Defining parameters
Level: | \( N \) | \(=\) | \( 1725 = 3 \cdot 5^{2} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1725.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 38 \) | ||
Sturm bound: | \(480\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(2\), \(7\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1725))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 252 | 70 | 182 |
Cusp forms | 229 | 70 | 159 |
Eisenstein series | 23 | 0 | 23 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(5\) | \(23\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(24\) | \(8\) | \(16\) | \(22\) | \(8\) | \(14\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(39\) | \(10\) | \(29\) | \(36\) | \(10\) | \(26\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(37\) | \(11\) | \(26\) | \(34\) | \(11\) | \(23\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(26\) | \(7\) | \(19\) | \(23\) | \(7\) | \(16\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(30\) | \(8\) | \(22\) | \(27\) | \(8\) | \(19\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(33\) | \(6\) | \(27\) | \(30\) | \(6\) | \(24\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(35\) | \(8\) | \(27\) | \(32\) | \(8\) | \(24\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(28\) | \(12\) | \(16\) | \(25\) | \(12\) | \(13\) | \(3\) | \(0\) | \(3\) | |||
Plus space | \(+\) | \(118\) | \(29\) | \(89\) | \(107\) | \(29\) | \(78\) | \(11\) | \(0\) | \(11\) | |||||
Minus space | \(-\) | \(134\) | \(41\) | \(93\) | \(122\) | \(41\) | \(81\) | \(12\) | \(0\) | \(12\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1725))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1725))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1725)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(69))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(115))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(345))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(575))\)\(^{\oplus 2}\)