Defining parameters
| Level: | \( N \) | \(=\) | \( 1728 = 2^{6} \cdot 3^{3} \) |
| Weight: | \( k \) | \(=\) | \( 1 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1728.n (of order \(6\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 72 \) |
| Character field: | \(\Q(\zeta_{6})\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(288\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(1728, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 84 | 4 | 80 |
| Cusp forms | 12 | 4 | 8 |
| Eisenstein series | 72 | 0 | 72 |
The following table gives the dimensions of subspaces with specified projective image type.
| \(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
|---|---|---|---|---|
| Dimension | 4 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(1728, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
| 1728.1.n.a | $4$ | $0.862$ | \(\Q(\zeta_{12})\) | $D_{6}$ | \(\Q(\sqrt{-2}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(-\zeta_{12}^{3}-\zeta_{12}^{5})q^{11}+(\zeta_{12}^{2}+\zeta_{12}^{4}+\cdots)q^{17}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(1728, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(1728, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(576, [\chi])\)\(^{\oplus 2}\)