Properties

 Label 1728.2.a.bb.1.1 Level $1728$ Weight $2$ Character 1728.1 Self dual yes Analytic conductor $13.798$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$1728 = 2^{6} \cdot 3^{3}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1728.a (trivial)

Newform invariants

 Self dual: yes Analytic conductor: $$13.7981494693$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 216) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

 Embedding label 1.1 Character $$\chi$$ $$=$$ 1728.1

$q$-expansion

 $$f(q)$$ $$=$$ $$q+4.00000 q^{5} +3.00000 q^{7} +O(q^{10})$$ $$q+4.00000 q^{5} +3.00000 q^{7} -4.00000 q^{11} -1.00000 q^{13} +4.00000 q^{17} -1.00000 q^{19} +4.00000 q^{23} +11.0000 q^{25} +4.00000 q^{31} +12.0000 q^{35} +9.00000 q^{37} -8.00000 q^{43} -12.0000 q^{47} +2.00000 q^{49} -8.00000 q^{53} -16.0000 q^{55} -4.00000 q^{59} +5.00000 q^{61} -4.00000 q^{65} +11.0000 q^{67} +8.00000 q^{71} +1.00000 q^{73} -12.0000 q^{77} +5.00000 q^{79} -8.00000 q^{83} +16.0000 q^{85} -12.0000 q^{89} -3.00000 q^{91} -4.00000 q^{95} +5.00000 q^{97} +O(q^{100})$$

Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 0 0
$$4$$ 0 0
$$5$$ 4.00000 1.78885 0.894427 0.447214i $$-0.147584\pi$$
0.894427 + 0.447214i $$0.147584\pi$$
$$6$$ 0 0
$$7$$ 3.00000 1.13389 0.566947 0.823754i $$-0.308125\pi$$
0.566947 + 0.823754i $$0.308125\pi$$
$$8$$ 0 0
$$9$$ 0 0
$$10$$ 0 0
$$11$$ −4.00000 −1.20605 −0.603023 0.797724i $$-0.706037\pi$$
−0.603023 + 0.797724i $$0.706037\pi$$
$$12$$ 0 0
$$13$$ −1.00000 −0.277350 −0.138675 0.990338i $$-0.544284\pi$$
−0.138675 + 0.990338i $$0.544284\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0 0
$$17$$ 4.00000 0.970143 0.485071 0.874475i $$-0.338794\pi$$
0.485071 + 0.874475i $$0.338794\pi$$
$$18$$ 0 0
$$19$$ −1.00000 −0.229416 −0.114708 0.993399i $$-0.536593\pi$$
−0.114708 + 0.993399i $$0.536593\pi$$
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ 4.00000 0.834058 0.417029 0.908893i $$-0.363071\pi$$
0.417029 + 0.908893i $$0.363071\pi$$
$$24$$ 0 0
$$25$$ 11.0000 2.20000
$$26$$ 0 0
$$27$$ 0 0
$$28$$ 0 0
$$29$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$30$$ 0 0
$$31$$ 4.00000 0.718421 0.359211 0.933257i $$-0.383046\pi$$
0.359211 + 0.933257i $$0.383046\pi$$
$$32$$ 0 0
$$33$$ 0 0
$$34$$ 0 0
$$35$$ 12.0000 2.02837
$$36$$ 0 0
$$37$$ 9.00000 1.47959 0.739795 0.672832i $$-0.234922\pi$$
0.739795 + 0.672832i $$0.234922\pi$$
$$38$$ 0 0
$$39$$ 0 0
$$40$$ 0 0
$$41$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$42$$ 0 0
$$43$$ −8.00000 −1.21999 −0.609994 0.792406i $$-0.708828\pi$$
−0.609994 + 0.792406i $$0.708828\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ −12.0000 −1.75038 −0.875190 0.483779i $$-0.839264\pi$$
−0.875190 + 0.483779i $$0.839264\pi$$
$$48$$ 0 0
$$49$$ 2.00000 0.285714
$$50$$ 0 0
$$51$$ 0 0
$$52$$ 0 0
$$53$$ −8.00000 −1.09888 −0.549442 0.835532i $$-0.685160\pi$$
−0.549442 + 0.835532i $$0.685160\pi$$
$$54$$ 0 0
$$55$$ −16.0000 −2.15744
$$56$$ 0 0
$$57$$ 0 0
$$58$$ 0 0
$$59$$ −4.00000 −0.520756 −0.260378 0.965507i $$-0.583847\pi$$
−0.260378 + 0.965507i $$0.583847\pi$$
$$60$$ 0 0
$$61$$ 5.00000 0.640184 0.320092 0.947386i $$-0.396286\pi$$
0.320092 + 0.947386i $$0.396286\pi$$
$$62$$ 0 0
$$63$$ 0 0
$$64$$ 0 0
$$65$$ −4.00000 −0.496139
$$66$$ 0 0
$$67$$ 11.0000 1.34386 0.671932 0.740613i $$-0.265465\pi$$
0.671932 + 0.740613i $$0.265465\pi$$
$$68$$ 0 0
$$69$$ 0 0
$$70$$ 0 0
$$71$$ 8.00000 0.949425 0.474713 0.880141i $$-0.342552\pi$$
0.474713 + 0.880141i $$0.342552\pi$$
$$72$$ 0 0
$$73$$ 1.00000 0.117041 0.0585206 0.998286i $$-0.481362\pi$$
0.0585206 + 0.998286i $$0.481362\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ 0 0
$$77$$ −12.0000 −1.36753
$$78$$ 0 0
$$79$$ 5.00000 0.562544 0.281272 0.959628i $$-0.409244\pi$$
0.281272 + 0.959628i $$0.409244\pi$$
$$80$$ 0 0
$$81$$ 0 0
$$82$$ 0 0
$$83$$ −8.00000 −0.878114 −0.439057 0.898459i $$-0.644687\pi$$
−0.439057 + 0.898459i $$0.644687\pi$$
$$84$$ 0 0
$$85$$ 16.0000 1.73544
$$86$$ 0 0
$$87$$ 0 0
$$88$$ 0 0
$$89$$ −12.0000 −1.27200 −0.635999 0.771690i $$-0.719412\pi$$
−0.635999 + 0.771690i $$0.719412\pi$$
$$90$$ 0 0
$$91$$ −3.00000 −0.314485
$$92$$ 0 0
$$93$$ 0 0
$$94$$ 0 0
$$95$$ −4.00000 −0.410391
$$96$$ 0 0
$$97$$ 5.00000 0.507673 0.253837 0.967247i $$-0.418307\pi$$
0.253837 + 0.967247i $$0.418307\pi$$
$$98$$ 0 0
$$99$$ 0 0
$$100$$ 0 0
$$101$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$102$$ 0 0
$$103$$ −1.00000 −0.0985329 −0.0492665 0.998786i $$-0.515688\pi$$
−0.0492665 + 0.998786i $$0.515688\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ −12.0000 −1.16008 −0.580042 0.814587i $$-0.696964\pi$$
−0.580042 + 0.814587i $$0.696964\pi$$
$$108$$ 0 0
$$109$$ 14.0000 1.34096 0.670478 0.741929i $$-0.266089\pi$$
0.670478 + 0.741929i $$0.266089\pi$$
$$110$$ 0 0
$$111$$ 0 0
$$112$$ 0 0
$$113$$ −12.0000 −1.12887 −0.564433 0.825479i $$-0.690905\pi$$
−0.564433 + 0.825479i $$0.690905\pi$$
$$114$$ 0 0
$$115$$ 16.0000 1.49201
$$116$$ 0 0
$$117$$ 0 0
$$118$$ 0 0
$$119$$ 12.0000 1.10004
$$120$$ 0 0
$$121$$ 5.00000 0.454545
$$122$$ 0 0
$$123$$ 0 0
$$124$$ 0 0
$$125$$ 24.0000 2.14663
$$126$$ 0 0
$$127$$ −4.00000 −0.354943 −0.177471 0.984126i $$-0.556792\pi$$
−0.177471 + 0.984126i $$0.556792\pi$$
$$128$$ 0 0
$$129$$ 0 0
$$130$$ 0 0
$$131$$ 16.0000 1.39793 0.698963 0.715158i $$-0.253645\pi$$
0.698963 + 0.715158i $$0.253645\pi$$
$$132$$ 0 0
$$133$$ −3.00000 −0.260133
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ 12.0000 1.02523 0.512615 0.858619i $$-0.328677\pi$$
0.512615 + 0.858619i $$0.328677\pi$$
$$138$$ 0 0
$$139$$ 9.00000 0.763370 0.381685 0.924292i $$-0.375344\pi$$
0.381685 + 0.924292i $$0.375344\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 0 0
$$143$$ 4.00000 0.334497
$$144$$ 0 0
$$145$$ 0 0
$$146$$ 0 0
$$147$$ 0 0
$$148$$ 0 0
$$149$$ 8.00000 0.655386 0.327693 0.944784i $$-0.393729\pi$$
0.327693 + 0.944784i $$0.393729\pi$$
$$150$$ 0 0
$$151$$ 1.00000 0.0813788 0.0406894 0.999172i $$-0.487045\pi$$
0.0406894 + 0.999172i $$0.487045\pi$$
$$152$$ 0 0
$$153$$ 0 0
$$154$$ 0 0
$$155$$ 16.0000 1.28515
$$156$$ 0 0
$$157$$ 2.00000 0.159617 0.0798087 0.996810i $$-0.474569\pi$$
0.0798087 + 0.996810i $$0.474569\pi$$
$$158$$ 0 0
$$159$$ 0 0
$$160$$ 0 0
$$161$$ 12.0000 0.945732
$$162$$ 0 0
$$163$$ −15.0000 −1.17489 −0.587445 0.809264i $$-0.699866\pi$$
−0.587445 + 0.809264i $$0.699866\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ −12.0000 −0.928588 −0.464294 0.885681i $$-0.653692\pi$$
−0.464294 + 0.885681i $$0.653692\pi$$
$$168$$ 0 0
$$169$$ −12.0000 −0.923077
$$170$$ 0 0
$$171$$ 0 0
$$172$$ 0 0
$$173$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$174$$ 0 0
$$175$$ 33.0000 2.49457
$$176$$ 0 0
$$177$$ 0 0
$$178$$ 0 0
$$179$$ −24.0000 −1.79384 −0.896922 0.442189i $$-0.854202\pi$$
−0.896922 + 0.442189i $$0.854202\pi$$
$$180$$ 0 0
$$181$$ −21.0000 −1.56092 −0.780459 0.625207i $$-0.785014\pi$$
−0.780459 + 0.625207i $$0.785014\pi$$
$$182$$ 0 0
$$183$$ 0 0
$$184$$ 0 0
$$185$$ 36.0000 2.64677
$$186$$ 0 0
$$187$$ −16.0000 −1.17004
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ 12.0000 0.868290 0.434145 0.900843i $$-0.357051\pi$$
0.434145 + 0.900843i $$0.357051\pi$$
$$192$$ 0 0
$$193$$ 23.0000 1.65558 0.827788 0.561041i $$-0.189599\pi$$
0.827788 + 0.561041i $$0.189599\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ −12.0000 −0.854965 −0.427482 0.904024i $$-0.640599\pi$$
−0.427482 + 0.904024i $$0.640599\pi$$
$$198$$ 0 0
$$199$$ −25.0000 −1.77220 −0.886102 0.463491i $$-0.846597\pi$$
−0.886102 + 0.463491i $$0.846597\pi$$
$$200$$ 0 0
$$201$$ 0 0
$$202$$ 0 0
$$203$$ 0 0
$$204$$ 0 0
$$205$$ 0 0
$$206$$ 0 0
$$207$$ 0 0
$$208$$ 0 0
$$209$$ 4.00000 0.276686
$$210$$ 0 0
$$211$$ 13.0000 0.894957 0.447478 0.894295i $$-0.352322\pi$$
0.447478 + 0.894295i $$0.352322\pi$$
$$212$$ 0 0
$$213$$ 0 0
$$214$$ 0 0
$$215$$ −32.0000 −2.18238
$$216$$ 0 0
$$217$$ 12.0000 0.814613
$$218$$ 0 0
$$219$$ 0 0
$$220$$ 0 0
$$221$$ −4.00000 −0.269069
$$222$$ 0 0
$$223$$ −4.00000 −0.267860 −0.133930 0.990991i $$-0.542760\pi$$
−0.133930 + 0.990991i $$0.542760\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 0 0
$$227$$ 24.0000 1.59294 0.796468 0.604681i $$-0.206699\pi$$
0.796468 + 0.604681i $$0.206699\pi$$
$$228$$ 0 0
$$229$$ −10.0000 −0.660819 −0.330409 0.943838i $$-0.607187\pi$$
−0.330409 + 0.943838i $$0.607187\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ −16.0000 −1.04819 −0.524097 0.851658i $$-0.675597\pi$$
−0.524097 + 0.851658i $$0.675597\pi$$
$$234$$ 0 0
$$235$$ −48.0000 −3.13117
$$236$$ 0 0
$$237$$ 0 0
$$238$$ 0 0
$$239$$ 8.00000 0.517477 0.258738 0.965947i $$-0.416693\pi$$
0.258738 + 0.965947i $$0.416693\pi$$
$$240$$ 0 0
$$241$$ −15.0000 −0.966235 −0.483117 0.875556i $$-0.660496\pi$$
−0.483117 + 0.875556i $$0.660496\pi$$
$$242$$ 0 0
$$243$$ 0 0
$$244$$ 0 0
$$245$$ 8.00000 0.511101
$$246$$ 0 0
$$247$$ 1.00000 0.0636285
$$248$$ 0 0
$$249$$ 0 0
$$250$$ 0 0
$$251$$ 16.0000 1.00991 0.504956 0.863145i $$-0.331509\pi$$
0.504956 + 0.863145i $$0.331509\pi$$
$$252$$ 0 0
$$253$$ −16.0000 −1.00591
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ −8.00000 −0.499026 −0.249513 0.968371i $$-0.580271\pi$$
−0.249513 + 0.968371i $$0.580271\pi$$
$$258$$ 0 0
$$259$$ 27.0000 1.67770
$$260$$ 0 0
$$261$$ 0 0
$$262$$ 0 0
$$263$$ −8.00000 −0.493301 −0.246651 0.969104i $$-0.579330\pi$$
−0.246651 + 0.969104i $$0.579330\pi$$
$$264$$ 0 0
$$265$$ −32.0000 −1.96574
$$266$$ 0 0
$$267$$ 0 0
$$268$$ 0 0
$$269$$ −4.00000 −0.243884 −0.121942 0.992537i $$-0.538912\pi$$
−0.121942 + 0.992537i $$0.538912\pi$$
$$270$$ 0 0
$$271$$ 25.0000 1.51864 0.759321 0.650716i $$-0.225531\pi$$
0.759321 + 0.650716i $$0.225531\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 0 0
$$275$$ −44.0000 −2.65330
$$276$$ 0 0
$$277$$ −10.0000 −0.600842 −0.300421 0.953807i $$-0.597127\pi$$
−0.300421 + 0.953807i $$0.597127\pi$$
$$278$$ 0 0
$$279$$ 0 0
$$280$$ 0 0
$$281$$ −32.0000 −1.90896 −0.954480 0.298275i $$-0.903589\pi$$
−0.954480 + 0.298275i $$0.903589\pi$$
$$282$$ 0 0
$$283$$ −16.0000 −0.951101 −0.475551 0.879688i $$-0.657751\pi$$
−0.475551 + 0.879688i $$0.657751\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 0 0
$$288$$ 0 0
$$289$$ −1.00000 −0.0588235
$$290$$ 0 0
$$291$$ 0 0
$$292$$ 0 0
$$293$$ 12.0000 0.701047 0.350524 0.936554i $$-0.386004\pi$$
0.350524 + 0.936554i $$0.386004\pi$$
$$294$$ 0 0
$$295$$ −16.0000 −0.931556
$$296$$ 0 0
$$297$$ 0 0
$$298$$ 0 0
$$299$$ −4.00000 −0.231326
$$300$$ 0 0
$$301$$ −24.0000 −1.38334
$$302$$ 0 0
$$303$$ 0 0
$$304$$ 0 0
$$305$$ 20.0000 1.14520
$$306$$ 0 0
$$307$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$308$$ 0 0
$$309$$ 0 0
$$310$$ 0 0
$$311$$ 12.0000 0.680458 0.340229 0.940343i $$-0.389495\pi$$
0.340229 + 0.940343i $$0.389495\pi$$
$$312$$ 0 0
$$313$$ 3.00000 0.169570 0.0847850 0.996399i $$-0.472980\pi$$
0.0847850 + 0.996399i $$0.472980\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ −24.0000 −1.34797 −0.673987 0.738743i $$-0.735420\pi$$
−0.673987 + 0.738743i $$0.735420\pi$$
$$318$$ 0 0
$$319$$ 0 0
$$320$$ 0 0
$$321$$ 0 0
$$322$$ 0 0
$$323$$ −4.00000 −0.222566
$$324$$ 0 0
$$325$$ −11.0000 −0.610170
$$326$$ 0 0
$$327$$ 0 0
$$328$$ 0 0
$$329$$ −36.0000 −1.98474
$$330$$ 0 0
$$331$$ 17.0000 0.934405 0.467202 0.884150i $$-0.345262\pi$$
0.467202 + 0.884150i $$0.345262\pi$$
$$332$$ 0 0
$$333$$ 0 0
$$334$$ 0 0
$$335$$ 44.0000 2.40398
$$336$$ 0 0
$$337$$ −3.00000 −0.163420 −0.0817102 0.996656i $$-0.526038\pi$$
−0.0817102 + 0.996656i $$0.526038\pi$$
$$338$$ 0 0
$$339$$ 0 0
$$340$$ 0 0
$$341$$ −16.0000 −0.866449
$$342$$ 0 0
$$343$$ −15.0000 −0.809924
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ 24.0000 1.28839 0.644194 0.764862i $$-0.277193\pi$$
0.644194 + 0.764862i $$0.277193\pi$$
$$348$$ 0 0
$$349$$ 33.0000 1.76645 0.883225 0.468950i $$-0.155368\pi$$
0.883225 + 0.468950i $$0.155368\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ 0 0
$$353$$ −8.00000 −0.425797 −0.212899 0.977074i $$-0.568290\pi$$
−0.212899 + 0.977074i $$0.568290\pi$$
$$354$$ 0 0
$$355$$ 32.0000 1.69838
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ 12.0000 0.633336 0.316668 0.948536i $$-0.397436\pi$$
0.316668 + 0.948536i $$0.397436\pi$$
$$360$$ 0 0
$$361$$ −18.0000 −0.947368
$$362$$ 0 0
$$363$$ 0 0
$$364$$ 0 0
$$365$$ 4.00000 0.209370
$$366$$ 0 0
$$367$$ 23.0000 1.20059 0.600295 0.799779i $$-0.295050\pi$$
0.600295 + 0.799779i $$0.295050\pi$$
$$368$$ 0 0
$$369$$ 0 0
$$370$$ 0 0
$$371$$ −24.0000 −1.24602
$$372$$ 0 0
$$373$$ 1.00000 0.0517780 0.0258890 0.999665i $$-0.491758\pi$$
0.0258890 + 0.999665i $$0.491758\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ 0 0
$$378$$ 0 0
$$379$$ 11.0000 0.565032 0.282516 0.959263i $$-0.408831\pi$$
0.282516 + 0.959263i $$0.408831\pi$$
$$380$$ 0 0
$$381$$ 0 0
$$382$$ 0 0
$$383$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$384$$ 0 0
$$385$$ −48.0000 −2.44631
$$386$$ 0 0
$$387$$ 0 0
$$388$$ 0 0
$$389$$ 4.00000 0.202808 0.101404 0.994845i $$-0.467667\pi$$
0.101404 + 0.994845i $$0.467667\pi$$
$$390$$ 0 0
$$391$$ 16.0000 0.809155
$$392$$ 0 0
$$393$$ 0 0
$$394$$ 0 0
$$395$$ 20.0000 1.00631
$$396$$ 0 0
$$397$$ −14.0000 −0.702640 −0.351320 0.936255i $$-0.614267\pi$$
−0.351320 + 0.936255i $$0.614267\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ −24.0000 −1.19850 −0.599251 0.800561i $$-0.704535\pi$$
−0.599251 + 0.800561i $$0.704535\pi$$
$$402$$ 0 0
$$403$$ −4.00000 −0.199254
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ −36.0000 −1.78445
$$408$$ 0 0
$$409$$ −39.0000 −1.92843 −0.964213 0.265129i $$-0.914585\pi$$
−0.964213 + 0.265129i $$0.914585\pi$$
$$410$$ 0 0
$$411$$ 0 0
$$412$$ 0 0
$$413$$ −12.0000 −0.590481
$$414$$ 0 0
$$415$$ −32.0000 −1.57082
$$416$$ 0 0
$$417$$ 0 0
$$418$$ 0 0
$$419$$ 12.0000 0.586238 0.293119 0.956076i $$-0.405307\pi$$
0.293119 + 0.956076i $$0.405307\pi$$
$$420$$ 0 0
$$421$$ −17.0000 −0.828529 −0.414265 0.910156i $$-0.635961\pi$$
−0.414265 + 0.910156i $$0.635961\pi$$
$$422$$ 0 0
$$423$$ 0 0
$$424$$ 0 0
$$425$$ 44.0000 2.13431
$$426$$ 0 0
$$427$$ 15.0000 0.725901
$$428$$ 0 0
$$429$$ 0 0
$$430$$ 0 0
$$431$$ −28.0000 −1.34871 −0.674356 0.738406i $$-0.735579\pi$$
−0.674356 + 0.738406i $$0.735579\pi$$
$$432$$ 0 0
$$433$$ −14.0000 −0.672797 −0.336399 0.941720i $$-0.609209\pi$$
−0.336399 + 0.941720i $$0.609209\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ −4.00000 −0.191346
$$438$$ 0 0
$$439$$ −36.0000 −1.71819 −0.859093 0.511819i $$-0.828972\pi$$
−0.859093 + 0.511819i $$0.828972\pi$$
$$440$$ 0 0
$$441$$ 0 0
$$442$$ 0 0
$$443$$ −8.00000 −0.380091 −0.190046 0.981775i $$-0.560864\pi$$
−0.190046 + 0.981775i $$0.560864\pi$$
$$444$$ 0 0
$$445$$ −48.0000 −2.27542
$$446$$ 0 0
$$447$$ 0 0
$$448$$ 0 0
$$449$$ −4.00000 −0.188772 −0.0943858 0.995536i $$-0.530089\pi$$
−0.0943858 + 0.995536i $$0.530089\pi$$
$$450$$ 0 0
$$451$$ 0 0
$$452$$ 0 0
$$453$$ 0 0
$$454$$ 0 0
$$455$$ −12.0000 −0.562569
$$456$$ 0 0
$$457$$ 38.0000 1.77757 0.888783 0.458329i $$-0.151552\pi$$
0.888783 + 0.458329i $$0.151552\pi$$
$$458$$ 0 0
$$459$$ 0 0
$$460$$ 0 0
$$461$$ 28.0000 1.30409 0.652045 0.758180i $$-0.273911\pi$$
0.652045 + 0.758180i $$0.273911\pi$$
$$462$$ 0 0
$$463$$ 19.0000 0.883005 0.441502 0.897260i $$-0.354446\pi$$
0.441502 + 0.897260i $$0.354446\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ 12.0000 0.555294 0.277647 0.960683i $$-0.410445\pi$$
0.277647 + 0.960683i $$0.410445\pi$$
$$468$$ 0 0
$$469$$ 33.0000 1.52380
$$470$$ 0 0
$$471$$ 0 0
$$472$$ 0 0
$$473$$ 32.0000 1.47136
$$474$$ 0 0
$$475$$ −11.0000 −0.504715
$$476$$ 0 0
$$477$$ 0 0
$$478$$ 0 0
$$479$$ −40.0000 −1.82765 −0.913823 0.406112i $$-0.866884\pi$$
−0.913823 + 0.406112i $$0.866884\pi$$
$$480$$ 0 0
$$481$$ −9.00000 −0.410365
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ 20.0000 0.908153
$$486$$ 0 0
$$487$$ 11.0000 0.498458 0.249229 0.968445i $$-0.419823\pi$$
0.249229 + 0.968445i $$0.419823\pi$$
$$488$$ 0 0
$$489$$ 0 0
$$490$$ 0 0
$$491$$ −12.0000 −0.541552 −0.270776 0.962642i $$-0.587280\pi$$
−0.270776 + 0.962642i $$0.587280\pi$$
$$492$$ 0 0
$$493$$ 0 0
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ 24.0000 1.07655
$$498$$ 0 0
$$499$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$500$$ 0 0
$$501$$ 0 0
$$502$$ 0 0
$$503$$ 36.0000 1.60516 0.802580 0.596544i $$-0.203460\pi$$
0.802580 + 0.596544i $$0.203460\pi$$
$$504$$ 0 0
$$505$$ 0 0
$$506$$ 0 0
$$507$$ 0 0
$$508$$ 0 0
$$509$$ −12.0000 −0.531891 −0.265945 0.963988i $$-0.585684\pi$$
−0.265945 + 0.963988i $$0.585684\pi$$
$$510$$ 0 0
$$511$$ 3.00000 0.132712
$$512$$ 0 0
$$513$$ 0 0
$$514$$ 0 0
$$515$$ −4.00000 −0.176261
$$516$$ 0 0
$$517$$ 48.0000 2.11104
$$518$$ 0 0
$$519$$ 0 0
$$520$$ 0 0
$$521$$ 28.0000 1.22670 0.613351 0.789810i $$-0.289821\pi$$
0.613351 + 0.789810i $$0.289821\pi$$
$$522$$ 0 0
$$523$$ −29.0000 −1.26808 −0.634041 0.773300i $$-0.718605\pi$$
−0.634041 + 0.773300i $$0.718605\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ 16.0000 0.696971
$$528$$ 0 0
$$529$$ −7.00000 −0.304348
$$530$$ 0 0
$$531$$ 0 0
$$532$$ 0 0
$$533$$ 0 0
$$534$$ 0 0
$$535$$ −48.0000 −2.07522
$$536$$ 0 0
$$537$$ 0 0
$$538$$ 0 0
$$539$$ −8.00000 −0.344584
$$540$$ 0 0
$$541$$ −9.00000 −0.386940 −0.193470 0.981106i $$-0.561974\pi$$
−0.193470 + 0.981106i $$0.561974\pi$$
$$542$$ 0 0
$$543$$ 0 0
$$544$$ 0 0
$$545$$ 56.0000 2.39878
$$546$$ 0 0
$$547$$ −7.00000 −0.299298 −0.149649 0.988739i $$-0.547814\pi$$
−0.149649 + 0.988739i $$0.547814\pi$$
$$548$$ 0 0
$$549$$ 0 0
$$550$$ 0 0
$$551$$ 0 0
$$552$$ 0 0
$$553$$ 15.0000 0.637865
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ 28.0000 1.18640 0.593199 0.805056i $$-0.297865\pi$$
0.593199 + 0.805056i $$0.297865\pi$$
$$558$$ 0 0
$$559$$ 8.00000 0.338364
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 0 0
$$563$$ 32.0000 1.34864 0.674320 0.738440i $$-0.264437\pi$$
0.674320 + 0.738440i $$0.264437\pi$$
$$564$$ 0 0
$$565$$ −48.0000 −2.01938
$$566$$ 0 0
$$567$$ 0 0
$$568$$ 0 0
$$569$$ −28.0000 −1.17382 −0.586911 0.809652i $$-0.699656\pi$$
−0.586911 + 0.809652i $$0.699656\pi$$
$$570$$ 0 0
$$571$$ −33.0000 −1.38101 −0.690504 0.723329i $$-0.742611\pi$$
−0.690504 + 0.723329i $$0.742611\pi$$
$$572$$ 0 0
$$573$$ 0 0
$$574$$ 0 0
$$575$$ 44.0000 1.83493
$$576$$ 0 0
$$577$$ −13.0000 −0.541197 −0.270599 0.962692i $$-0.587222\pi$$
−0.270599 + 0.962692i $$0.587222\pi$$
$$578$$ 0 0
$$579$$ 0 0
$$580$$ 0 0
$$581$$ −24.0000 −0.995688
$$582$$ 0 0
$$583$$ 32.0000 1.32530
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ −28.0000 −1.15568 −0.577842 0.816149i $$-0.696105\pi$$
−0.577842 + 0.816149i $$0.696105\pi$$
$$588$$ 0 0
$$589$$ −4.00000 −0.164817
$$590$$ 0 0
$$591$$ 0 0
$$592$$ 0 0
$$593$$ −40.0000 −1.64260 −0.821302 0.570494i $$-0.806752\pi$$
−0.821302 + 0.570494i $$0.806752\pi$$
$$594$$ 0 0
$$595$$ 48.0000 1.96781
$$596$$ 0 0
$$597$$ 0 0
$$598$$ 0 0
$$599$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$600$$ 0 0
$$601$$ 10.0000 0.407909 0.203954 0.978980i $$-0.434621\pi$$
0.203954 + 0.978980i $$0.434621\pi$$
$$602$$ 0 0
$$603$$ 0 0
$$604$$ 0 0
$$605$$ 20.0000 0.813116
$$606$$ 0 0
$$607$$ −5.00000 −0.202944 −0.101472 0.994838i $$-0.532355\pi$$
−0.101472 + 0.994838i $$0.532355\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ 12.0000 0.485468
$$612$$ 0 0
$$613$$ −35.0000 −1.41364 −0.706818 0.707395i $$-0.749870\pi$$
−0.706818 + 0.707395i $$0.749870\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ −36.0000 −1.44931 −0.724653 0.689114i $$-0.758000\pi$$
−0.724653 + 0.689114i $$0.758000\pi$$
$$618$$ 0 0
$$619$$ −17.0000 −0.683288 −0.341644 0.939829i $$-0.610984\pi$$
−0.341644 + 0.939829i $$0.610984\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ 0 0
$$623$$ −36.0000 −1.44231
$$624$$ 0 0
$$625$$ 41.0000 1.64000
$$626$$ 0 0
$$627$$ 0 0
$$628$$ 0 0
$$629$$ 36.0000 1.43541
$$630$$ 0 0
$$631$$ −7.00000 −0.278666 −0.139333 0.990246i $$-0.544496\pi$$
−0.139333 + 0.990246i $$0.544496\pi$$
$$632$$ 0 0
$$633$$ 0 0
$$634$$ 0 0
$$635$$ −16.0000 −0.634941
$$636$$ 0 0
$$637$$ −2.00000 −0.0792429
$$638$$ 0 0
$$639$$ 0 0
$$640$$ 0 0
$$641$$ −40.0000 −1.57991 −0.789953 0.613168i $$-0.789895\pi$$
−0.789953 + 0.613168i $$0.789895\pi$$
$$642$$ 0 0
$$643$$ −24.0000 −0.946468 −0.473234 0.880937i $$-0.656913\pi$$
−0.473234 + 0.880937i $$0.656913\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ 32.0000 1.25805 0.629025 0.777385i $$-0.283454\pi$$
0.629025 + 0.777385i $$0.283454\pi$$
$$648$$ 0 0
$$649$$ 16.0000 0.628055
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ 24.0000 0.939193 0.469596 0.882881i $$-0.344399\pi$$
0.469596 + 0.882881i $$0.344399\pi$$
$$654$$ 0 0
$$655$$ 64.0000 2.50069
$$656$$ 0 0
$$657$$ 0 0
$$658$$ 0 0
$$659$$ 24.0000 0.934907 0.467454 0.884018i $$-0.345171\pi$$
0.467454 + 0.884018i $$0.345171\pi$$
$$660$$ 0 0
$$661$$ 13.0000 0.505641 0.252821 0.967513i $$-0.418642\pi$$
0.252821 + 0.967513i $$0.418642\pi$$
$$662$$ 0 0
$$663$$ 0 0
$$664$$ 0 0
$$665$$ −12.0000 −0.465340
$$666$$ 0 0
$$667$$ 0 0
$$668$$ 0 0
$$669$$ 0 0
$$670$$ 0 0
$$671$$ −20.0000 −0.772091
$$672$$ 0 0
$$673$$ 19.0000 0.732396 0.366198 0.930537i $$-0.380659\pi$$
0.366198 + 0.930537i $$0.380659\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 0 0
$$677$$ −44.0000 −1.69106 −0.845529 0.533930i $$-0.820715\pi$$
−0.845529 + 0.533930i $$0.820715\pi$$
$$678$$ 0 0
$$679$$ 15.0000 0.575647
$$680$$ 0 0
$$681$$ 0 0
$$682$$ 0 0
$$683$$ −16.0000 −0.612223 −0.306111 0.951996i $$-0.599028\pi$$
−0.306111 + 0.951996i $$0.599028\pi$$
$$684$$ 0 0
$$685$$ 48.0000 1.83399
$$686$$ 0 0
$$687$$ 0 0
$$688$$ 0 0
$$689$$ 8.00000 0.304776
$$690$$ 0 0
$$691$$ −40.0000 −1.52167 −0.760836 0.648944i $$-0.775211\pi$$
−0.760836 + 0.648944i $$0.775211\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 0 0
$$695$$ 36.0000 1.36556
$$696$$ 0 0
$$697$$ 0 0
$$698$$ 0 0
$$699$$ 0 0
$$700$$ 0 0
$$701$$ −36.0000 −1.35970 −0.679851 0.733351i $$-0.737955\pi$$
−0.679851 + 0.733351i $$0.737955\pi$$
$$702$$ 0 0
$$703$$ −9.00000 −0.339441
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ 0 0
$$708$$ 0 0
$$709$$ 7.00000 0.262891 0.131445 0.991323i $$-0.458038\pi$$
0.131445 + 0.991323i $$0.458038\pi$$
$$710$$ 0 0
$$711$$ 0 0
$$712$$ 0 0
$$713$$ 16.0000 0.599205
$$714$$ 0 0
$$715$$ 16.0000 0.598366
$$716$$ 0 0
$$717$$ 0 0
$$718$$ 0 0
$$719$$ −8.00000 −0.298350 −0.149175 0.988811i $$-0.547662\pi$$
−0.149175 + 0.988811i $$0.547662\pi$$
$$720$$ 0 0
$$721$$ −3.00000 −0.111726
$$722$$ 0 0
$$723$$ 0 0
$$724$$ 0 0
$$725$$ 0 0
$$726$$ 0 0
$$727$$ −12.0000 −0.445055 −0.222528 0.974926i $$-0.571431\pi$$
−0.222528 + 0.974926i $$0.571431\pi$$
$$728$$ 0 0
$$729$$ 0 0
$$730$$ 0 0
$$731$$ −32.0000 −1.18356
$$732$$ 0 0
$$733$$ −2.00000 −0.0738717 −0.0369358 0.999318i $$-0.511760\pi$$
−0.0369358 + 0.999318i $$0.511760\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ −44.0000 −1.62076
$$738$$ 0 0
$$739$$ 32.0000 1.17714 0.588570 0.808447i $$-0.299691\pi$$
0.588570 + 0.808447i $$0.299691\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ 0 0
$$743$$ 4.00000 0.146746 0.0733729 0.997305i $$-0.476624\pi$$
0.0733729 + 0.997305i $$0.476624\pi$$
$$744$$ 0 0
$$745$$ 32.0000 1.17239
$$746$$ 0 0
$$747$$ 0 0
$$748$$ 0 0
$$749$$ −36.0000 −1.31541
$$750$$ 0 0
$$751$$ −3.00000 −0.109472 −0.0547358 0.998501i $$-0.517432\pi$$
−0.0547358 + 0.998501i $$0.517432\pi$$
$$752$$ 0 0
$$753$$ 0 0
$$754$$ 0 0
$$755$$ 4.00000 0.145575
$$756$$ 0 0
$$757$$ 31.0000 1.12671 0.563357 0.826214i $$-0.309510\pi$$
0.563357 + 0.826214i $$0.309510\pi$$
$$758$$ 0 0
$$759$$ 0 0
$$760$$ 0 0
$$761$$ 4.00000 0.145000 0.0724999 0.997368i $$-0.476902\pi$$
0.0724999 + 0.997368i $$0.476902\pi$$
$$762$$ 0 0
$$763$$ 42.0000 1.52050
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ 4.00000 0.144432
$$768$$ 0 0
$$769$$ 47.0000 1.69486 0.847432 0.530904i $$-0.178148\pi$$
0.847432 + 0.530904i $$0.178148\pi$$
$$770$$ 0 0
$$771$$ 0 0
$$772$$ 0 0
$$773$$ −24.0000 −0.863220 −0.431610 0.902060i $$-0.642054\pi$$
−0.431610 + 0.902060i $$0.642054\pi$$
$$774$$ 0 0
$$775$$ 44.0000 1.58053
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ 0 0
$$780$$ 0 0
$$781$$ −32.0000 −1.14505
$$782$$ 0 0
$$783$$ 0 0
$$784$$ 0 0
$$785$$ 8.00000 0.285532
$$786$$ 0 0
$$787$$ 7.00000 0.249523 0.124762 0.992187i $$-0.460183\pi$$
0.124762 + 0.992187i $$0.460183\pi$$
$$788$$ 0 0
$$789$$ 0 0
$$790$$ 0 0
$$791$$ −36.0000 −1.28001
$$792$$ 0 0
$$793$$ −5.00000 −0.177555
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ 16.0000 0.566749 0.283375 0.959009i $$-0.408546\pi$$
0.283375 + 0.959009i $$0.408546\pi$$
$$798$$ 0 0
$$799$$ −48.0000 −1.69812
$$800$$ 0 0
$$801$$ 0 0
$$802$$ 0 0
$$803$$ −4.00000 −0.141157
$$804$$ 0 0
$$805$$ 48.0000 1.69178
$$806$$ 0 0
$$807$$ 0 0
$$808$$ 0 0
$$809$$ 40.0000 1.40633 0.703163 0.711029i $$-0.251771\pi$$
0.703163 + 0.711029i $$0.251771\pi$$
$$810$$ 0 0
$$811$$ 40.0000 1.40459 0.702295 0.711886i $$-0.252159\pi$$
0.702295 + 0.711886i $$0.252159\pi$$
$$812$$ 0 0
$$813$$ 0 0
$$814$$ 0 0
$$815$$ −60.0000 −2.10171
$$816$$ 0 0
$$817$$ 8.00000 0.279885
$$818$$ 0 0
$$819$$ 0 0
$$820$$ 0 0
$$821$$ −12.0000 −0.418803 −0.209401 0.977830i $$-0.567152\pi$$
−0.209401 + 0.977830i $$0.567152\pi$$
$$822$$ 0 0
$$823$$ 25.0000 0.871445 0.435723 0.900081i $$-0.356493\pi$$
0.435723 + 0.900081i $$0.356493\pi$$
$$824$$ 0 0
$$825$$ 0 0
$$826$$ 0 0
$$827$$ −20.0000 −0.695468 −0.347734 0.937593i $$-0.613049\pi$$
−0.347734 + 0.937593i $$0.613049\pi$$
$$828$$ 0 0
$$829$$ 35.0000 1.21560 0.607800 0.794090i $$-0.292052\pi$$
0.607800 + 0.794090i $$0.292052\pi$$
$$830$$ 0 0
$$831$$ 0 0
$$832$$ 0 0
$$833$$ 8.00000 0.277184
$$834$$ 0 0
$$835$$ −48.0000 −1.66111
$$836$$ 0 0
$$837$$ 0 0
$$838$$ 0 0
$$839$$ 24.0000 0.828572 0.414286 0.910147i $$-0.364031\pi$$
0.414286 + 0.910147i $$0.364031\pi$$
$$840$$ 0 0
$$841$$ −29.0000 −1.00000
$$842$$ 0 0
$$843$$ 0 0
$$844$$ 0 0
$$845$$ −48.0000 −1.65125
$$846$$ 0 0
$$847$$ 15.0000 0.515406
$$848$$ 0 0
$$849$$ 0 0
$$850$$ 0 0
$$851$$ 36.0000 1.23406
$$852$$ 0 0
$$853$$ 1.00000 0.0342393 0.0171197 0.999853i $$-0.494550\pi$$
0.0171197 + 0.999853i $$0.494550\pi$$
$$854$$ 0 0
$$855$$ 0 0
$$856$$ 0 0
$$857$$ −24.0000 −0.819824 −0.409912 0.912125i $$-0.634441\pi$$
−0.409912 + 0.912125i $$0.634441\pi$$
$$858$$ 0 0
$$859$$ −27.0000 −0.921228 −0.460614 0.887601i $$-0.652371\pi$$
−0.460614 + 0.887601i $$0.652371\pi$$
$$860$$ 0 0
$$861$$ 0 0
$$862$$ 0 0
$$863$$ −44.0000 −1.49778 −0.748889 0.662696i $$-0.769412\pi$$
−0.748889 + 0.662696i $$0.769412\pi$$
$$864$$ 0 0
$$865$$ 0 0
$$866$$ 0 0
$$867$$ 0 0
$$868$$ 0 0
$$869$$ −20.0000 −0.678454
$$870$$ 0 0
$$871$$ −11.0000 −0.372721
$$872$$ 0 0
$$873$$ 0 0
$$874$$ 0 0
$$875$$ 72.0000 2.43404
$$876$$ 0 0
$$877$$ 33.0000 1.11433 0.557165 0.830402i $$-0.311889\pi$$
0.557165 + 0.830402i $$0.311889\pi$$
$$878$$ 0 0
$$879$$ 0 0
$$880$$ 0 0
$$881$$ 28.0000 0.943344 0.471672 0.881774i $$-0.343651\pi$$
0.471672 + 0.881774i $$0.343651\pi$$
$$882$$ 0 0
$$883$$ −7.00000 −0.235569 −0.117784 0.993039i $$-0.537579\pi$$
−0.117784 + 0.993039i $$0.537579\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ 0 0
$$887$$ 56.0000 1.88030 0.940148 0.340766i $$-0.110687\pi$$
0.940148 + 0.340766i $$0.110687\pi$$
$$888$$ 0 0
$$889$$ −12.0000 −0.402467
$$890$$ 0 0
$$891$$ 0 0
$$892$$ 0 0
$$893$$ 12.0000 0.401565
$$894$$ 0 0
$$895$$ −96.0000 −3.20893
$$896$$ 0 0
$$897$$ 0 0
$$898$$ 0 0
$$899$$ 0 0
$$900$$ 0 0
$$901$$ −32.0000 −1.06607
$$902$$ 0 0
$$903$$ 0 0
$$904$$ 0 0
$$905$$ −84.0000 −2.79225
$$906$$ 0 0
$$907$$ −5.00000 −0.166022 −0.0830111 0.996549i $$-0.526454\pi$$
−0.0830111 + 0.996549i $$0.526454\pi$$
$$908$$ 0 0
$$909$$ 0 0
$$910$$ 0 0
$$911$$ 16.0000 0.530104 0.265052 0.964234i $$-0.414611\pi$$
0.265052 + 0.964234i $$0.414611\pi$$
$$912$$ 0 0
$$913$$ 32.0000 1.05905
$$914$$ 0 0
$$915$$ 0 0
$$916$$ 0 0
$$917$$ 48.0000 1.58510
$$918$$ 0 0
$$919$$ 20.0000 0.659739 0.329870 0.944027i $$-0.392995\pi$$
0.329870 + 0.944027i $$0.392995\pi$$
$$920$$ 0 0
$$921$$ 0 0
$$922$$ 0 0
$$923$$ −8.00000 −0.263323
$$924$$ 0 0
$$925$$ 99.0000 3.25510
$$926$$ 0 0
$$927$$ 0 0
$$928$$ 0 0
$$929$$ 40.0000 1.31236 0.656179 0.754606i $$-0.272172\pi$$
0.656179 + 0.754606i $$0.272172\pi$$
$$930$$ 0 0
$$931$$ −2.00000 −0.0655474
$$932$$ 0 0
$$933$$ 0 0
$$934$$ 0 0
$$935$$ −64.0000 −2.09302
$$936$$ 0 0
$$937$$ 51.0000 1.66610 0.833049 0.553200i $$-0.186593\pi$$
0.833049 + 0.553200i $$0.186593\pi$$
$$938$$ 0 0
$$939$$ 0 0
$$940$$ 0 0
$$941$$ 12.0000 0.391189 0.195594 0.980685i $$-0.437336\pi$$
0.195594 + 0.980685i $$0.437336\pi$$
$$942$$ 0 0
$$943$$ 0 0
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ 36.0000 1.16984 0.584921 0.811090i $$-0.301125\pi$$
0.584921 + 0.811090i $$0.301125\pi$$
$$948$$ 0 0
$$949$$ −1.00000 −0.0324614
$$950$$ 0 0
$$951$$ 0 0
$$952$$ 0 0
$$953$$ 36.0000 1.16615 0.583077 0.812417i $$-0.301849\pi$$
0.583077 + 0.812417i $$0.301849\pi$$
$$954$$ 0 0
$$955$$ 48.0000 1.55324
$$956$$ 0 0
$$957$$ 0 0
$$958$$ 0 0
$$959$$ 36.0000 1.16250
$$960$$ 0 0
$$961$$ −15.0000 −0.483871
$$962$$ 0 0
$$963$$ 0 0
$$964$$ 0 0
$$965$$ 92.0000 2.96158
$$966$$ 0 0
$$967$$ −59.0000 −1.89731 −0.948656 0.316310i $$-0.897556\pi$$
−0.948656 + 0.316310i $$0.897556\pi$$
$$968$$ 0 0
$$969$$ 0 0
$$970$$ 0 0
$$971$$ −12.0000 −0.385098 −0.192549 0.981287i $$-0.561675\pi$$
−0.192549 + 0.981287i $$0.561675\pi$$
$$972$$ 0 0
$$973$$ 27.0000 0.865580
$$974$$ 0 0
$$975$$ 0 0
$$976$$ 0 0
$$977$$ 24.0000 0.767828 0.383914 0.923369i $$-0.374576\pi$$
0.383914 + 0.923369i $$0.374576\pi$$
$$978$$ 0 0
$$979$$ 48.0000 1.53409
$$980$$ 0 0
$$981$$ 0 0
$$982$$ 0 0
$$983$$ 12.0000 0.382741 0.191370 0.981518i $$-0.438707\pi$$
0.191370 + 0.981518i $$0.438707\pi$$
$$984$$ 0 0
$$985$$ −48.0000 −1.52941
$$986$$ 0 0
$$987$$ 0 0
$$988$$ 0 0
$$989$$ −32.0000 −1.01754
$$990$$ 0 0
$$991$$ −25.0000 −0.794151 −0.397076 0.917786i $$-0.629975\pi$$
−0.397076 + 0.917786i $$0.629975\pi$$
$$992$$ 0 0
$$993$$ 0 0
$$994$$ 0 0
$$995$$ −100.000 −3.17021
$$996$$ 0 0
$$997$$ 26.0000 0.823428 0.411714 0.911313i $$-0.364930\pi$$
0.411714 + 0.911313i $$0.364930\pi$$
$$998$$ 0 0
$$999$$ 0 0
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1728.2.a.bb.1.1 1
3.2 odd 2 1728.2.a.b.1.1 1
4.3 odd 2 1728.2.a.ba.1.1 1
8.3 odd 2 216.2.a.a.1.1 1
8.5 even 2 432.2.a.a.1.1 1
12.11 even 2 1728.2.a.a.1.1 1
24.5 odd 2 432.2.a.h.1.1 1
24.11 even 2 216.2.a.d.1.1 yes 1
40.3 even 4 5400.2.f.e.649.2 2
40.19 odd 2 5400.2.a.bn.1.1 1
40.27 even 4 5400.2.f.e.649.1 2
72.5 odd 6 1296.2.i.a.865.1 2
72.11 even 6 648.2.i.a.433.1 2
72.13 even 6 1296.2.i.q.865.1 2
72.29 odd 6 1296.2.i.a.433.1 2
72.43 odd 6 648.2.i.h.433.1 2
72.59 even 6 648.2.i.a.217.1 2
72.61 even 6 1296.2.i.q.433.1 2
72.67 odd 6 648.2.i.h.217.1 2
120.59 even 2 5400.2.a.bp.1.1 1
120.83 odd 4 5400.2.f.v.649.2 2
120.107 odd 4 5400.2.f.v.649.1 2

By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.a.a.1.1 1 8.3 odd 2
216.2.a.d.1.1 yes 1 24.11 even 2
432.2.a.a.1.1 1 8.5 even 2
432.2.a.h.1.1 1 24.5 odd 2
648.2.i.a.217.1 2 72.59 even 6
648.2.i.a.433.1 2 72.11 even 6
648.2.i.h.217.1 2 72.67 odd 6
648.2.i.h.433.1 2 72.43 odd 6
1296.2.i.a.433.1 2 72.29 odd 6
1296.2.i.a.865.1 2 72.5 odd 6
1296.2.i.q.433.1 2 72.61 even 6
1296.2.i.q.865.1 2 72.13 even 6
1728.2.a.a.1.1 1 12.11 even 2
1728.2.a.b.1.1 1 3.2 odd 2
1728.2.a.ba.1.1 1 4.3 odd 2
1728.2.a.bb.1.1 1 1.1 even 1 trivial
5400.2.a.bn.1.1 1 40.19 odd 2
5400.2.a.bp.1.1 1 120.59 even 2
5400.2.f.e.649.1 2 40.27 even 4
5400.2.f.e.649.2 2 40.3 even 4
5400.2.f.v.649.1 2 120.107 odd 4
5400.2.f.v.649.2 2 120.83 odd 4