Properties

Label 1725.1
Level 1725
Weight 1
Dimension 96
Nonzero newspaces 3
Newform subspaces 5
Sturm bound 211200
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1725 = 3 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 3 \)
Newform subspaces: \( 5 \)
Sturm bound: \(211200\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(1725))\).

Total New Old
Modular forms 2636 956 1680
Cusp forms 172 96 76
Eisenstein series 2464 860 1604

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 96 0 0 0

Trace form

\( 96 q + 6 q^{4} + 4 q^{6} + 2 q^{9} - 26 q^{16} + 4 q^{19} + 8 q^{24} - 12 q^{31} - 14 q^{34} - 18 q^{36} + 4 q^{46} + 2 q^{49} - 4 q^{51} - 18 q^{54} - 4 q^{61} - 8 q^{64} + 2 q^{69} - 34 q^{76} + 4 q^{79}+ \cdots + 30 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(1725))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1725.1.d \(\chi_{1725}(574, \cdot)\) None 0 1
1725.1.e \(\chi_{1725}(1151, \cdot)\) None 0 1
1725.1.f \(\chi_{1725}(599, \cdot)\) None 0 1
1725.1.g \(\chi_{1725}(1126, \cdot)\) None 0 1
1725.1.k \(\chi_{1725}(1243, \cdot)\) None 0 2
1725.1.l \(\chi_{1725}(68, \cdot)\) 1725.1.l.a 4 2
1725.1.l.b 8
1725.1.l.c 24
1725.1.n \(\chi_{1725}(91, \cdot)\) None 0 4
1725.1.o \(\chi_{1725}(254, \cdot)\) None 0 4
1725.1.s \(\chi_{1725}(116, \cdot)\) None 0 4
1725.1.t \(\chi_{1725}(229, \cdot)\) None 0 4
1725.1.v \(\chi_{1725}(137, \cdot)\) None 0 8
1725.1.w \(\chi_{1725}(208, \cdot)\) None 0 8
1725.1.ba \(\chi_{1725}(76, \cdot)\) None 0 10
1725.1.bb \(\chi_{1725}(374, \cdot)\) None 0 10
1725.1.bc \(\chi_{1725}(26, \cdot)\) 1725.1.bc.a 20 10
1725.1.bd \(\chi_{1725}(199, \cdot)\) None 0 10
1725.1.bg \(\chi_{1725}(107, \cdot)\) 1725.1.bg.a 40 20
1725.1.bh \(\chi_{1725}(82, \cdot)\) None 0 20
1725.1.bl \(\chi_{1725}(19, \cdot)\) None 0 40
1725.1.bm \(\chi_{1725}(41, \cdot)\) None 0 40
1725.1.bq \(\chi_{1725}(29, \cdot)\) None 0 40
1725.1.br \(\chi_{1725}(61, \cdot)\) None 0 40
1725.1.bu \(\chi_{1725}(13, \cdot)\) None 0 80
1725.1.bv \(\chi_{1725}(17, \cdot)\) None 0 80

Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(1725))\) into lower level spaces

\( S_{1}^{\mathrm{old}}(\Gamma_1(1725)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(69))\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(75))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(115))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(345))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(575))\)\(^{\oplus 2}\)