Properties

Label 1725.1.l.c.482.9
Level $1725$
Weight $1$
Character 1725.482
Analytic conductor $0.861$
Analytic rank $0$
Dimension $24$
Projective image $D_{18}$
CM discriminant -23
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1725,1,Mod(68,1725)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1725.68"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1725, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 2])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 1725 = 3 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1725.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.860887146792\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{72})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{24} - x^{12} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{18}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{18} - \cdots)\)

Embedding invariants

Embedding label 482.9
Root \(0.573576 + 0.819152i\) of defining polynomial
Character \(\chi\) \(=\) 1725.482
Dual form 1725.1.l.c.68.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.08335 - 1.08335i) q^{2} +(-0.819152 + 0.573576i) q^{3} -1.34730i q^{4} +(-0.266044 + 1.50881i) q^{6} +(-0.376244 - 0.376244i) q^{8} +(0.342020 - 0.939693i) q^{9} +(0.772777 + 1.10364i) q^{12} +(0.483690 - 0.483690i) q^{13} +0.532089 q^{16} +(-0.647489 - 1.38854i) q^{18} +(-0.707107 - 0.707107i) q^{23} +(0.524005 + 0.0923963i) q^{24} -1.04801i q^{26} +(0.258819 + 0.965926i) q^{27} +1.28558 q^{29} +1.53209 q^{31} +(0.952682 - 0.952682i) q^{32} +(-1.26604 - 0.460802i) q^{36} +(-0.118782 + 0.673648i) q^{39} -1.96962i q^{41} -1.53209 q^{46} +(-1.32893 + 1.32893i) q^{47} +(-0.435862 + 0.305194i) q^{48} +1.00000i q^{49} +(-0.651673 - 0.651673i) q^{52} +(1.32683 + 0.766044i) q^{54} +(1.39273 - 1.39273i) q^{58} -1.73205 q^{59} +(1.65979 - 1.65979i) q^{62} -1.53209i q^{64} +(0.984808 + 0.173648i) q^{69} -0.684040i q^{71} +(-0.482236 + 0.224870i) q^{72} +(-0.909039 + 0.909039i) q^{73} +(0.601114 + 0.858480i) q^{78} +(-0.766044 - 0.642788i) q^{81} +(-2.13378 - 2.13378i) q^{82} +(-1.05308 + 0.737376i) q^{87} +(-0.952682 + 0.952682i) q^{92} +(-1.25501 + 0.878770i) q^{93} +2.87939i q^{94} +(-0.233956 + 1.32683i) q^{96} +(1.08335 + 1.08335i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 12 q^{6} - 24 q^{16} - 12 q^{36} - 24 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1725\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(1151\) \(1201\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.08335 1.08335i 1.08335 1.08335i 0.0871557 0.996195i \(-0.472222\pi\)
0.996195 0.0871557i \(-0.0277778\pi\)
\(3\) −0.819152 + 0.573576i −0.819152 + 0.573576i
\(4\) 1.34730i 1.34730i
\(5\) 0 0
\(6\) −0.266044 + 1.50881i −0.266044 + 1.50881i
\(7\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(8\) −0.376244 0.376244i −0.376244 0.376244i
\(9\) 0.342020 0.939693i 0.342020 0.939693i
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0.772777 + 1.10364i 0.772777 + 1.10364i
\(13\) 0.483690 0.483690i 0.483690 0.483690i −0.422618 0.906308i \(-0.638889\pi\)
0.906308 + 0.422618i \(0.138889\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0.532089 0.532089
\(17\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(18\) −0.647489 1.38854i −0.647489 1.38854i
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.707107 0.707107i −0.707107 0.707107i
\(24\) 0.524005 + 0.0923963i 0.524005 + 0.0923963i
\(25\) 0 0
\(26\) 1.04801i 1.04801i
\(27\) 0.258819 + 0.965926i 0.258819 + 0.965926i
\(28\) 0 0
\(29\) 1.28558 1.28558 0.642788 0.766044i \(-0.277778\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(30\) 0 0
\(31\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(32\) 0.952682 0.952682i 0.952682 0.952682i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) −1.26604 0.460802i −1.26604 0.460802i
\(37\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(38\) 0 0
\(39\) −0.118782 + 0.673648i −0.118782 + 0.673648i
\(40\) 0 0
\(41\) 1.96962i 1.96962i −0.173648 0.984808i \(-0.555556\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(42\) 0 0
\(43\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −1.53209 −1.53209
\(47\) −1.32893 + 1.32893i −1.32893 + 1.32893i −0.422618 + 0.906308i \(0.638889\pi\)
−0.906308 + 0.422618i \(0.861111\pi\)
\(48\) −0.435862 + 0.305194i −0.435862 + 0.305194i
\(49\) 1.00000i 1.00000i
\(50\) 0 0
\(51\) 0 0
\(52\) −0.651673 0.651673i −0.651673 0.651673i
\(53\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(54\) 1.32683 + 0.766044i 1.32683 + 0.766044i
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 1.39273 1.39273i 1.39273 1.39273i
\(59\) −1.73205 −1.73205 −0.866025 0.500000i \(-0.833333\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 1.65979 1.65979i 1.65979 1.65979i
\(63\) 0 0
\(64\) 1.53209i 1.53209i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(68\) 0 0
\(69\) 0.984808 + 0.173648i 0.984808 + 0.173648i
\(70\) 0 0
\(71\) 0.684040i 0.684040i −0.939693 0.342020i \(-0.888889\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(72\) −0.482236 + 0.224870i −0.482236 + 0.224870i
\(73\) −0.909039 + 0.909039i −0.909039 + 0.909039i −0.996195 0.0871557i \(-0.972222\pi\)
0.0871557 + 0.996195i \(0.472222\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0.601114 + 0.858480i 0.601114 + 0.858480i
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) −0.766044 0.642788i −0.766044 0.642788i
\(82\) −2.13378 2.13378i −2.13378 2.13378i
\(83\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −1.05308 + 0.737376i −1.05308 + 0.737376i
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −0.952682 + 0.952682i −0.952682 + 0.952682i
\(93\) −1.25501 + 0.878770i −1.25501 + 0.878770i
\(94\) 2.87939i 2.87939i
\(95\) 0 0
\(96\) −0.233956 + 1.32683i −0.233956 + 1.32683i
\(97\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(98\) 1.08335 + 1.08335i 1.08335 + 1.08335i
\(99\) 0 0
\(100\) 0 0
\(101\) 1.73205i 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(102\) 0 0
\(103\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(104\) −0.363970 −0.363970
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(108\) 1.30139 0.348706i 1.30139 0.348706i
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 1.73205i 1.73205i
\(117\) −0.289088 0.619951i −0.289088 0.619951i
\(118\) −1.87642 + 1.87642i −1.87642 + 1.87642i
\(119\) 0 0
\(120\) 0 0
\(121\) −1.00000 −1.00000
\(122\) 0 0
\(123\) 1.12973 + 1.61341i 1.12973 + 1.61341i
\(124\) 2.06418i 2.06418i
\(125\) 0 0
\(126\) 0 0
\(127\) 0.909039 + 0.909039i 0.909039 + 0.909039i 0.996195 0.0871557i \(-0.0277778\pi\)
−0.0871557 + 0.996195i \(0.527778\pi\)
\(128\) −0.707107 0.707107i −0.707107 0.707107i
\(129\) 0 0
\(130\) 0 0
\(131\) 1.96962i 1.96962i 0.173648 + 0.984808i \(0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(138\) 1.25501 0.878770i 1.25501 0.878770i
\(139\) 1.87939i 1.87939i 0.342020 + 0.939693i \(0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(140\) 0 0
\(141\) 0.326352 1.85083i 0.326352 1.85083i
\(142\) −0.741055 0.741055i −0.741055 0.741055i
\(143\) 0 0
\(144\) 0.181985 0.500000i 0.181985 0.500000i
\(145\) 0 0
\(146\) 1.96962i 1.96962i
\(147\) −0.573576 0.819152i −0.573576 0.819152i
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0.907604 + 0.160035i 0.907604 + 0.160035i
\(157\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) −1.52626 + 0.133530i −1.52626 + 0.133530i
\(163\) 0.909039 0.909039i 0.909039 0.909039i −0.0871557 0.996195i \(-0.527778\pi\)
0.996195 + 0.0871557i \(0.0277778\pi\)
\(164\) −2.65366 −2.65366
\(165\) 0 0
\(166\) 0 0
\(167\) 0.707107 0.707107i 0.707107 0.707107i −0.258819 0.965926i \(-0.583333\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(168\) 0 0
\(169\) 0.532089i 0.532089i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −0.707107 0.707107i −0.707107 0.707107i 0.258819 0.965926i \(-0.416667\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(174\) −0.342020 + 1.93969i −0.342020 + 1.93969i
\(175\) 0 0
\(176\) 0 0
\(177\) 1.41881 0.993464i 1.41881 0.993464i
\(178\) 0 0
\(179\) −1.28558 −1.28558 −0.642788 0.766044i \(-0.722222\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0.532089i 0.532089i
\(185\) 0 0
\(186\) −0.407604 + 2.31164i −0.407604 + 2.31164i
\(187\) 0 0
\(188\) 1.79046 + 1.79046i 1.79046 + 1.79046i
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0.878770 + 1.25501i 0.878770 + 1.25501i
\(193\) 1.39273 1.39273i 1.39273 1.39273i 0.573576 0.819152i \(-0.305556\pi\)
0.819152 0.573576i \(-0.194444\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 1.34730 1.34730
\(197\) −0.245576 + 0.245576i −0.245576 + 0.245576i −0.819152 0.573576i \(-0.805556\pi\)
0.573576 + 0.819152i \(0.305556\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 1.87642 + 1.87642i 1.87642 + 1.87642i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −0.906308 + 0.422618i −0.906308 + 0.422618i
\(208\) 0.257366 0.257366i 0.257366 0.257366i
\(209\) 0 0
\(210\) 0 0
\(211\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(212\) 0 0
\(213\) 0.392349 + 0.560333i 0.392349 + 0.560333i
\(214\) 0 0
\(215\) 0 0
\(216\) 0.266044 0.460802i 0.266044 0.460802i
\(217\) 0 0
\(218\) 0 0
\(219\) 0.223238 1.26604i 0.223238 1.26604i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −1.22474 + 1.22474i −1.22474 + 1.22474i −0.258819 + 0.965926i \(0.583333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −0.483690 0.483690i −0.483690 0.483690i
\(233\) −1.32893 1.32893i −1.32893 1.32893i −0.906308 0.422618i \(-0.861111\pi\)
−0.422618 0.906308i \(-0.638889\pi\)
\(234\) −0.984808 0.358441i −0.984808 0.358441i
\(235\) 0 0
\(236\) 2.33359i 2.33359i
\(237\) 0 0
\(238\) 0 0
\(239\) −1.96962 −1.96962 −0.984808 0.173648i \(-0.944444\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) −1.08335 + 1.08335i −1.08335 + 1.08335i
\(243\) 0.996195 + 0.0871557i 0.996195 + 0.0871557i
\(244\) 0 0
\(245\) 0 0
\(246\) 2.97178 + 0.524005i 2.97178 + 0.524005i
\(247\) 0 0
\(248\) −0.576439 0.576439i −0.576439 0.576439i
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 1.96962 1.96962
\(255\) 0 0
\(256\) 0 0
\(257\) 0.245576 0.245576i 0.245576 0.245576i −0.573576 0.819152i \(-0.694444\pi\)
0.819152 + 0.573576i \(0.194444\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0.439693 1.20805i 0.439693 1.20805i
\(262\) 2.13378 + 2.13378i 2.13378 + 2.13378i
\(263\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0.684040 0.684040 0.342020 0.939693i \(-0.388889\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(270\) 0 0
\(271\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0.233956 1.32683i 0.233956 1.32683i
\(277\) 1.39273 + 1.39273i 1.39273 + 1.39273i 0.819152 + 0.573576i \(0.194444\pi\)
0.573576 + 0.819152i \(0.305556\pi\)
\(278\) 2.03603 + 2.03603i 2.03603 + 2.03603i
\(279\) 0.524005 1.43969i 0.524005 1.43969i
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) −1.65155 2.35865i −1.65155 2.35865i
\(283\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(284\) −0.921605 −0.921605
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −0.569392 1.22107i −0.569392 1.22107i
\(289\) 1.00000i 1.00000i
\(290\) 0 0
\(291\) 0 0
\(292\) 1.22474 + 1.22474i 1.22474 + 1.22474i
\(293\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(294\) −1.50881 0.266044i −1.50881 0.266044i
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −0.684040 −0.684040
\(300\) 0 0
\(301\) 0 0
\(302\) −2.03603 + 2.03603i −2.03603 + 2.03603i
\(303\) −0.993464 1.41881i −0.993464 1.41881i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.28558i 1.28558i −0.766044 0.642788i \(-0.777778\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(312\) 0.298147 0.208765i 0.298147 0.208765i
\(313\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1.41421 + 1.41421i −1.41421 + 1.41421i −0.707107 + 0.707107i \(0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −0.866025 + 1.03209i −0.866025 + 1.03209i
\(325\) 0 0
\(326\) 1.96962i 1.96962i
\(327\) 0 0
\(328\) −0.741055 + 0.741055i −0.741055 + 0.741055i
\(329\) 0 0
\(330\) 0 0
\(331\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 1.53209i 1.53209i
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(338\) 0.576439 + 0.576439i 0.576439 + 0.576439i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −1.53209 −1.53209
\(347\) 0.707107 0.707107i 0.707107 0.707107i −0.258819 0.965926i \(-0.583333\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(348\) 0.993464 + 1.41881i 0.993464 + 1.41881i
\(349\) 1.87939i 1.87939i −0.342020 0.939693i \(-0.611111\pi\)
0.342020 0.939693i \(-0.388889\pi\)
\(350\) 0 0
\(351\) 0.592396 + 0.342020i 0.592396 + 0.342020i
\(352\) 0 0
\(353\) 0.245576 + 0.245576i 0.245576 + 0.245576i 0.819152 0.573576i \(-0.194444\pi\)
−0.573576 + 0.819152i \(0.694444\pi\)
\(354\) 0.460802 2.61334i 0.460802 2.61334i
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) −1.39273 + 1.39273i −1.39273 + 1.39273i
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) −1.00000 −1.00000
\(362\) 0 0
\(363\) 0.819152 0.573576i 0.819152 0.573576i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(368\) −0.376244 0.376244i −0.376244 0.376244i
\(369\) −1.85083 0.673648i −1.85083 0.673648i
\(370\) 0 0
\(371\) 0 0
\(372\) 1.18396 + 1.69088i 1.18396 + 1.69088i
\(373\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 1.00000 1.00000
\(377\) 0.621819 0.621819i 0.621819 0.621819i
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) −1.26604 0.223238i −1.26604 0.223238i
\(382\) 0 0
\(383\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(384\) 0.984808 + 0.173648i 0.984808 + 0.173648i
\(385\) 0 0
\(386\) 3.01763i 3.01763i
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0.376244 0.376244i 0.376244 0.376244i
\(393\) −1.12973 1.61341i −1.12973 1.61341i
\(394\) 0.532089i 0.532089i
\(395\) 0 0
\(396\) 0 0
\(397\) −0.909039 0.909039i −0.909039 0.909039i 0.0871557 0.996195i \(-0.472222\pi\)
−0.996195 + 0.0871557i \(0.972222\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) 0.741055 0.741055i 0.741055 0.741055i
\(404\) 2.33359 2.33359
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0.347296i 0.347296i −0.984808 0.173648i \(-0.944444\pi\)
0.984808 0.173648i \(-0.0555556\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) −0.524005 + 1.43969i −0.524005 + 1.43969i
\(415\) 0 0
\(416\) 0.921605i 0.921605i
\(417\) −1.07797 1.53950i −1.07797 1.53950i
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 1.08335 1.08335i 1.08335 1.08335i
\(423\) 0.794263 + 1.70330i 0.794263 + 1.70330i
\(424\) 0 0
\(425\) 0 0
\(426\) 1.03209 + 0.181985i 1.03209 + 0.181985i
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0.137715 + 0.513958i 0.137715 + 0.513958i
\(433\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) −1.12973 1.61341i −1.12973 1.61341i
\(439\) 0.347296i 0.347296i 0.984808 + 0.173648i \(0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(440\) 0 0
\(441\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(442\) 0 0
\(443\) 1.32893 + 1.32893i 1.32893 + 1.32893i 0.906308 + 0.422618i \(0.138889\pi\)
0.422618 + 0.906308i \(0.361111\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 2.65366i 2.65366i
\(447\) 0 0
\(448\) 0 0
\(449\) 1.73205 1.73205 0.866025 0.500000i \(-0.166667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 1.53950 1.07797i 1.53950 1.07797i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0.684040i 0.684040i 0.939693 + 0.342020i \(0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(462\) 0 0
\(463\) 1.22474 1.22474i 1.22474 1.22474i 0.258819 0.965926i \(-0.416667\pi\)
0.965926 0.258819i \(-0.0833333\pi\)
\(464\) 0.684040 0.684040
\(465\) 0 0
\(466\) −2.87939 −2.87939
\(467\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(468\) −0.835258 + 0.389487i −0.835258 + 0.389487i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0.651673 + 0.651673i 0.651673 + 0.651673i
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) −2.13378 + 2.13378i −2.13378 + 2.13378i
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 1.34730i 1.34730i
\(485\) 0 0
\(486\) 1.17365 0.984808i 1.17365 0.984808i
\(487\) −0.483690 0.483690i −0.483690 0.483690i 0.422618 0.906308i \(-0.361111\pi\)
−0.906308 + 0.422618i \(0.861111\pi\)
\(488\) 0 0
\(489\) −0.223238 + 1.26604i −0.223238 + 1.26604i
\(490\) 0 0
\(491\) 0.684040i 0.684040i 0.939693 + 0.342020i \(0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(492\) 2.17375 1.52207i 2.17375 1.52207i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0.815207 0.815207
\(497\) 0 0
\(498\) 0 0
\(499\) 0.347296i 0.347296i −0.984808 0.173648i \(-0.944444\pi\)
0.984808 0.173648i \(-0.0555556\pi\)
\(500\) 0 0
\(501\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(502\) 0 0
\(503\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −0.305194 0.435862i −0.305194 0.435862i
\(508\) 1.22474 1.22474i 1.22474 1.22474i
\(509\) 1.96962 1.96962 0.984808 0.173648i \(-0.0555556\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0.707107 0.707107i 0.707107 0.707107i
\(513\) 0 0
\(514\) 0.532089i 0.532089i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0.984808 + 0.173648i 0.984808 + 0.173648i
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) −0.832395 1.78508i −0.832395 1.78508i
\(523\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(524\) 2.65366 2.65366
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 1.00000i 1.00000i
\(530\) 0 0
\(531\) −0.592396 + 1.62760i −0.592396 + 1.62760i
\(532\) 0 0
\(533\) −0.952682 0.952682i −0.952682 0.952682i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 1.05308 0.737376i 1.05308 0.737376i
\(538\) 0.741055 0.741055i 0.741055 0.741055i
\(539\) 0 0
\(540\) 0 0
\(541\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(542\) −1.08335 + 1.08335i −1.08335 + 1.08335i
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0.483690 + 0.483690i 0.483690 + 0.483690i 0.906308 0.422618i \(-0.138889\pi\)
−0.422618 + 0.906308i \(0.638889\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) −0.305194 0.435862i −0.305194 0.435862i
\(553\) 0 0
\(554\) 3.01763 3.01763
\(555\) 0 0
\(556\) 2.53209 2.53209
\(557\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(558\) −0.992010 2.12737i −0.992010 2.12737i
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(564\) −2.49362 0.439693i −2.49362 0.439693i
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) −0.257366 + 0.257366i −0.257366 + 0.257366i
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −1.43969 0.524005i −1.43969 0.524005i
\(577\) −1.39273 1.39273i −1.39273 1.39273i −0.819152 0.573576i \(-0.805556\pi\)
−0.573576 0.819152i \(-0.694444\pi\)
\(578\) −1.08335 1.08335i −1.08335 1.08335i
\(579\) −0.342020 + 1.93969i −0.342020 + 1.93969i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0.684040 0.684040
\(585\) 0 0
\(586\) 0 0
\(587\) 1.32893 1.32893i 1.32893 1.32893i 0.422618 0.906308i \(-0.361111\pi\)
0.906308 0.422618i \(-0.138889\pi\)
\(588\) −1.10364 + 0.772777i −1.10364 + 0.772777i
\(589\) 0 0
\(590\) 0 0
\(591\) 0.0603074 0.342020i 0.0603074 0.342020i
\(592\) 0 0
\(593\) 1.41421 + 1.41421i 1.41421 + 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) −0.741055 + 0.741055i −0.741055 + 0.741055i
\(599\) −1.73205 −1.73205 −0.866025 0.500000i \(-0.833333\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(600\) 0 0
\(601\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 2.53209i 2.53209i
\(605\) 0 0
\(606\) −2.61334 0.460802i −2.61334 0.460802i
\(607\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1.28558i 1.28558i
\(612\) 0 0
\(613\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0.500000 0.866025i 0.500000 0.866025i
\(622\) −1.39273 1.39273i −1.39273 1.39273i
\(623\) 0 0
\(624\) −0.0632028 + 0.358441i −0.0632028 + 0.358441i
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) −0.819152 + 0.573576i −0.819152 + 0.573576i
\(634\) 3.06418i 3.06418i
\(635\) 0 0
\(636\) 0 0
\(637\) 0.483690 + 0.483690i 0.483690 + 0.483690i
\(638\) 0 0
\(639\) −0.642788 0.233956i −0.642788 0.233956i
\(640\) 0 0
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1.08335 + 1.08335i −1.08335 + 1.08335i −0.0871557 + 0.996195i \(0.527778\pi\)
−0.996195 + 0.0871557i \(0.972222\pi\)
\(648\) 0.0463746 + 0.530064i 0.0463746 + 0.530064i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −1.22474 1.22474i −1.22474 1.22474i
\(653\) −1.08335 1.08335i −1.08335 1.08335i −0.996195 0.0871557i \(-0.972222\pi\)
−0.0871557 0.996195i \(-0.527778\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 1.04801i 1.04801i
\(657\) 0.543308 + 1.16513i 0.543308 + 1.16513i
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0.376244 0.376244i 0.376244 0.376244i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −0.909039 0.909039i −0.909039 0.909039i
\(668\) −0.952682 0.952682i −0.952682 0.952682i
\(669\) 0.300767 1.70574i 0.300767 1.70574i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −1.39273 + 1.39273i −1.39273 + 1.39273i −0.573576 + 0.819152i \(0.694444\pi\)
−0.819152 + 0.573576i \(0.805556\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0.716881 0.716881
\(677\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1.08335 + 1.08335i 1.08335 + 1.08335i 0.996195 + 0.0871557i \(0.0277778\pi\)
0.0871557 + 0.996195i \(0.472222\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(692\) −0.952682 + 0.952682i −0.952682 + 0.952682i
\(693\) 0 0
\(694\) 1.53209i 1.53209i
\(695\) 0 0
\(696\) 0.673648 + 0.118782i 0.673648 + 0.118782i
\(697\) 0 0
\(698\) −2.03603 2.03603i −2.03603 2.03603i
\(699\) 1.85083 + 0.326352i 1.85083 + 0.326352i
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 1.01230 0.271245i 1.01230 0.271245i
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0.532089 0.532089
\(707\) 0 0
\(708\) −1.33849 1.91156i −1.33849 1.91156i
\(709\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −1.08335 1.08335i −1.08335 1.08335i
\(714\) 0 0
\(715\) 0 0
\(716\) 1.73205i 1.73205i
\(717\) 1.61341 1.12973i 1.61341 1.12973i
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −1.08335 + 1.08335i −1.08335 + 1.08335i
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0.266044 1.50881i 0.266044 1.50881i
\(727\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(728\) 0 0
\(729\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) −1.34730 −1.34730
\(737\) 0 0
\(738\) −2.73490 + 1.27530i −2.73490 + 1.27530i
\(739\) 1.53209i 1.53209i −0.642788 0.766044i \(-0.722222\pi\)
0.642788 0.766044i \(-0.277778\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(744\) 0.802823 + 0.141559i 0.802823 + 0.141559i
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(753\) 0 0
\(754\) 1.34730i 1.34730i
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.28558i 1.28558i 0.766044 + 0.642788i \(0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(762\) −1.61341 + 1.12973i −1.61341 + 1.12973i
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −0.837775 + 0.837775i −0.837775 + 0.837775i
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) −0.0603074 + 0.342020i −0.0603074 + 0.342020i
\(772\) −1.87642 1.87642i −1.87642 1.87642i
\(773\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0.332731 + 1.24177i 0.332731 + 1.24177i
\(784\) 0.532089i 0.532089i
\(785\) 0 0
\(786\) −2.97178 0.524005i −2.97178 0.524005i
\(787\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(788\) 0.330863 + 0.330863i 0.330863 + 0.330863i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) −1.96962 −1.96962
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 1.60565i 1.60565i
\(807\) −0.560333 + 0.392349i −0.560333 + 0.392349i
\(808\) 0.651673 0.651673i 0.651673 0.651673i
\(809\) 1.73205 1.73205 0.866025 0.500000i \(-0.166667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(810\) 0 0
\(811\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(812\) 0 0
\(813\) 0.819152 0.573576i 0.819152 0.573576i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) −0.376244 0.376244i −0.376244 0.376244i
\(819\) 0 0
\(820\) 0 0
\(821\) 1.73205i 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(822\) 0 0
\(823\) 1.39273 1.39273i 1.39273 1.39273i 0.573576 0.819152i \(-0.305556\pi\)
0.819152 0.573576i \(-0.194444\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(828\) 0.569392 + 1.22107i 0.569392 + 1.22107i
\(829\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(830\) 0 0
\(831\) −1.93969 0.342020i −1.93969 0.342020i
\(832\) −0.741055 0.741055i −0.741055 0.741055i
\(833\) 0 0
\(834\) −2.83564 0.500000i −2.83564 0.500000i
\(835\) 0 0
\(836\) 0 0
\(837\) 0.396534 + 1.47988i 0.396534 + 1.47988i
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 0.652704 0.652704
\(842\) 0 0
\(843\) 0 0
\(844\) 1.34730i 1.34730i
\(845\) 0 0
\(846\) 2.70574 + 0.984808i 2.70574 + 0.984808i
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0.754935 0.528611i 0.754935 0.528611i
\(853\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1.08335 1.08335i 1.08335 1.08335i 0.0871557 0.996195i \(-0.472222\pi\)
0.996195 0.0871557i \(-0.0277778\pi\)
\(858\) 0 0
\(859\) 1.53209i 1.53209i −0.642788 0.766044i \(-0.722222\pi\)
0.642788 0.766044i \(-0.277778\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −0.245576 0.245576i −0.245576 0.245576i 0.573576 0.819152i \(-0.305556\pi\)
−0.819152 + 0.573576i \(0.805556\pi\)
\(864\) 1.16679 + 0.673648i 1.16679 + 0.673648i
\(865\) 0 0
\(866\) 0 0
\(867\) 0.573576 + 0.819152i 0.573576 + 0.819152i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) −1.70574 0.300767i −1.70574 0.300767i
\(877\) 1.22474 + 1.22474i 1.22474 + 1.22474i 0.965926 + 0.258819i \(0.0833333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(878\) 0.376244 + 0.376244i 0.376244 + 0.376244i
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 1.38854 0.647489i 1.38854 0.647489i
\(883\) −1.22474 + 1.22474i −1.22474 + 1.22474i −0.258819 + 0.965926i \(0.583333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 2.87939 2.87939
\(887\) −0.245576 + 0.245576i −0.245576 + 0.245576i −0.819152 0.573576i \(-0.805556\pi\)
0.573576 + 0.819152i \(0.305556\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 1.65009 + 1.65009i 1.65009 + 1.65009i
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0.560333 0.392349i 0.560333 0.392349i
\(898\) 1.87642 1.87642i 1.87642 1.87642i
\(899\) 1.96962 1.96962
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0.500000 2.83564i 0.500000 2.83564i
\(907\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(908\) 0 0
\(909\) 1.62760 + 0.592396i 1.62760 + 0.592396i
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0.741055 + 0.741055i 0.741055 + 0.741055i
\(923\) −0.330863 0.330863i −0.330863 0.330863i
\(924\) 0 0
\(925\) 0 0
\(926\) 2.65366i 2.65366i
\(927\) 0 0
\(928\) 1.22474 1.22474i 1.22474 1.22474i
\(929\) −1.28558 −1.28558 −0.642788 0.766044i \(-0.722222\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −1.79046 + 1.79046i −1.79046 + 1.79046i
\(933\) 0.737376 + 1.05308i 0.737376 + 1.05308i
\(934\) 0 0
\(935\) 0 0
\(936\) −0.124485 + 0.342020i −0.124485 + 0.342020i
\(937\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) −1.39273 + 1.39273i −1.39273 + 1.39273i
\(944\) −0.921605 −0.921605
\(945\) 0 0
\(946\) 0 0
\(947\) 1.08335 1.08335i 1.08335 1.08335i 0.0871557 0.996195i \(-0.472222\pi\)
0.996195 0.0871557i \(-0.0277778\pi\)
\(948\) 0 0
\(949\) 0.879385i 0.879385i
\(950\) 0 0
\(951\) 0.347296 1.96962i 0.347296 1.96962i
\(952\) 0 0
\(953\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 2.65366i 2.65366i
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 1.34730 1.34730
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −0.483690 0.483690i −0.483690 0.483690i 0.422618 0.906308i \(-0.361111\pi\)
−0.906308 + 0.422618i \(0.861111\pi\)
\(968\) 0.376244 + 0.376244i 0.376244 + 0.376244i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0.117425 1.34217i 0.117425 1.34217i
\(973\) 0 0
\(974\) −1.04801 −1.04801
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(978\) 1.12973 + 1.61341i 1.12973 + 1.61341i
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0.741055 + 0.741055i 0.741055 + 0.741055i
\(983\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(984\) 0.181985 1.03209i 0.181985 1.03209i
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(992\) 1.45959 1.45959i 1.45959 1.45959i
\(993\) −0.284489 + 0.199201i −0.284489 + 0.199201i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −1.22474 1.22474i −1.22474 1.22474i −0.965926 0.258819i \(-0.916667\pi\)
−0.258819 0.965926i \(-0.583333\pi\)
\(998\) −0.376244 0.376244i −0.376244 0.376244i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1725.1.l.c.482.9 yes 24
3.2 odd 2 inner 1725.1.l.c.482.3 yes 24
5.2 odd 4 inner 1725.1.l.c.68.10 yes 24
5.3 odd 4 inner 1725.1.l.c.68.3 24
5.4 even 2 inner 1725.1.l.c.482.4 yes 24
15.2 even 4 inner 1725.1.l.c.68.4 yes 24
15.8 even 4 inner 1725.1.l.c.68.9 yes 24
15.14 odd 2 inner 1725.1.l.c.482.10 yes 24
23.22 odd 2 CM 1725.1.l.c.482.9 yes 24
69.68 even 2 inner 1725.1.l.c.482.3 yes 24
115.22 even 4 inner 1725.1.l.c.68.10 yes 24
115.68 even 4 inner 1725.1.l.c.68.3 24
115.114 odd 2 inner 1725.1.l.c.482.4 yes 24
345.68 odd 4 inner 1725.1.l.c.68.9 yes 24
345.137 odd 4 inner 1725.1.l.c.68.4 yes 24
345.344 even 2 inner 1725.1.l.c.482.10 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1725.1.l.c.68.3 24 5.3 odd 4 inner
1725.1.l.c.68.3 24 115.68 even 4 inner
1725.1.l.c.68.4 yes 24 15.2 even 4 inner
1725.1.l.c.68.4 yes 24 345.137 odd 4 inner
1725.1.l.c.68.9 yes 24 15.8 even 4 inner
1725.1.l.c.68.9 yes 24 345.68 odd 4 inner
1725.1.l.c.68.10 yes 24 5.2 odd 4 inner
1725.1.l.c.68.10 yes 24 115.22 even 4 inner
1725.1.l.c.482.3 yes 24 3.2 odd 2 inner
1725.1.l.c.482.3 yes 24 69.68 even 2 inner
1725.1.l.c.482.4 yes 24 5.4 even 2 inner
1725.1.l.c.482.4 yes 24 115.114 odd 2 inner
1725.1.l.c.482.9 yes 24 1.1 even 1 trivial
1725.1.l.c.482.9 yes 24 23.22 odd 2 CM
1725.1.l.c.482.10 yes 24 15.14 odd 2 inner
1725.1.l.c.482.10 yes 24 345.344 even 2 inner