Properties

Label 1725.2.b.g.1174.2
Level $1725$
Weight $2$
Character 1725.1174
Analytic conductor $13.774$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1725,2,Mod(1174,1725)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1725.1174"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1725, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1725 = 3 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1725.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,2,0,2,0,0,-2,0,8,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.7741943487\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 69)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1174.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1725.1174
Dual form 1725.2.b.g.1174.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000i q^{3} +1.00000 q^{4} +1.00000 q^{6} -2.00000i q^{7} +3.00000i q^{8} -1.00000 q^{9} +4.00000 q^{11} -1.00000i q^{12} +6.00000i q^{13} +2.00000 q^{14} -1.00000 q^{16} +4.00000i q^{17} -1.00000i q^{18} -2.00000 q^{19} -2.00000 q^{21} +4.00000i q^{22} +1.00000i q^{23} +3.00000 q^{24} -6.00000 q^{26} +1.00000i q^{27} -2.00000i q^{28} -2.00000 q^{29} +4.00000 q^{31} +5.00000i q^{32} -4.00000i q^{33} -4.00000 q^{34} -1.00000 q^{36} +2.00000i q^{37} -2.00000i q^{38} +6.00000 q^{39} +2.00000 q^{41} -2.00000i q^{42} -10.0000i q^{43} +4.00000 q^{44} -1.00000 q^{46} +1.00000i q^{48} +3.00000 q^{49} +4.00000 q^{51} +6.00000i q^{52} +12.0000i q^{53} -1.00000 q^{54} +6.00000 q^{56} +2.00000i q^{57} -2.00000i q^{58} +12.0000 q^{59} -6.00000 q^{61} +4.00000i q^{62} +2.00000i q^{63} -7.00000 q^{64} +4.00000 q^{66} -10.0000i q^{67} +4.00000i q^{68} +1.00000 q^{69} +8.00000 q^{71} -3.00000i q^{72} +14.0000i q^{73} -2.00000 q^{74} -2.00000 q^{76} -8.00000i q^{77} +6.00000i q^{78} -10.0000 q^{79} +1.00000 q^{81} +2.00000i q^{82} -12.0000i q^{83} -2.00000 q^{84} +10.0000 q^{86} +2.00000i q^{87} +12.0000i q^{88} +16.0000 q^{89} +12.0000 q^{91} +1.00000i q^{92} -4.00000i q^{93} +5.00000 q^{96} -10.0000i q^{97} +3.00000i q^{98} -4.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{4} + 2 q^{6} - 2 q^{9} + 8 q^{11} + 4 q^{14} - 2 q^{16} - 4 q^{19} - 4 q^{21} + 6 q^{24} - 12 q^{26} - 4 q^{29} + 8 q^{31} - 8 q^{34} - 2 q^{36} + 12 q^{39} + 4 q^{41} + 8 q^{44} - 2 q^{46} + 6 q^{49}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1725\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(1151\) \(1201\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i 0.935414 + 0.353553i \(0.115027\pi\)
−0.935414 + 0.353553i \(0.884973\pi\)
\(3\) − 1.00000i − 0.577350i
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 1.00000 0.408248
\(7\) − 2.00000i − 0.755929i −0.925820 0.377964i \(-0.876624\pi\)
0.925820 0.377964i \(-0.123376\pi\)
\(8\) 3.00000i 1.06066i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 4.00000 1.20605 0.603023 0.797724i \(-0.293963\pi\)
0.603023 + 0.797724i \(0.293963\pi\)
\(12\) − 1.00000i − 0.288675i
\(13\) 6.00000i 1.66410i 0.554700 + 0.832050i \(0.312833\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) 2.00000 0.534522
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 4.00000i 0.970143i 0.874475 + 0.485071i \(0.161206\pi\)
−0.874475 + 0.485071i \(0.838794\pi\)
\(18\) − 1.00000i − 0.235702i
\(19\) −2.00000 −0.458831 −0.229416 0.973329i \(-0.573682\pi\)
−0.229416 + 0.973329i \(0.573682\pi\)
\(20\) 0 0
\(21\) −2.00000 −0.436436
\(22\) 4.00000i 0.852803i
\(23\) 1.00000i 0.208514i
\(24\) 3.00000 0.612372
\(25\) 0 0
\(26\) −6.00000 −1.17670
\(27\) 1.00000i 0.192450i
\(28\) − 2.00000i − 0.377964i
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 5.00000i 0.883883i
\(33\) − 4.00000i − 0.696311i
\(34\) −4.00000 −0.685994
\(35\) 0 0
\(36\) −1.00000 −0.166667
\(37\) 2.00000i 0.328798i 0.986394 + 0.164399i \(0.0525685\pi\)
−0.986394 + 0.164399i \(0.947432\pi\)
\(38\) − 2.00000i − 0.324443i
\(39\) 6.00000 0.960769
\(40\) 0 0
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) − 2.00000i − 0.308607i
\(43\) − 10.0000i − 1.52499i −0.646997 0.762493i \(-0.723975\pi\)
0.646997 0.762493i \(-0.276025\pi\)
\(44\) 4.00000 0.603023
\(45\) 0 0
\(46\) −1.00000 −0.147442
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 1.00000i 0.144338i
\(49\) 3.00000 0.428571
\(50\) 0 0
\(51\) 4.00000 0.560112
\(52\) 6.00000i 0.832050i
\(53\) 12.0000i 1.64833i 0.566352 + 0.824163i \(0.308354\pi\)
−0.566352 + 0.824163i \(0.691646\pi\)
\(54\) −1.00000 −0.136083
\(55\) 0 0
\(56\) 6.00000 0.801784
\(57\) 2.00000i 0.264906i
\(58\) − 2.00000i − 0.262613i
\(59\) 12.0000 1.56227 0.781133 0.624364i \(-0.214642\pi\)
0.781133 + 0.624364i \(0.214642\pi\)
\(60\) 0 0
\(61\) −6.00000 −0.768221 −0.384111 0.923287i \(-0.625492\pi\)
−0.384111 + 0.923287i \(0.625492\pi\)
\(62\) 4.00000i 0.508001i
\(63\) 2.00000i 0.251976i
\(64\) −7.00000 −0.875000
\(65\) 0 0
\(66\) 4.00000 0.492366
\(67\) − 10.0000i − 1.22169i −0.791748 0.610847i \(-0.790829\pi\)
0.791748 0.610847i \(-0.209171\pi\)
\(68\) 4.00000i 0.485071i
\(69\) 1.00000 0.120386
\(70\) 0 0
\(71\) 8.00000 0.949425 0.474713 0.880141i \(-0.342552\pi\)
0.474713 + 0.880141i \(0.342552\pi\)
\(72\) − 3.00000i − 0.353553i
\(73\) 14.0000i 1.63858i 0.573382 + 0.819288i \(0.305631\pi\)
−0.573382 + 0.819288i \(0.694369\pi\)
\(74\) −2.00000 −0.232495
\(75\) 0 0
\(76\) −2.00000 −0.229416
\(77\) − 8.00000i − 0.911685i
\(78\) 6.00000i 0.679366i
\(79\) −10.0000 −1.12509 −0.562544 0.826767i \(-0.690177\pi\)
−0.562544 + 0.826767i \(0.690177\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 2.00000i 0.220863i
\(83\) − 12.0000i − 1.31717i −0.752506 0.658586i \(-0.771155\pi\)
0.752506 0.658586i \(-0.228845\pi\)
\(84\) −2.00000 −0.218218
\(85\) 0 0
\(86\) 10.0000 1.07833
\(87\) 2.00000i 0.214423i
\(88\) 12.0000i 1.27920i
\(89\) 16.0000 1.69600 0.847998 0.529999i \(-0.177808\pi\)
0.847998 + 0.529999i \(0.177808\pi\)
\(90\) 0 0
\(91\) 12.0000 1.25794
\(92\) 1.00000i 0.104257i
\(93\) − 4.00000i − 0.414781i
\(94\) 0 0
\(95\) 0 0
\(96\) 5.00000 0.510310
\(97\) − 10.0000i − 1.01535i −0.861550 0.507673i \(-0.830506\pi\)
0.861550 0.507673i \(-0.169494\pi\)
\(98\) 3.00000i 0.303046i
\(99\) −4.00000 −0.402015
\(100\) 0 0
\(101\) 14.0000 1.39305 0.696526 0.717532i \(-0.254728\pi\)
0.696526 + 0.717532i \(0.254728\pi\)
\(102\) 4.00000i 0.396059i
\(103\) 6.00000i 0.591198i 0.955312 + 0.295599i \(0.0955191\pi\)
−0.955312 + 0.295599i \(0.904481\pi\)
\(104\) −18.0000 −1.76505
\(105\) 0 0
\(106\) −12.0000 −1.16554
\(107\) 12.0000i 1.16008i 0.814587 + 0.580042i \(0.196964\pi\)
−0.814587 + 0.580042i \(0.803036\pi\)
\(108\) 1.00000i 0.0962250i
\(109\) −14.0000 −1.34096 −0.670478 0.741929i \(-0.733911\pi\)
−0.670478 + 0.741929i \(0.733911\pi\)
\(110\) 0 0
\(111\) 2.00000 0.189832
\(112\) 2.00000i 0.188982i
\(113\) − 16.0000i − 1.50515i −0.658505 0.752577i \(-0.728811\pi\)
0.658505 0.752577i \(-0.271189\pi\)
\(114\) −2.00000 −0.187317
\(115\) 0 0
\(116\) −2.00000 −0.185695
\(117\) − 6.00000i − 0.554700i
\(118\) 12.0000i 1.10469i
\(119\) 8.00000 0.733359
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) − 6.00000i − 0.543214i
\(123\) − 2.00000i − 0.180334i
\(124\) 4.00000 0.359211
\(125\) 0 0
\(126\) −2.00000 −0.178174
\(127\) − 12.0000i − 1.06483i −0.846484 0.532414i \(-0.821285\pi\)
0.846484 0.532414i \(-0.178715\pi\)
\(128\) 3.00000i 0.265165i
\(129\) −10.0000 −0.880451
\(130\) 0 0
\(131\) −4.00000 −0.349482 −0.174741 0.984614i \(-0.555909\pi\)
−0.174741 + 0.984614i \(0.555909\pi\)
\(132\) − 4.00000i − 0.348155i
\(133\) 4.00000i 0.346844i
\(134\) 10.0000 0.863868
\(135\) 0 0
\(136\) −12.0000 −1.02899
\(137\) 8.00000i 0.683486i 0.939793 + 0.341743i \(0.111017\pi\)
−0.939793 + 0.341743i \(0.888983\pi\)
\(138\) 1.00000i 0.0851257i
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 8.00000i 0.671345i
\(143\) 24.0000i 2.00698i
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) −14.0000 −1.15865
\(147\) − 3.00000i − 0.247436i
\(148\) 2.00000i 0.164399i
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) − 6.00000i − 0.486664i
\(153\) − 4.00000i − 0.323381i
\(154\) 8.00000 0.644658
\(155\) 0 0
\(156\) 6.00000 0.480384
\(157\) 10.0000i 0.798087i 0.916932 + 0.399043i \(0.130658\pi\)
−0.916932 + 0.399043i \(0.869342\pi\)
\(158\) − 10.0000i − 0.795557i
\(159\) 12.0000 0.951662
\(160\) 0 0
\(161\) 2.00000 0.157622
\(162\) 1.00000i 0.0785674i
\(163\) − 8.00000i − 0.626608i −0.949653 0.313304i \(-0.898564\pi\)
0.949653 0.313304i \(-0.101436\pi\)
\(164\) 2.00000 0.156174
\(165\) 0 0
\(166\) 12.0000 0.931381
\(167\) − 16.0000i − 1.23812i −0.785345 0.619059i \(-0.787514\pi\)
0.785345 0.619059i \(-0.212486\pi\)
\(168\) − 6.00000i − 0.462910i
\(169\) −23.0000 −1.76923
\(170\) 0 0
\(171\) 2.00000 0.152944
\(172\) − 10.0000i − 0.762493i
\(173\) − 2.00000i − 0.152057i −0.997106 0.0760286i \(-0.975776\pi\)
0.997106 0.0760286i \(-0.0242240\pi\)
\(174\) −2.00000 −0.151620
\(175\) 0 0
\(176\) −4.00000 −0.301511
\(177\) − 12.0000i − 0.901975i
\(178\) 16.0000i 1.19925i
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) −2.00000 −0.148659 −0.0743294 0.997234i \(-0.523682\pi\)
−0.0743294 + 0.997234i \(0.523682\pi\)
\(182\) 12.0000i 0.889499i
\(183\) 6.00000i 0.443533i
\(184\) −3.00000 −0.221163
\(185\) 0 0
\(186\) 4.00000 0.293294
\(187\) 16.0000i 1.17004i
\(188\) 0 0
\(189\) 2.00000 0.145479
\(190\) 0 0
\(191\) −12.0000 −0.868290 −0.434145 0.900843i \(-0.642949\pi\)
−0.434145 + 0.900843i \(0.642949\pi\)
\(192\) 7.00000i 0.505181i
\(193\) 18.0000i 1.29567i 0.761781 + 0.647834i \(0.224325\pi\)
−0.761781 + 0.647834i \(0.775675\pi\)
\(194\) 10.0000 0.717958
\(195\) 0 0
\(196\) 3.00000 0.214286
\(197\) 18.0000i 1.28245i 0.767354 + 0.641223i \(0.221573\pi\)
−0.767354 + 0.641223i \(0.778427\pi\)
\(198\) − 4.00000i − 0.284268i
\(199\) 6.00000 0.425329 0.212664 0.977125i \(-0.431786\pi\)
0.212664 + 0.977125i \(0.431786\pi\)
\(200\) 0 0
\(201\) −10.0000 −0.705346
\(202\) 14.0000i 0.985037i
\(203\) 4.00000i 0.280745i
\(204\) 4.00000 0.280056
\(205\) 0 0
\(206\) −6.00000 −0.418040
\(207\) − 1.00000i − 0.0695048i
\(208\) − 6.00000i − 0.416025i
\(209\) −8.00000 −0.553372
\(210\) 0 0
\(211\) 8.00000 0.550743 0.275371 0.961338i \(-0.411199\pi\)
0.275371 + 0.961338i \(0.411199\pi\)
\(212\) 12.0000i 0.824163i
\(213\) − 8.00000i − 0.548151i
\(214\) −12.0000 −0.820303
\(215\) 0 0
\(216\) −3.00000 −0.204124
\(217\) − 8.00000i − 0.543075i
\(218\) − 14.0000i − 0.948200i
\(219\) 14.0000 0.946032
\(220\) 0 0
\(221\) −24.0000 −1.61441
\(222\) 2.00000i 0.134231i
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 10.0000 0.668153
\(225\) 0 0
\(226\) 16.0000 1.06430
\(227\) − 24.0000i − 1.59294i −0.604681 0.796468i \(-0.706699\pi\)
0.604681 0.796468i \(-0.293301\pi\)
\(228\) 2.00000i 0.132453i
\(229\) −6.00000 −0.396491 −0.198246 0.980152i \(-0.563524\pi\)
−0.198246 + 0.980152i \(0.563524\pi\)
\(230\) 0 0
\(231\) −8.00000 −0.526361
\(232\) − 6.00000i − 0.393919i
\(233\) − 10.0000i − 0.655122i −0.944830 0.327561i \(-0.893773\pi\)
0.944830 0.327561i \(-0.106227\pi\)
\(234\) 6.00000 0.392232
\(235\) 0 0
\(236\) 12.0000 0.781133
\(237\) 10.0000i 0.649570i
\(238\) 8.00000i 0.518563i
\(239\) −8.00000 −0.517477 −0.258738 0.965947i \(-0.583307\pi\)
−0.258738 + 0.965947i \(0.583307\pi\)
\(240\) 0 0
\(241\) −2.00000 −0.128831 −0.0644157 0.997923i \(-0.520518\pi\)
−0.0644157 + 0.997923i \(0.520518\pi\)
\(242\) 5.00000i 0.321412i
\(243\) − 1.00000i − 0.0641500i
\(244\) −6.00000 −0.384111
\(245\) 0 0
\(246\) 2.00000 0.127515
\(247\) − 12.0000i − 0.763542i
\(248\) 12.0000i 0.762001i
\(249\) −12.0000 −0.760469
\(250\) 0 0
\(251\) 24.0000 1.51487 0.757433 0.652913i \(-0.226453\pi\)
0.757433 + 0.652913i \(0.226453\pi\)
\(252\) 2.00000i 0.125988i
\(253\) 4.00000i 0.251478i
\(254\) 12.0000 0.752947
\(255\) 0 0
\(256\) −17.0000 −1.06250
\(257\) 18.0000i 1.12281i 0.827541 + 0.561405i \(0.189739\pi\)
−0.827541 + 0.561405i \(0.810261\pi\)
\(258\) − 10.0000i − 0.622573i
\(259\) 4.00000 0.248548
\(260\) 0 0
\(261\) 2.00000 0.123797
\(262\) − 4.00000i − 0.247121i
\(263\) 12.0000i 0.739952i 0.929041 + 0.369976i \(0.120634\pi\)
−0.929041 + 0.369976i \(0.879366\pi\)
\(264\) 12.0000 0.738549
\(265\) 0 0
\(266\) −4.00000 −0.245256
\(267\) − 16.0000i − 0.979184i
\(268\) − 10.0000i − 0.610847i
\(269\) −10.0000 −0.609711 −0.304855 0.952399i \(-0.598608\pi\)
−0.304855 + 0.952399i \(0.598608\pi\)
\(270\) 0 0
\(271\) −20.0000 −1.21491 −0.607457 0.794353i \(-0.707810\pi\)
−0.607457 + 0.794353i \(0.707810\pi\)
\(272\) − 4.00000i − 0.242536i
\(273\) − 12.0000i − 0.726273i
\(274\) −8.00000 −0.483298
\(275\) 0 0
\(276\) 1.00000 0.0601929
\(277\) − 10.0000i − 0.600842i −0.953807 0.300421i \(-0.902873\pi\)
0.953807 0.300421i \(-0.0971271\pi\)
\(278\) − 4.00000i − 0.239904i
\(279\) −4.00000 −0.239474
\(280\) 0 0
\(281\) −24.0000 −1.43172 −0.715860 0.698244i \(-0.753965\pi\)
−0.715860 + 0.698244i \(0.753965\pi\)
\(282\) 0 0
\(283\) − 6.00000i − 0.356663i −0.983970 0.178331i \(-0.942930\pi\)
0.983970 0.178331i \(-0.0570699\pi\)
\(284\) 8.00000 0.474713
\(285\) 0 0
\(286\) −24.0000 −1.41915
\(287\) − 4.00000i − 0.236113i
\(288\) − 5.00000i − 0.294628i
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −10.0000 −0.586210
\(292\) 14.0000i 0.819288i
\(293\) − 20.0000i − 1.16841i −0.811605 0.584206i \(-0.801406\pi\)
0.811605 0.584206i \(-0.198594\pi\)
\(294\) 3.00000 0.174964
\(295\) 0 0
\(296\) −6.00000 −0.348743
\(297\) 4.00000i 0.232104i
\(298\) 0 0
\(299\) −6.00000 −0.346989
\(300\) 0 0
\(301\) −20.0000 −1.15278
\(302\) 8.00000i 0.460348i
\(303\) − 14.0000i − 0.804279i
\(304\) 2.00000 0.114708
\(305\) 0 0
\(306\) 4.00000 0.228665
\(307\) − 16.0000i − 0.913168i −0.889680 0.456584i \(-0.849073\pi\)
0.889680 0.456584i \(-0.150927\pi\)
\(308\) − 8.00000i − 0.455842i
\(309\) 6.00000 0.341328
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 18.0000i 1.01905i
\(313\) − 2.00000i − 0.113047i −0.998401 0.0565233i \(-0.981998\pi\)
0.998401 0.0565233i \(-0.0180015\pi\)
\(314\) −10.0000 −0.564333
\(315\) 0 0
\(316\) −10.0000 −0.562544
\(317\) − 30.0000i − 1.68497i −0.538721 0.842484i \(-0.681092\pi\)
0.538721 0.842484i \(-0.318908\pi\)
\(318\) 12.0000i 0.672927i
\(319\) −8.00000 −0.447914
\(320\) 0 0
\(321\) 12.0000 0.669775
\(322\) 2.00000i 0.111456i
\(323\) − 8.00000i − 0.445132i
\(324\) 1.00000 0.0555556
\(325\) 0 0
\(326\) 8.00000 0.443079
\(327\) 14.0000i 0.774202i
\(328\) 6.00000i 0.331295i
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) − 12.0000i − 0.658586i
\(333\) − 2.00000i − 0.109599i
\(334\) 16.0000 0.875481
\(335\) 0 0
\(336\) 2.00000 0.109109
\(337\) − 2.00000i − 0.108947i −0.998515 0.0544735i \(-0.982652\pi\)
0.998515 0.0544735i \(-0.0173480\pi\)
\(338\) − 23.0000i − 1.25104i
\(339\) −16.0000 −0.869001
\(340\) 0 0
\(341\) 16.0000 0.866449
\(342\) 2.00000i 0.108148i
\(343\) − 20.0000i − 1.07990i
\(344\) 30.0000 1.61749
\(345\) 0 0
\(346\) 2.00000 0.107521
\(347\) 12.0000i 0.644194i 0.946707 + 0.322097i \(0.104388\pi\)
−0.946707 + 0.322097i \(0.895612\pi\)
\(348\) 2.00000i 0.107211i
\(349\) −2.00000 −0.107058 −0.0535288 0.998566i \(-0.517047\pi\)
−0.0535288 + 0.998566i \(0.517047\pi\)
\(350\) 0 0
\(351\) −6.00000 −0.320256
\(352\) 20.0000i 1.06600i
\(353\) − 6.00000i − 0.319348i −0.987170 0.159674i \(-0.948956\pi\)
0.987170 0.159674i \(-0.0510443\pi\)
\(354\) 12.0000 0.637793
\(355\) 0 0
\(356\) 16.0000 0.847998
\(357\) − 8.00000i − 0.423405i
\(358\) − 12.0000i − 0.634220i
\(359\) −20.0000 −1.05556 −0.527780 0.849381i \(-0.676975\pi\)
−0.527780 + 0.849381i \(0.676975\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) − 2.00000i − 0.105118i
\(363\) − 5.00000i − 0.262432i
\(364\) 12.0000 0.628971
\(365\) 0 0
\(366\) −6.00000 −0.313625
\(367\) − 38.0000i − 1.98358i −0.127862 0.991792i \(-0.540812\pi\)
0.127862 0.991792i \(-0.459188\pi\)
\(368\) − 1.00000i − 0.0521286i
\(369\) −2.00000 −0.104116
\(370\) 0 0
\(371\) 24.0000 1.24602
\(372\) − 4.00000i − 0.207390i
\(373\) − 34.0000i − 1.76045i −0.474554 0.880227i \(-0.657390\pi\)
0.474554 0.880227i \(-0.342610\pi\)
\(374\) −16.0000 −0.827340
\(375\) 0 0
\(376\) 0 0
\(377\) − 12.0000i − 0.618031i
\(378\) 2.00000i 0.102869i
\(379\) −10.0000 −0.513665 −0.256833 0.966456i \(-0.582679\pi\)
−0.256833 + 0.966456i \(0.582679\pi\)
\(380\) 0 0
\(381\) −12.0000 −0.614779
\(382\) − 12.0000i − 0.613973i
\(383\) 28.0000i 1.43073i 0.698749 + 0.715367i \(0.253740\pi\)
−0.698749 + 0.715367i \(0.746260\pi\)
\(384\) 3.00000 0.153093
\(385\) 0 0
\(386\) −18.0000 −0.916176
\(387\) 10.0000i 0.508329i
\(388\) − 10.0000i − 0.507673i
\(389\) 20.0000 1.01404 0.507020 0.861934i \(-0.330747\pi\)
0.507020 + 0.861934i \(0.330747\pi\)
\(390\) 0 0
\(391\) −4.00000 −0.202289
\(392\) 9.00000i 0.454569i
\(393\) 4.00000i 0.201773i
\(394\) −18.0000 −0.906827
\(395\) 0 0
\(396\) −4.00000 −0.201008
\(397\) − 18.0000i − 0.903394i −0.892171 0.451697i \(-0.850819\pi\)
0.892171 0.451697i \(-0.149181\pi\)
\(398\) 6.00000i 0.300753i
\(399\) 4.00000 0.200250
\(400\) 0 0
\(401\) −4.00000 −0.199750 −0.0998752 0.995000i \(-0.531844\pi\)
−0.0998752 + 0.995000i \(0.531844\pi\)
\(402\) − 10.0000i − 0.498755i
\(403\) 24.0000i 1.19553i
\(404\) 14.0000 0.696526
\(405\) 0 0
\(406\) −4.00000 −0.198517
\(407\) 8.00000i 0.396545i
\(408\) 12.0000i 0.594089i
\(409\) 26.0000 1.28562 0.642809 0.766027i \(-0.277769\pi\)
0.642809 + 0.766027i \(0.277769\pi\)
\(410\) 0 0
\(411\) 8.00000 0.394611
\(412\) 6.00000i 0.295599i
\(413\) − 24.0000i − 1.18096i
\(414\) 1.00000 0.0491473
\(415\) 0 0
\(416\) −30.0000 −1.47087
\(417\) 4.00000i 0.195881i
\(418\) − 8.00000i − 0.391293i
\(419\) 4.00000 0.195413 0.0977064 0.995215i \(-0.468849\pi\)
0.0977064 + 0.995215i \(0.468849\pi\)
\(420\) 0 0
\(421\) 38.0000 1.85201 0.926003 0.377515i \(-0.123221\pi\)
0.926003 + 0.377515i \(0.123221\pi\)
\(422\) 8.00000i 0.389434i
\(423\) 0 0
\(424\) −36.0000 −1.74831
\(425\) 0 0
\(426\) 8.00000 0.387601
\(427\) 12.0000i 0.580721i
\(428\) 12.0000i 0.580042i
\(429\) 24.0000 1.15873
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) − 1.00000i − 0.0481125i
\(433\) − 2.00000i − 0.0961139i −0.998845 0.0480569i \(-0.984697\pi\)
0.998845 0.0480569i \(-0.0153029\pi\)
\(434\) 8.00000 0.384012
\(435\) 0 0
\(436\) −14.0000 −0.670478
\(437\) − 2.00000i − 0.0956730i
\(438\) 14.0000i 0.668946i
\(439\) −8.00000 −0.381819 −0.190910 0.981608i \(-0.561144\pi\)
−0.190910 + 0.981608i \(0.561144\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) − 24.0000i − 1.14156i
\(443\) 12.0000i 0.570137i 0.958507 + 0.285069i \(0.0920164\pi\)
−0.958507 + 0.285069i \(0.907984\pi\)
\(444\) 2.00000 0.0949158
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 14.0000i 0.661438i
\(449\) −10.0000 −0.471929 −0.235965 0.971762i \(-0.575825\pi\)
−0.235965 + 0.971762i \(0.575825\pi\)
\(450\) 0 0
\(451\) 8.00000 0.376705
\(452\) − 16.0000i − 0.752577i
\(453\) − 8.00000i − 0.375873i
\(454\) 24.0000 1.12638
\(455\) 0 0
\(456\) −6.00000 −0.280976
\(457\) − 18.0000i − 0.842004i −0.907060 0.421002i \(-0.861678\pi\)
0.907060 0.421002i \(-0.138322\pi\)
\(458\) − 6.00000i − 0.280362i
\(459\) −4.00000 −0.186704
\(460\) 0 0
\(461\) 2.00000 0.0931493 0.0465746 0.998915i \(-0.485169\pi\)
0.0465746 + 0.998915i \(0.485169\pi\)
\(462\) − 8.00000i − 0.372194i
\(463\) 8.00000i 0.371792i 0.982569 + 0.185896i \(0.0595187\pi\)
−0.982569 + 0.185896i \(0.940481\pi\)
\(464\) 2.00000 0.0928477
\(465\) 0 0
\(466\) 10.0000 0.463241
\(467\) 8.00000i 0.370196i 0.982720 + 0.185098i \(0.0592602\pi\)
−0.982720 + 0.185098i \(0.940740\pi\)
\(468\) − 6.00000i − 0.277350i
\(469\) −20.0000 −0.923514
\(470\) 0 0
\(471\) 10.0000 0.460776
\(472\) 36.0000i 1.65703i
\(473\) − 40.0000i − 1.83920i
\(474\) −10.0000 −0.459315
\(475\) 0 0
\(476\) 8.00000 0.366679
\(477\) − 12.0000i − 0.549442i
\(478\) − 8.00000i − 0.365911i
\(479\) −16.0000 −0.731059 −0.365529 0.930800i \(-0.619112\pi\)
−0.365529 + 0.930800i \(0.619112\pi\)
\(480\) 0 0
\(481\) −12.0000 −0.547153
\(482\) − 2.00000i − 0.0910975i
\(483\) − 2.00000i − 0.0910032i
\(484\) 5.00000 0.227273
\(485\) 0 0
\(486\) 1.00000 0.0453609
\(487\) 24.0000i 1.08754i 0.839233 + 0.543772i \(0.183004\pi\)
−0.839233 + 0.543772i \(0.816996\pi\)
\(488\) − 18.0000i − 0.814822i
\(489\) −8.00000 −0.361773
\(490\) 0 0
\(491\) −20.0000 −0.902587 −0.451294 0.892375i \(-0.649037\pi\)
−0.451294 + 0.892375i \(0.649037\pi\)
\(492\) − 2.00000i − 0.0901670i
\(493\) − 8.00000i − 0.360302i
\(494\) 12.0000 0.539906
\(495\) 0 0
\(496\) −4.00000 −0.179605
\(497\) − 16.0000i − 0.717698i
\(498\) − 12.0000i − 0.537733i
\(499\) 8.00000 0.358129 0.179065 0.983837i \(-0.442693\pi\)
0.179065 + 0.983837i \(0.442693\pi\)
\(500\) 0 0
\(501\) −16.0000 −0.714827
\(502\) 24.0000i 1.07117i
\(503\) − 16.0000i − 0.713405i −0.934218 0.356702i \(-0.883901\pi\)
0.934218 0.356702i \(-0.116099\pi\)
\(504\) −6.00000 −0.267261
\(505\) 0 0
\(506\) −4.00000 −0.177822
\(507\) 23.0000i 1.02147i
\(508\) − 12.0000i − 0.532414i
\(509\) 38.0000 1.68432 0.842160 0.539227i \(-0.181284\pi\)
0.842160 + 0.539227i \(0.181284\pi\)
\(510\) 0 0
\(511\) 28.0000 1.23865
\(512\) − 11.0000i − 0.486136i
\(513\) − 2.00000i − 0.0883022i
\(514\) −18.0000 −0.793946
\(515\) 0 0
\(516\) −10.0000 −0.440225
\(517\) 0 0
\(518\) 4.00000i 0.175750i
\(519\) −2.00000 −0.0877903
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 2.00000i 0.0875376i
\(523\) − 38.0000i − 1.66162i −0.556553 0.830812i \(-0.687876\pi\)
0.556553 0.830812i \(-0.312124\pi\)
\(524\) −4.00000 −0.174741
\(525\) 0 0
\(526\) −12.0000 −0.523225
\(527\) 16.0000i 0.696971i
\(528\) 4.00000i 0.174078i
\(529\) −1.00000 −0.0434783
\(530\) 0 0
\(531\) −12.0000 −0.520756
\(532\) 4.00000i 0.173422i
\(533\) 12.0000i 0.519778i
\(534\) 16.0000 0.692388
\(535\) 0 0
\(536\) 30.0000 1.29580
\(537\) 12.0000i 0.517838i
\(538\) − 10.0000i − 0.431131i
\(539\) 12.0000 0.516877
\(540\) 0 0
\(541\) 2.00000 0.0859867 0.0429934 0.999075i \(-0.486311\pi\)
0.0429934 + 0.999075i \(0.486311\pi\)
\(542\) − 20.0000i − 0.859074i
\(543\) 2.00000i 0.0858282i
\(544\) −20.0000 −0.857493
\(545\) 0 0
\(546\) 12.0000 0.513553
\(547\) 8.00000i 0.342055i 0.985266 + 0.171028i \(0.0547087\pi\)
−0.985266 + 0.171028i \(0.945291\pi\)
\(548\) 8.00000i 0.341743i
\(549\) 6.00000 0.256074
\(550\) 0 0
\(551\) 4.00000 0.170406
\(552\) 3.00000i 0.127688i
\(553\) 20.0000i 0.850487i
\(554\) 10.0000 0.424859
\(555\) 0 0
\(556\) −4.00000 −0.169638
\(557\) − 4.00000i − 0.169485i −0.996403 0.0847427i \(-0.972993\pi\)
0.996403 0.0847427i \(-0.0270068\pi\)
\(558\) − 4.00000i − 0.169334i
\(559\) 60.0000 2.53773
\(560\) 0 0
\(561\) 16.0000 0.675521
\(562\) − 24.0000i − 1.01238i
\(563\) − 24.0000i − 1.01148i −0.862686 0.505740i \(-0.831220\pi\)
0.862686 0.505740i \(-0.168780\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 6.00000 0.252199
\(567\) − 2.00000i − 0.0839921i
\(568\) 24.0000i 1.00702i
\(569\) 12.0000 0.503066 0.251533 0.967849i \(-0.419065\pi\)
0.251533 + 0.967849i \(0.419065\pi\)
\(570\) 0 0
\(571\) −34.0000 −1.42286 −0.711428 0.702759i \(-0.751951\pi\)
−0.711428 + 0.702759i \(0.751951\pi\)
\(572\) 24.0000i 1.00349i
\(573\) 12.0000i 0.501307i
\(574\) 4.00000 0.166957
\(575\) 0 0
\(576\) 7.00000 0.291667
\(577\) − 2.00000i − 0.0832611i −0.999133 0.0416305i \(-0.986745\pi\)
0.999133 0.0416305i \(-0.0132552\pi\)
\(578\) 1.00000i 0.0415945i
\(579\) 18.0000 0.748054
\(580\) 0 0
\(581\) −24.0000 −0.995688
\(582\) − 10.0000i − 0.414513i
\(583\) 48.0000i 1.98796i
\(584\) −42.0000 −1.73797
\(585\) 0 0
\(586\) 20.0000 0.826192
\(587\) − 12.0000i − 0.495293i −0.968850 0.247647i \(-0.920343\pi\)
0.968850 0.247647i \(-0.0796572\pi\)
\(588\) − 3.00000i − 0.123718i
\(589\) −8.00000 −0.329634
\(590\) 0 0
\(591\) 18.0000 0.740421
\(592\) − 2.00000i − 0.0821995i
\(593\) − 34.0000i − 1.39621i −0.715994 0.698106i \(-0.754026\pi\)
0.715994 0.698106i \(-0.245974\pi\)
\(594\) −4.00000 −0.164122
\(595\) 0 0
\(596\) 0 0
\(597\) − 6.00000i − 0.245564i
\(598\) − 6.00000i − 0.245358i
\(599\) −16.0000 −0.653742 −0.326871 0.945069i \(-0.605994\pi\)
−0.326871 + 0.945069i \(0.605994\pi\)
\(600\) 0 0
\(601\) −26.0000 −1.06056 −0.530281 0.847822i \(-0.677914\pi\)
−0.530281 + 0.847822i \(0.677914\pi\)
\(602\) − 20.0000i − 0.815139i
\(603\) 10.0000i 0.407231i
\(604\) 8.00000 0.325515
\(605\) 0 0
\(606\) 14.0000 0.568711
\(607\) − 8.00000i − 0.324710i −0.986732 0.162355i \(-0.948091\pi\)
0.986732 0.162355i \(-0.0519090\pi\)
\(608\) − 10.0000i − 0.405554i
\(609\) 4.00000 0.162088
\(610\) 0 0
\(611\) 0 0
\(612\) − 4.00000i − 0.161690i
\(613\) 6.00000i 0.242338i 0.992632 + 0.121169i \(0.0386643\pi\)
−0.992632 + 0.121169i \(0.961336\pi\)
\(614\) 16.0000 0.645707
\(615\) 0 0
\(616\) 24.0000 0.966988
\(617\) − 24.0000i − 0.966204i −0.875564 0.483102i \(-0.839510\pi\)
0.875564 0.483102i \(-0.160490\pi\)
\(618\) 6.00000i 0.241355i
\(619\) 10.0000 0.401934 0.200967 0.979598i \(-0.435592\pi\)
0.200967 + 0.979598i \(0.435592\pi\)
\(620\) 0 0
\(621\) −1.00000 −0.0401286
\(622\) 0 0
\(623\) − 32.0000i − 1.28205i
\(624\) −6.00000 −0.240192
\(625\) 0 0
\(626\) 2.00000 0.0799361
\(627\) 8.00000i 0.319489i
\(628\) 10.0000i 0.399043i
\(629\) −8.00000 −0.318981
\(630\) 0 0
\(631\) 26.0000 1.03504 0.517522 0.855670i \(-0.326855\pi\)
0.517522 + 0.855670i \(0.326855\pi\)
\(632\) − 30.0000i − 1.19334i
\(633\) − 8.00000i − 0.317971i
\(634\) 30.0000 1.19145
\(635\) 0 0
\(636\) 12.0000 0.475831
\(637\) 18.0000i 0.713186i
\(638\) − 8.00000i − 0.316723i
\(639\) −8.00000 −0.316475
\(640\) 0 0
\(641\) 4.00000 0.157991 0.0789953 0.996875i \(-0.474829\pi\)
0.0789953 + 0.996875i \(0.474829\pi\)
\(642\) 12.0000i 0.473602i
\(643\) 14.0000i 0.552106i 0.961142 + 0.276053i \(0.0890266\pi\)
−0.961142 + 0.276053i \(0.910973\pi\)
\(644\) 2.00000 0.0788110
\(645\) 0 0
\(646\) 8.00000 0.314756
\(647\) 8.00000i 0.314512i 0.987558 + 0.157256i \(0.0502649\pi\)
−0.987558 + 0.157256i \(0.949735\pi\)
\(648\) 3.00000i 0.117851i
\(649\) 48.0000 1.88416
\(650\) 0 0
\(651\) −8.00000 −0.313545
\(652\) − 8.00000i − 0.313304i
\(653\) 42.0000i 1.64359i 0.569785 + 0.821794i \(0.307026\pi\)
−0.569785 + 0.821794i \(0.692974\pi\)
\(654\) −14.0000 −0.547443
\(655\) 0 0
\(656\) −2.00000 −0.0780869
\(657\) − 14.0000i − 0.546192i
\(658\) 0 0
\(659\) −40.0000 −1.55818 −0.779089 0.626913i \(-0.784318\pi\)
−0.779089 + 0.626913i \(0.784318\pi\)
\(660\) 0 0
\(661\) 2.00000 0.0777910 0.0388955 0.999243i \(-0.487616\pi\)
0.0388955 + 0.999243i \(0.487616\pi\)
\(662\) 0 0
\(663\) 24.0000i 0.932083i
\(664\) 36.0000 1.39707
\(665\) 0 0
\(666\) 2.00000 0.0774984
\(667\) − 2.00000i − 0.0774403i
\(668\) − 16.0000i − 0.619059i
\(669\) 0 0
\(670\) 0 0
\(671\) −24.0000 −0.926510
\(672\) − 10.0000i − 0.385758i
\(673\) 10.0000i 0.385472i 0.981251 + 0.192736i \(0.0617360\pi\)
−0.981251 + 0.192736i \(0.938264\pi\)
\(674\) 2.00000 0.0770371
\(675\) 0 0
\(676\) −23.0000 −0.884615
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) − 16.0000i − 0.614476i
\(679\) −20.0000 −0.767530
\(680\) 0 0
\(681\) −24.0000 −0.919682
\(682\) 16.0000i 0.612672i
\(683\) 52.0000i 1.98972i 0.101237 + 0.994862i \(0.467720\pi\)
−0.101237 + 0.994862i \(0.532280\pi\)
\(684\) 2.00000 0.0764719
\(685\) 0 0
\(686\) 20.0000 0.763604
\(687\) 6.00000i 0.228914i
\(688\) 10.0000i 0.381246i
\(689\) −72.0000 −2.74298
\(690\) 0 0
\(691\) 16.0000 0.608669 0.304334 0.952565i \(-0.401566\pi\)
0.304334 + 0.952565i \(0.401566\pi\)
\(692\) − 2.00000i − 0.0760286i
\(693\) 8.00000i 0.303895i
\(694\) −12.0000 −0.455514
\(695\) 0 0
\(696\) −6.00000 −0.227429
\(697\) 8.00000i 0.303022i
\(698\) − 2.00000i − 0.0757011i
\(699\) −10.0000 −0.378235
\(700\) 0 0
\(701\) −8.00000 −0.302156 −0.151078 0.988522i \(-0.548274\pi\)
−0.151078 + 0.988522i \(0.548274\pi\)
\(702\) − 6.00000i − 0.226455i
\(703\) − 4.00000i − 0.150863i
\(704\) −28.0000 −1.05529
\(705\) 0 0
\(706\) 6.00000 0.225813
\(707\) − 28.0000i − 1.05305i
\(708\) − 12.0000i − 0.450988i
\(709\) −6.00000 −0.225335 −0.112667 0.993633i \(-0.535939\pi\)
−0.112667 + 0.993633i \(0.535939\pi\)
\(710\) 0 0
\(711\) 10.0000 0.375029
\(712\) 48.0000i 1.79888i
\(713\) 4.00000i 0.149801i
\(714\) 8.00000 0.299392
\(715\) 0 0
\(716\) −12.0000 −0.448461
\(717\) 8.00000i 0.298765i
\(718\) − 20.0000i − 0.746393i
\(719\) −48.0000 −1.79010 −0.895049 0.445968i \(-0.852860\pi\)
−0.895049 + 0.445968i \(0.852860\pi\)
\(720\) 0 0
\(721\) 12.0000 0.446903
\(722\) − 15.0000i − 0.558242i
\(723\) 2.00000i 0.0743808i
\(724\) −2.00000 −0.0743294
\(725\) 0 0
\(726\) 5.00000 0.185567
\(727\) 6.00000i 0.222528i 0.993791 + 0.111264i \(0.0354899\pi\)
−0.993791 + 0.111264i \(0.964510\pi\)
\(728\) 36.0000i 1.33425i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 40.0000 1.47945
\(732\) 6.00000i 0.221766i
\(733\) − 6.00000i − 0.221615i −0.993842 0.110808i \(-0.964656\pi\)
0.993842 0.110808i \(-0.0353437\pi\)
\(734\) 38.0000 1.40261
\(735\) 0 0
\(736\) −5.00000 −0.184302
\(737\) − 40.0000i − 1.47342i
\(738\) − 2.00000i − 0.0736210i
\(739\) −12.0000 −0.441427 −0.220714 0.975339i \(-0.570839\pi\)
−0.220714 + 0.975339i \(0.570839\pi\)
\(740\) 0 0
\(741\) −12.0000 −0.440831
\(742\) 24.0000i 0.881068i
\(743\) 20.0000i 0.733729i 0.930274 + 0.366864i \(0.119569\pi\)
−0.930274 + 0.366864i \(0.880431\pi\)
\(744\) 12.0000 0.439941
\(745\) 0 0
\(746\) 34.0000 1.24483
\(747\) 12.0000i 0.439057i
\(748\) 16.0000i 0.585018i
\(749\) 24.0000 0.876941
\(750\) 0 0
\(751\) 30.0000 1.09472 0.547358 0.836899i \(-0.315634\pi\)
0.547358 + 0.836899i \(0.315634\pi\)
\(752\) 0 0
\(753\) − 24.0000i − 0.874609i
\(754\) 12.0000 0.437014
\(755\) 0 0
\(756\) 2.00000 0.0727393
\(757\) 46.0000i 1.67190i 0.548807 + 0.835949i \(0.315082\pi\)
−0.548807 + 0.835949i \(0.684918\pi\)
\(758\) − 10.0000i − 0.363216i
\(759\) 4.00000 0.145191
\(760\) 0 0
\(761\) −18.0000 −0.652499 −0.326250 0.945284i \(-0.605785\pi\)
−0.326250 + 0.945284i \(0.605785\pi\)
\(762\) − 12.0000i − 0.434714i
\(763\) 28.0000i 1.01367i
\(764\) −12.0000 −0.434145
\(765\) 0 0
\(766\) −28.0000 −1.01168
\(767\) 72.0000i 2.59977i
\(768\) 17.0000i 0.613435i
\(769\) −42.0000 −1.51456 −0.757279 0.653091i \(-0.773472\pi\)
−0.757279 + 0.653091i \(0.773472\pi\)
\(770\) 0 0
\(771\) 18.0000 0.648254
\(772\) 18.0000i 0.647834i
\(773\) 32.0000i 1.15096i 0.817816 + 0.575480i \(0.195185\pi\)
−0.817816 + 0.575480i \(0.804815\pi\)
\(774\) −10.0000 −0.359443
\(775\) 0 0
\(776\) 30.0000 1.07694
\(777\) − 4.00000i − 0.143499i
\(778\) 20.0000i 0.717035i
\(779\) −4.00000 −0.143315
\(780\) 0 0
\(781\) 32.0000 1.14505
\(782\) − 4.00000i − 0.143040i
\(783\) − 2.00000i − 0.0714742i
\(784\) −3.00000 −0.107143
\(785\) 0 0
\(786\) −4.00000 −0.142675
\(787\) 2.00000i 0.0712923i 0.999364 + 0.0356462i \(0.0113489\pi\)
−0.999364 + 0.0356462i \(0.988651\pi\)
\(788\) 18.0000i 0.641223i
\(789\) 12.0000 0.427211
\(790\) 0 0
\(791\) −32.0000 −1.13779
\(792\) − 12.0000i − 0.426401i
\(793\) − 36.0000i − 1.27840i
\(794\) 18.0000 0.638796
\(795\) 0 0
\(796\) 6.00000 0.212664
\(797\) 44.0000i 1.55856i 0.626676 + 0.779280i \(0.284415\pi\)
−0.626676 + 0.779280i \(0.715585\pi\)
\(798\) 4.00000i 0.141598i
\(799\) 0 0
\(800\) 0 0
\(801\) −16.0000 −0.565332
\(802\) − 4.00000i − 0.141245i
\(803\) 56.0000i 1.97620i
\(804\) −10.0000 −0.352673
\(805\) 0 0
\(806\) −24.0000 −0.845364
\(807\) 10.0000i 0.352017i
\(808\) 42.0000i 1.47755i
\(809\) 2.00000 0.0703163 0.0351581 0.999382i \(-0.488807\pi\)
0.0351581 + 0.999382i \(0.488807\pi\)
\(810\) 0 0
\(811\) −40.0000 −1.40459 −0.702295 0.711886i \(-0.747841\pi\)
−0.702295 + 0.711886i \(0.747841\pi\)
\(812\) 4.00000i 0.140372i
\(813\) 20.0000i 0.701431i
\(814\) −8.00000 −0.280400
\(815\) 0 0
\(816\) −4.00000 −0.140028
\(817\) 20.0000i 0.699711i
\(818\) 26.0000i 0.909069i
\(819\) −12.0000 −0.419314
\(820\) 0 0
\(821\) −26.0000 −0.907406 −0.453703 0.891153i \(-0.649897\pi\)
−0.453703 + 0.891153i \(0.649897\pi\)
\(822\) 8.00000i 0.279032i
\(823\) − 52.0000i − 1.81261i −0.422628 0.906303i \(-0.638892\pi\)
0.422628 0.906303i \(-0.361108\pi\)
\(824\) −18.0000 −0.627060
\(825\) 0 0
\(826\) 24.0000 0.835067
\(827\) − 16.0000i − 0.556375i −0.960527 0.278187i \(-0.910266\pi\)
0.960527 0.278187i \(-0.0897336\pi\)
\(828\) − 1.00000i − 0.0347524i
\(829\) 14.0000 0.486240 0.243120 0.969996i \(-0.421829\pi\)
0.243120 + 0.969996i \(0.421829\pi\)
\(830\) 0 0
\(831\) −10.0000 −0.346896
\(832\) − 42.0000i − 1.45609i
\(833\) 12.0000i 0.415775i
\(834\) −4.00000 −0.138509
\(835\) 0 0
\(836\) −8.00000 −0.276686
\(837\) 4.00000i 0.138260i
\(838\) 4.00000i 0.138178i
\(839\) 36.0000 1.24286 0.621429 0.783470i \(-0.286552\pi\)
0.621429 + 0.783470i \(0.286552\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 38.0000i 1.30957i
\(843\) 24.0000i 0.826604i
\(844\) 8.00000 0.275371
\(845\) 0 0
\(846\) 0 0
\(847\) − 10.0000i − 0.343604i
\(848\) − 12.0000i − 0.412082i
\(849\) −6.00000 −0.205919
\(850\) 0 0
\(851\) −2.00000 −0.0685591
\(852\) − 8.00000i − 0.274075i
\(853\) − 22.0000i − 0.753266i −0.926363 0.376633i \(-0.877082\pi\)
0.926363 0.376633i \(-0.122918\pi\)
\(854\) −12.0000 −0.410632
\(855\) 0 0
\(856\) −36.0000 −1.23045
\(857\) 2.00000i 0.0683187i 0.999416 + 0.0341593i \(0.0108754\pi\)
−0.999416 + 0.0341593i \(0.989125\pi\)
\(858\) 24.0000i 0.819346i
\(859\) −20.0000 −0.682391 −0.341196 0.939992i \(-0.610832\pi\)
−0.341196 + 0.939992i \(0.610832\pi\)
\(860\) 0 0
\(861\) −4.00000 −0.136320
\(862\) 0 0
\(863\) 32.0000i 1.08929i 0.838666 + 0.544646i \(0.183336\pi\)
−0.838666 + 0.544646i \(0.816664\pi\)
\(864\) −5.00000 −0.170103
\(865\) 0 0
\(866\) 2.00000 0.0679628
\(867\) − 1.00000i − 0.0339618i
\(868\) − 8.00000i − 0.271538i
\(869\) −40.0000 −1.35691
\(870\) 0 0
\(871\) 60.0000 2.03302
\(872\) − 42.0000i − 1.42230i
\(873\) 10.0000i 0.338449i
\(874\) 2.00000 0.0676510
\(875\) 0 0
\(876\) 14.0000 0.473016
\(877\) − 42.0000i − 1.41824i −0.705088 0.709120i \(-0.749093\pi\)
0.705088 0.709120i \(-0.250907\pi\)
\(878\) − 8.00000i − 0.269987i
\(879\) −20.0000 −0.674583
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) − 3.00000i − 0.101015i
\(883\) − 16.0000i − 0.538443i −0.963078 0.269221i \(-0.913234\pi\)
0.963078 0.269221i \(-0.0867663\pi\)
\(884\) −24.0000 −0.807207
\(885\) 0 0
\(886\) −12.0000 −0.403148
\(887\) 48.0000i 1.61168i 0.592132 + 0.805841i \(0.298286\pi\)
−0.592132 + 0.805841i \(0.701714\pi\)
\(888\) 6.00000i 0.201347i
\(889\) −24.0000 −0.804934
\(890\) 0 0
\(891\) 4.00000 0.134005
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 6.00000 0.200446
\(897\) 6.00000i 0.200334i
\(898\) − 10.0000i − 0.333704i
\(899\) −8.00000 −0.266815
\(900\) 0 0
\(901\) −48.0000 −1.59911
\(902\) 8.00000i 0.266371i
\(903\) 20.0000i 0.665558i
\(904\) 48.0000 1.59646
\(905\) 0 0
\(906\) 8.00000 0.265782
\(907\) − 34.0000i − 1.12895i −0.825450 0.564476i \(-0.809078\pi\)
0.825450 0.564476i \(-0.190922\pi\)
\(908\) − 24.0000i − 0.796468i
\(909\) −14.0000 −0.464351
\(910\) 0 0
\(911\) 40.0000 1.32526 0.662630 0.748947i \(-0.269440\pi\)
0.662630 + 0.748947i \(0.269440\pi\)
\(912\) − 2.00000i − 0.0662266i
\(913\) − 48.0000i − 1.58857i
\(914\) 18.0000 0.595387
\(915\) 0 0
\(916\) −6.00000 −0.198246
\(917\) 8.00000i 0.264183i
\(918\) − 4.00000i − 0.132020i
\(919\) 14.0000 0.461817 0.230909 0.972975i \(-0.425830\pi\)
0.230909 + 0.972975i \(0.425830\pi\)
\(920\) 0 0
\(921\) −16.0000 −0.527218
\(922\) 2.00000i 0.0658665i
\(923\) 48.0000i 1.57994i
\(924\) −8.00000 −0.263181
\(925\) 0 0
\(926\) −8.00000 −0.262896
\(927\) − 6.00000i − 0.197066i
\(928\) − 10.0000i − 0.328266i
\(929\) 6.00000 0.196854 0.0984268 0.995144i \(-0.468619\pi\)
0.0984268 + 0.995144i \(0.468619\pi\)
\(930\) 0 0
\(931\) −6.00000 −0.196642
\(932\) − 10.0000i − 0.327561i
\(933\) 0 0
\(934\) −8.00000 −0.261768
\(935\) 0 0
\(936\) 18.0000 0.588348
\(937\) 34.0000i 1.11073i 0.831606 + 0.555366i \(0.187422\pi\)
−0.831606 + 0.555366i \(0.812578\pi\)
\(938\) − 20.0000i − 0.653023i
\(939\) −2.00000 −0.0652675
\(940\) 0 0
\(941\) 40.0000 1.30396 0.651981 0.758235i \(-0.273938\pi\)
0.651981 + 0.758235i \(0.273938\pi\)
\(942\) 10.0000i 0.325818i
\(943\) 2.00000i 0.0651290i
\(944\) −12.0000 −0.390567
\(945\) 0 0
\(946\) 40.0000 1.30051
\(947\) 28.0000i 0.909878i 0.890523 + 0.454939i \(0.150339\pi\)
−0.890523 + 0.454939i \(0.849661\pi\)
\(948\) 10.0000i 0.324785i
\(949\) −84.0000 −2.72676
\(950\) 0 0
\(951\) −30.0000 −0.972817
\(952\) 24.0000i 0.777844i
\(953\) − 12.0000i − 0.388718i −0.980930 0.194359i \(-0.937737\pi\)
0.980930 0.194359i \(-0.0622627\pi\)
\(954\) 12.0000 0.388514
\(955\) 0 0
\(956\) −8.00000 −0.258738
\(957\) 8.00000i 0.258603i
\(958\) − 16.0000i − 0.516937i
\(959\) 16.0000 0.516667
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) − 12.0000i − 0.386896i
\(963\) − 12.0000i − 0.386695i
\(964\) −2.00000 −0.0644157
\(965\) 0 0
\(966\) 2.00000 0.0643489
\(967\) 4.00000i 0.128631i 0.997930 + 0.0643157i \(0.0204865\pi\)
−0.997930 + 0.0643157i \(0.979514\pi\)
\(968\) 15.0000i 0.482118i
\(969\) −8.00000 −0.256997
\(970\) 0 0
\(971\) 40.0000 1.28366 0.641831 0.766846i \(-0.278175\pi\)
0.641831 + 0.766846i \(0.278175\pi\)
\(972\) − 1.00000i − 0.0320750i
\(973\) 8.00000i 0.256468i
\(974\) −24.0000 −0.769010
\(975\) 0 0
\(976\) 6.00000 0.192055
\(977\) 16.0000i 0.511885i 0.966692 + 0.255943i \(0.0823858\pi\)
−0.966692 + 0.255943i \(0.917614\pi\)
\(978\) − 8.00000i − 0.255812i
\(979\) 64.0000 2.04545
\(980\) 0 0
\(981\) 14.0000 0.446986
\(982\) − 20.0000i − 0.638226i
\(983\) 16.0000i 0.510321i 0.966899 + 0.255160i \(0.0821283\pi\)
−0.966899 + 0.255160i \(0.917872\pi\)
\(984\) 6.00000 0.191273
\(985\) 0 0
\(986\) 8.00000 0.254772
\(987\) 0 0
\(988\) − 12.0000i − 0.381771i
\(989\) 10.0000 0.317982
\(990\) 0 0
\(991\) −4.00000 −0.127064 −0.0635321 0.997980i \(-0.520237\pi\)
−0.0635321 + 0.997980i \(0.520237\pi\)
\(992\) 20.0000i 0.635001i
\(993\) 0 0
\(994\) 16.0000 0.507489
\(995\) 0 0
\(996\) −12.0000 −0.380235
\(997\) − 38.0000i − 1.20347i −0.798695 0.601736i \(-0.794476\pi\)
0.798695 0.601736i \(-0.205524\pi\)
\(998\) 8.00000i 0.253236i
\(999\) −2.00000 −0.0632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1725.2.b.g.1174.2 2
5.2 odd 4 1725.2.a.e.1.1 1
5.3 odd 4 69.2.a.a.1.1 1
5.4 even 2 inner 1725.2.b.g.1174.1 2
15.2 even 4 5175.2.a.v.1.1 1
15.8 even 4 207.2.a.a.1.1 1
20.3 even 4 1104.2.a.c.1.1 1
35.13 even 4 3381.2.a.k.1.1 1
40.3 even 4 4416.2.a.x.1.1 1
40.13 odd 4 4416.2.a.f.1.1 1
55.43 even 4 8349.2.a.a.1.1 1
60.23 odd 4 3312.2.a.k.1.1 1
115.68 even 4 1587.2.a.e.1.1 1
345.68 odd 4 4761.2.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
69.2.a.a.1.1 1 5.3 odd 4
207.2.a.a.1.1 1 15.8 even 4
1104.2.a.c.1.1 1 20.3 even 4
1587.2.a.e.1.1 1 115.68 even 4
1725.2.a.e.1.1 1 5.2 odd 4
1725.2.b.g.1174.1 2 5.4 even 2 inner
1725.2.b.g.1174.2 2 1.1 even 1 trivial
3312.2.a.k.1.1 1 60.23 odd 4
3381.2.a.k.1.1 1 35.13 even 4
4416.2.a.f.1.1 1 40.13 odd 4
4416.2.a.x.1.1 1 40.3 even 4
4761.2.a.b.1.1 1 345.68 odd 4
5175.2.a.v.1.1 1 15.2 even 4
8349.2.a.a.1.1 1 55.43 even 4