.342438 0.939540i \(-0.611253\pi\)
−0.342438 + 0.939540i \(0.611253\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −30.0000 −1.70114 −0.850572 0.525859i \(-0.823744\pi\)
−0.850572 + 0.525859i \(0.823744\pi\)
\(312\) 0 0
\(313\) −17.0000 −0.960897 −0.480448 0.877023i \(-0.659526\pi\)
−0.480448 + 0.877023i \(0.659526\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −12.0000 −0.673987 −0.336994 0.941507i \(-0.609410\pi\)
−0.336994 + 0.941507i \(0.609410\pi\)
\(318\) 0 0
\(319\) −16.0000 −0.895828
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −30.0000 −1.66924
\(324\) 0 0
\(325\) 1.00000 0.0554700
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 10.0000 0.551318
\(330\) 0 0
\(331\) 29.0000 1.59398 0.796992 0.603990i \(-0.206423\pi\)
0.796992 + 0.603990i \(0.206423\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 26.0000 1.42053
\(336\) 0 0
\(337\) −31.0000 −1.68868 −0.844339 0.535810i \(-0.820006\pi\)
−0.844339 + 0.535810i \(0.820006\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −16.0000 −0.866449
\(342\) 0 0
\(343\) 13.0000 0.701934
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4.00000 0.214731 0.107366 0.994220i \(-0.465758\pi\)
0.107366 + 0.994220i \(0.465758\pi\)
\(348\) 0 0
\(349\) 5.00000 0.267644 0.133822 0.991005i \(-0.457275\pi\)
0.133822 + 0.991005i \(0.457275\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 4.00000 0.212899 0.106449 0.994318i \(-0.466052\pi\)
0.106449 + 0.994318i \(0.466052\pi\)
\(354\) 0 0
\(355\) 8.00000 0.424596
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −14.0000 −0.738892 −0.369446 0.929252i \(-0.620452\pi\)
−0.369446 + 0.929252i \(0.620452\pi\)
\(360\) 0 0
\(361\) 6.00000 0.315789
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −18.0000 −0.942163
\(366\) 0 0
\(367\) 15.0000 0.782994 0.391497 0.920179i \(-0.371957\pi\)
0.391497 + 0.920179i \(0.371957\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 4.00000 0.207670
\(372\) 0 0
\(373\) −11.0000 −0.569558 −0.284779 0.958593i \(-0.591920\pi\)
−0.284779 + 0.958593i \(0.591920\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 8.00000 0.412021
\(378\) 0 0
\(379\) 19.0000 0.975964 0.487982 0.872854i \(-0.337733\pi\)
0.487982 + 0.872854i \(0.337733\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −16.0000 −0.817562 −0.408781 0.912633i \(-0.634046\pi\)
−0.408781 + 0.912633i \(0.634046\pi\)
\(384\) 0 0
\(385\) 4.00000 0.203859
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −18.0000 −0.912636 −0.456318 0.889817i \(-0.650832\pi\)
−0.456318 + 0.889817i \(0.650832\pi\)
\(390\) 0 0
\(391\) 36.0000 1.82060
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 22.0000 1.10694
\(396\) 0 0
\(397\) 14.0000 0.702640 0.351320 0.936255i \(-0.385733\pi\)
0.351320 + 0.936255i \(0.385733\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 28.0000 1.39825 0.699127 0.714998i \(-0.253572\pi\)
0.699127 + 0.714998i \(0.253572\pi\)
\(402\) 0 0
\(403\) 8.00000 0.398508
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 10.0000 0.495682
\(408\) 0 0
\(409\) 13.0000 0.642809 0.321404 0.946942i \(-0.395845\pi\)
0.321404 + 0.946942i \(0.395845\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 14.0000 0.688895
\(414\) 0 0
\(415\) −24.0000 −1.17811
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 26.0000 1.27018 0.635092 0.772437i \(-0.280962\pi\)
0.635092 + 0.772437i \(0.280962\pi\)
\(420\) 0 0
\(421\) 19.0000 0.926003 0.463002 0.886357i \(-0.346772\pi\)
0.463002 + 0.886357i \(0.346772\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −6.00000 −0.291043
\(426\) 0 0
\(427\) 3.00000 0.145180
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 30.0000 1.44505 0.722525 0.691345i \(-0.242982\pi\)
0.722525 + 0.691345i \(0.242982\pi\)
\(432\) 0 0
\(433\) −2.00000 −0.0961139 −0.0480569 0.998845i \(-0.515303\pi\)
−0.0480569 + 0.998845i \(0.515303\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −30.0000 −1.43509
\(438\) 0 0
\(439\) 8.00000 0.381819 0.190910 0.981608i \(-0.438856\pi\)
0.190910 + 0.981608i \(0.438856\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −36.0000 −1.71041 −0.855206 0.518289i \(-0.826569\pi\)
−0.855206 + 0.518289i \(0.826569\pi\)
\(444\) 0 0
\(445\) 4.00000 0.189618
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 34.0000 1.60456 0.802280 0.596948i \(-0.203620\pi\)
0.802280 + 0.596948i \(0.203620\pi\)
\(450\) 0 0
\(451\) 16.0000 0.753411
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −2.00000 −0.0937614
\(456\) 0 0
\(457\) 2.00000 0.0935561 0.0467780 0.998905i \(-0.485105\pi\)
0.0467780 + 0.998905i \(0.485105\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −30.0000 −1.39724 −0.698620 0.715493i \(-0.746202\pi\)
−0.698620 + 0.715493i \(0.746202\pi\)
\(462\) 0 0
\(463\) 19.0000 0.883005 0.441502 0.897260i \(-0.354446\pi\)
0.441502 + 0.897260i \(0.354446\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 2.00000 0.0925490 0.0462745 0.998929i \(-0.485265\pi\)
0.0462745 + 0.998929i \(0.485265\pi\)
\(468\) 0 0
\(469\) 13.0000 0.600284
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −8.00000 −0.367840
\(474\) 0 0
\(475\) 5.00000 0.229416
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 12.0000 0.548294 0.274147 0.961688i \(-0.411605\pi\)
0.274147 + 0.961688i \(0.411605\pi\)
\(480\) 0 0
\(481\) −5.00000 −0.227980
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2.00000 −0.0908153
\(486\) 0 0
\(487\) 11.0000 0.498458 0.249229 0.968445i \(-0.419823\pi\)
0.249229 + 0.968445i \(0.419823\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 14.0000 0.631811 0.315906 0.948791i \(-0.397692\pi\)
0.315906 + 0.948791i \(0.397692\pi\)
\(492\) 0 0
\(493\) −48.0000 −2.16181
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 4.00000 0.179425
\(498\) 0 0
\(499\) −24.0000 −1.07439 −0.537194 0.843459i \(-0.680516\pi\)
−0.537194 + 0.843459i \(0.680516\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 6.00000 0.267527 0.133763 0.991013i \(-0.457294\pi\)
0.133763 + 0.991013i \(0.457294\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 6.00000 0.265945 0.132973 0.991120i \(-0.457548\pi\)
0.132973 + 0.991120i \(0.457548\pi\)
\(510\) 0 0
\(511\) −9.00000 −0.398137
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −6.00000 −0.264392
\(516\) 0 0
\(517\) −20.0000 −0.879599
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 42.0000 1.84005 0.920027 0.391856i \(-0.128167\pi\)
0.920027 + 0.391856i \(0.128167\pi\)
\(522\) 0 0
\(523\) 15.0000 0.655904 0.327952 0.944694i \(-0.393642\pi\)
0.327952 + 0.944694i \(0.393642\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −48.0000 −2.09091
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −8.00000 −0.346518
\(534\) 0 0
\(535\) 4.00000 0.172935
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −12.0000 −0.516877
\(540\) 0 0
\(541\) −37.0000 −1.59075 −0.795377 0.606115i \(-0.792727\pi\)
−0.795377 + 0.606115i \(0.792727\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −20.0000 −0.856706
\(546\) 0 0
\(547\) −15.0000 −0.641354 −0.320677 0.947189i \(-0.603910\pi\)
−0.320677 + 0.947189i \(0.603910\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 40.0000 1.70406
\(552\) 0 0
\(553\) 11.0000 0.467768
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −14.0000 −0.593199 −0.296600 0.955002i \(-0.595853\pi\)
−0.296600 + 0.955002i \(0.595853\pi\)
\(558\) 0 0
\(559\) 4.00000 0.169182
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 24.0000 1.01148 0.505740 0.862686i \(-0.331220\pi\)
0.505740 + 0.862686i \(0.331220\pi\)
\(564\) 0 0
\(565\) 20.0000 0.841406
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −10.0000 −0.419222 −0.209611 0.977785i \(-0.567220\pi\)
−0.209611 + 0.977785i \(0.567220\pi\)
\(570\) 0 0
\(571\) 19.0000 0.795125 0.397563 0.917575i \(-0.369856\pi\)
0.397563 + 0.917575i \(0.369856\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −6.00000 −0.250217
\(576\) 0 0
\(577\) 3.00000 0.124892 0.0624458 0.998048i \(-0.480110\pi\)
0.0624458 + 0.998048i \(0.480110\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −12.0000 −0.497844
\(582\) 0 0
\(583\) −8.00000 −0.331326
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 6.00000 0.247647 0.123823 0.992304i \(-0.460484\pi\)
0.123823 + 0.992304i \(0.460484\pi\)
\(588\) 0 0
\(589\) 40.0000 1.64817
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −36.0000 −1.47834 −0.739171 0.673517i \(-0.764783\pi\)
−0.739171 + 0.673517i \(0.764783\pi\)
\(594\) 0 0
\(595\) 12.0000 0.491952
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 8.00000 0.326871 0.163436 0.986554i \(-0.447742\pi\)
0.163436 + 0.986554i \(0.447742\pi\)
\(600\) 0 0
\(601\) −26.0000 −1.06056 −0.530281 0.847822i \(-0.677914\pi\)
−0.530281 + 0.847822i \(0.677914\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 14.0000 0.569181
\(606\) 0 0
\(607\) −41.0000 −1.66414 −0.832069 0.554672i \(-0.812844\pi\)
−0.832069 + 0.554672i \(0.812844\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 10.0000 0.404557
\(612\) 0 0
\(613\) 9.00000 0.363507 0.181753 0.983344i \(-0.441823\pi\)
0.181753 + 0.983344i \(0.441823\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 42.0000 1.69086 0.845428 0.534089i \(-0.179345\pi\)
0.845428 + 0.534089i \(0.179345\pi\)
\(618\) 0 0
\(619\) −9.00000 −0.361741 −0.180870 0.983507i \(-0.557891\pi\)
−0.180870 + 0.983507i \(0.557891\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 2.00000 0.0801283
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 30.0000 1.19618
\(630\) 0 0
\(631\) 1.00000 0.0398094 0.0199047 0.999802i \(-0.493664\pi\)
0.0199047 + 0.999802i \(0.493664\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 40.0000 1.58735
\(636\) 0 0
\(637\) 6.00000 0.237729
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 4.00000 0.157991 0.0789953 0.996875i \(-0.474829\pi\)
0.0789953 + 0.996875i \(0.474829\pi\)
\(642\) 0 0
\(643\) −12.0000 −0.473234 −0.236617 0.971603i \(-0.576039\pi\)
−0.236617 + 0.971603i \(0.576039\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 24.0000 0.943537 0.471769 0.881722i \(-0.343616\pi\)
0.471769 + 0.881722i \(0.343616\pi\)
\(648\) 0 0
\(649\) −28.0000 −1.09910
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 44.0000 1.72185 0.860927 0.508729i \(-0.169885\pi\)
0.860927 + 0.508729i \(0.169885\pi\)
\(654\) 0 0
\(655\) 32.0000 1.25034
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −36.0000 −1.40236 −0.701180 0.712984i \(-0.747343\pi\)
−0.701180 + 0.712984i \(0.747343\pi\)
\(660\) 0 0
\(661\) −23.0000 −0.894596 −0.447298 0.894385i \(-0.647614\pi\)
−0.447298 + 0.894385i \(0.647614\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −10.0000 −0.387783
\(666\) 0 0
\(667\) −48.0000 −1.85857
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −6.00000 −0.231627
\(672\) 0 0
\(673\) 23.0000 0.886585 0.443292 0.896377i \(-0.353810\pi\)
0.443292 + 0.896377i \(0.353810\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 14.0000 0.538064 0.269032 0.963131i \(-0.413296\pi\)
0.269032 + 0.963131i \(0.413296\pi\)
\(678\) 0 0
\(679\) −1.00000 −0.0383765
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −24.0000 −0.918334 −0.459167 0.888350i \(-0.651852\pi\)
−0.459167 + 0.888350i \(0.651852\pi\)
\(684\) 0 0
\(685\) 12.0000 0.458496
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 4.00000 0.152388
\(690\) 0 0
\(691\) 4.00000 0.152167 0.0760836 0.997101i \(-0.475758\pi\)
0.0760836 + 0.997101i \(0.475758\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −10.0000 −0.379322
\(696\) 0 0
\(697\) 48.0000 1.81813
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −30.0000 −1.13308 −0.566542 0.824033i \(-0.691719\pi\)
−0.566542 + 0.824033i \(0.691719\pi\)
\(702\) 0 0
\(703\) −25.0000 −0.942893
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 23.0000 0.863783 0.431892 0.901926i \(-0.357846\pi\)
0.431892 + 0.901926i \(0.357846\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −48.0000 −1.79761
\(714\) 0 0
\(715\) 4.00000 0.149592
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −52.0000 −1.93927 −0.969636 0.244551i \(-0.921359\pi\)
−0.969636 + 0.244551i \(0.921359\pi\)
\(720\) 0 0
\(721\) −3.00000 −0.111726
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 8.00000 0.297113
\(726\) 0 0
\(727\) −48.0000 −1.78022 −0.890111 0.455744i \(-0.849373\pi\)
−0.890111 + 0.455744i \(0.849373\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −24.0000 −0.887672
\(732\) 0 0
\(733\) 34.0000 1.25582 0.627909 0.778287i \(-0.283911\pi\)
0.627909 + 0.778287i \(0.283911\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −26.0000 −0.957722
\(738\) 0 0
\(739\) −20.0000 −0.735712 −0.367856 0.929883i \(-0.619908\pi\)
−0.367856 + 0.929883i \(0.619908\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −42.0000 −1.54083 −0.770415 0.637542i \(-0.779951\pi\)
−0.770415 + 0.637542i \(0.779951\pi\)
\(744\) 0 0
\(745\) −24.0000 −0.879292
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 2.00000 0.0730784
\(750\) 0 0
\(751\) 25.0000 0.912263 0.456131 0.889912i \(-0.349235\pi\)
0.456131 + 0.889912i \(0.349235\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −18.0000 −0.655087
\(756\) 0 0
\(757\) −33.0000 −1.19941 −0.599703 0.800223i \(-0.704714\pi\)
−0.599703 + 0.800223i \(0.704714\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −42.0000 −1.52250 −0.761249 0.648459i \(-0.775414\pi\)
−0.761249 + 0.648459i \(0.775414\pi\)
\(762\) 0 0
\(763\) −10.0000 −0.362024
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 14.0000 0.505511
\(768\) 0 0
\(769\) −17.0000 −0.613036 −0.306518 0.951865i \(-0.599164\pi\)
−0.306518 + 0.951865i \(0.599164\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 36.0000 1.29483 0.647415 0.762138i \(-0.275850\pi\)
0.647415 + 0.762138i \(0.275850\pi\)
\(774\) 0 0
\(775\) 8.00000 0.287368
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −40.0000 −1.43315
\(780\) 0 0
\(781\) −8.00000 −0.286263
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 4.00000 0.142766
\(786\) 0 0
\(787\) 3.00000 0.106938 0.0534692 0.998569i \(-0.482972\pi\)
0.0534692 + 0.998569i \(0.482972\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 10.0000 0.355559
\(792\) 0 0
\(793\) 3.00000 0.106533
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 24.0000 0.850124 0.425062 0.905164i \(-0.360252\pi\)
0.425062 + 0.905164i \(0.360252\pi\)
\(798\) 0 0
\(799\) −60.0000 −2.12265
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 18.0000 0.635206
\(804\) 0 0
\(805\) 12.0000 0.422944
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −20.0000 −0.703163 −0.351581 0.936157i \(-0.614356\pi\)
−0.351581 + 0.936157i \(0.614356\pi\)
\(810\) 0 0
\(811\) −20.0000 −0.702295 −0.351147 0.936320i \(-0.614208\pi\)
−0.351147 + 0.936320i \(0.614208\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 22.0000 0.770626
\(816\) 0 0
\(817\) 20.0000 0.699711
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −2.00000 −0.0698005 −0.0349002 0.999391i \(-0.511111\pi\)
−0.0349002 + 0.999391i \(0.511111\pi\)
\(822\) 0 0
\(823\) −43.0000 −1.49889 −0.749443 0.662069i \(-0.769679\pi\)
−0.749443 + 0.662069i \(0.769679\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 2.00000 0.0695468 0.0347734 0.999395i \(-0.488929\pi\)
0.0347734 + 0.999395i \(0.488929\pi\)
\(828\) 0 0
\(829\) −41.0000 −1.42399 −0.711994 0.702185i \(-0.752208\pi\)
−0.711994 + 0.702185i \(0.752208\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −36.0000 −1.24733
\(834\) 0 0
\(835\) −28.0000 −0.968980
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −4.00000 −0.138095 −0.0690477 0.997613i \(-0.521996\pi\)
−0.0690477 + 0.997613i \(0.521996\pi\)
\(840\) 0 0
\(841\) 35.0000 1.20690
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 24.0000 0.825625
\(846\) 0 0
\(847\) 7.00000 0.240523
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 30.0000 1.02839
\(852\) 0 0
\(853\) −15.0000 −0.513590 −0.256795 0.966466i \(-0.582667\pi\)
−0.256795 + 0.966466i \(0.582667\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 28.0000 0.956462 0.478231 0.878234i \(-0.341278\pi\)
0.478231 + 0.878234i \(0.341278\pi\)
\(858\) 0 0
\(859\) −19.0000 −0.648272 −0.324136 0.946011i \(-0.605073\pi\)
−0.324136 + 0.946011i \(0.605073\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 38.0000 1.29354 0.646768 0.762687i \(-0.276120\pi\)
0.646768 + 0.762687i \(0.276120\pi\)
\(864\) 0 0
\(865\) −48.0000 −1.63205
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −22.0000 −0.746299
\(870\) 0 0
\(871\) 13.0000 0.440488
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −12.0000 −0.405674
\(876\) 0 0
\(877\) 17.0000 0.574049 0.287025 0.957923i \(-0.407334\pi\)
0.287025 + 0.957923i \(0.407334\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −6.00000 −0.202145 −0.101073 0.994879i \(-0.532227\pi\)
−0.101073 + 0.994879i \(0.532227\pi\)
\(882\) 0 0
\(883\) −31.0000 −1.04323 −0.521617 0.853180i \(-0.674671\pi\)
−0.521617 + 0.853180i \(0.674671\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 12.0000 0.402921 0.201460 0.979497i \(-0.435431\pi\)
0.201460 + 0.979497i \(0.435431\pi\)
\(888\) 0 0
\(889\) 20.0000 0.670778
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 50.0000 1.67319
\(894\) 0 0
\(895\) −24.0000 −0.802232
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 64.0000 2.13452
\(900\) 0 0
\(901\) −24.0000 −0.799556
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −38.0000 −1.26316
\(906\) 0 0
\(907\) −17.0000 −0.564476 −0.282238 0.959344i \(-0.591077\pi\)
−0.282238 + 0.959344i \(0.591077\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −48.0000 −1.59031 −0.795155 0.606406i \(-0.792611\pi\)
−0.795155 + 0.606406i \(0.792611\pi\)
\(912\) 0 0
\(913\) 24.0000 0.794284
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 16.0000 0.528367
\(918\) 0 0
\(919\) −48.0000 −1.58337 −0.791687 0.610927i \(-0.790797\pi\)
−0.791687 + 0.610927i \(0.790797\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 4.00000 0.131662
\(924\) 0 0
\(925\) −5.00000 −0.164399
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 12.0000 0.393707 0.196854 0.980433i \(-0.436928\pi\)
0.196854 + 0.980433i \(0.436928\pi\)
\(930\) 0 0
\(931\) 30.0000 0.983210
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −24.0000 −0.784884
\(936\) 0 0
\(937\) −25.0000 −0.816714 −0.408357 0.912822i \(-0.633898\pi\)
−0.408357 + 0.912822i \(0.633898\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −22.0000 −0.717180 −0.358590 0.933495i \(-0.616742\pi\)
−0.358590 + 0.933495i \(0.616742\pi\)
\(942\) 0 0
\(943\) 48.0000 1.56310
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 6.00000 0.194974 0.0974869 0.995237i \(-0.468920\pi\)
0.0974869 + 0.995237i \(0.468920\pi\)
\(948\) 0 0
\(949\) −9.00000 −0.292152
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 6.00000 0.194359 0.0971795 0.995267i \(-0.469018\pi\)
0.0971795 + 0.995267i \(0.469018\pi\)
\(954\) 0 0
\(955\) 12.0000 0.388311
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 6.00000 0.193750
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 42.0000 1.35203
\(966\) 0 0
\(967\) −27.0000 −0.868261 −0.434131 0.900850i \(-0.642944\pi\)
−0.434131 + 0.900850i \(0.642944\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −34.0000 −1.09111 −0.545556 0.838074i \(-0.683681\pi\)
−0.545556 + 0.838074i \(0.683681\pi\)
\(972\) 0 0
\(973\) −5.00000 −0.160293
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 44.0000 1.40768 0.703842 0.710356i \(-0.251466\pi\)
0.703842 + 0.710356i \(0.251466\pi\)
\(978\) 0 0
\(979\) −4.00000 −0.127841
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 42.0000 1.33959 0.669796 0.742545i \(-0.266382\pi\)
0.669796 + 0.742545i \(0.266382\pi\)
\(984\) 0 0
\(985\) 4.00000 0.127451
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −24.0000 −0.763156
\(990\) 0 0
\(991\) 7.00000 0.222362 0.111181 0.993800i \(-0.464537\pi\)
0.111181 + 0.993800i \(0.464537\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −38.0000 −1.20468
\(996\) 0 0
\(997\) 54.0000 1.71020 0.855099 0.518465i \(-0.173497\pi\)
0.855099 + 0.518465i \(0.173497\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1728.2.a.f.1.1 1
3.2 odd 2 1728.2.a.v.1.1 1
4.3 odd 2 1728.2.a.g.1.1 1
8.3 odd 2 864.2.a.k.1.1 yes 1
8.5 even 2 864.2.a.j.1.1 yes 1
12.11 even 2 1728.2.a.w.1.1 1
24.5 odd 2 864.2.a.b.1.1 1
24.11 even 2 864.2.a.c.1.1 yes 1
72.5 odd 6 2592.2.i.u.865.1 2
72.11 even 6 2592.2.i.s.1729.1 2
72.13 even 6 2592.2.i.f.865.1 2
72.29 odd 6 2592.2.i.u.1729.1 2
72.43 odd 6 2592.2.i.d.1729.1 2
72.59 even 6 2592.2.i.s.865.1 2
72.61 even 6 2592.2.i.f.1729.1 2
72.67 odd 6 2592.2.i.d.865.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
864.2.a.b.1.1 1 24.5 odd 2
864.2.a.c.1.1 yes 1 24.11 even 2
864.2.a.j.1.1 yes 1 8.5 even 2
864.2.a.k.1.1 yes 1 8.3 odd 2
1728.2.a.f.1.1 1 1.1 even 1 trivial
1728.2.a.g.1.1 1 4.3 odd 2
1728.2.a.v.1.1 1 3.2 odd 2
1728.2.a.w.1.1 1 12.11 even 2
2592.2.i.d.865.1 2 72.67 odd 6
2592.2.i.d.1729.1 2 72.43 odd 6
2592.2.i.f.865.1 2 72.13 even 6
2592.2.i.f.1729.1 2 72.61 even 6
2592.2.i.s.865.1 2 72.59 even 6
2592.2.i.s.1729.1 2 72.11 even 6
2592.2.i.u.865.1 2 72.5 odd 6
2592.2.i.u.1729.1 2 72.29 odd 6