Properties

Label 1710.4.f.a.341.8
Level $1710$
Weight $4$
Character 1710.341
Analytic conductor $100.893$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1710,4,Mod(341,1710)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1710.341"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1710, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1710.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,-80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(100.893266110\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 341.8
Character \(\chi\) \(=\) 1710.341
Dual form 1710.4.f.a.341.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +4.00000 q^{4} +5.00000i q^{5} +22.4759 q^{7} -8.00000 q^{8} -10.0000i q^{10} -42.4536i q^{11} -2.38543i q^{13} -44.9517 q^{14} +16.0000 q^{16} +29.9073i q^{17} +(-17.5831 - 80.9310i) q^{19} +20.0000i q^{20} +84.9071i q^{22} +200.012i q^{23} -25.0000 q^{25} +4.77086i q^{26} +89.9034 q^{28} -228.522 q^{29} -94.1519i q^{31} -32.0000 q^{32} -59.8147i q^{34} +112.379i q^{35} +325.706i q^{37} +(35.1662 + 161.862i) q^{38} -40.0000i q^{40} +241.016 q^{41} +59.1163 q^{43} -169.814i q^{44} -400.023i q^{46} +341.405i q^{47} +162.164 q^{49} +50.0000 q^{50} -9.54173i q^{52} -327.424 q^{53} +212.268 q^{55} -179.807 q^{56} +457.044 q^{58} +20.0811 q^{59} +571.115 q^{61} +188.304i q^{62} +64.0000 q^{64} +11.9272 q^{65} +230.632i q^{67} +119.629i q^{68} -224.759i q^{70} +97.3627 q^{71} +889.552 q^{73} -651.411i q^{74} +(-70.3324 - 323.724i) q^{76} -954.180i q^{77} +932.003i q^{79} +80.0000i q^{80} -482.032 q^{82} +518.948i q^{83} -149.537 q^{85} -118.233 q^{86} +339.629i q^{88} +304.991 q^{89} -53.6146i q^{91} +800.047i q^{92} -682.810i q^{94} +(404.655 - 87.9155i) q^{95} -451.834i q^{97} -324.328 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 80 q^{2} + 160 q^{4} - 56 q^{7} - 320 q^{8} + 112 q^{14} + 640 q^{16} - 76 q^{19} - 1000 q^{25} - 224 q^{28} - 120 q^{29} - 1280 q^{32} + 152 q^{38} - 312 q^{41} + 56 q^{43} + 2112 q^{49} + 2000 q^{50}+ \cdots - 4224 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1710\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(1027\) \(1351\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 0 0
\(4\) 4.00000 0.500000
\(5\) 5.00000i 0.447214i
\(6\) 0 0
\(7\) 22.4759 1.21358 0.606791 0.794861i \(-0.292456\pi\)
0.606791 + 0.794861i \(0.292456\pi\)
\(8\) −8.00000 −0.353553
\(9\) 0 0
\(10\) 10.0000i 0.316228i
\(11\) 42.4536i 1.16366i −0.813311 0.581829i \(-0.802337\pi\)
0.813311 0.581829i \(-0.197663\pi\)
\(12\) 0 0
\(13\) 2.38543i 0.0508923i −0.999676 0.0254461i \(-0.991899\pi\)
0.999676 0.0254461i \(-0.00810064\pi\)
\(14\) −44.9517 −0.858132
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 29.9073i 0.426682i 0.976978 + 0.213341i \(0.0684345\pi\)
−0.976978 + 0.213341i \(0.931565\pi\)
\(18\) 0 0
\(19\) −17.5831 80.9310i −0.212307 0.977203i
\(20\) 20.0000i 0.223607i
\(21\) 0 0
\(22\) 84.9071i 0.822830i
\(23\) 200.012i 1.81327i 0.421911 + 0.906637i \(0.361359\pi\)
−0.421911 + 0.906637i \(0.638641\pi\)
\(24\) 0 0
\(25\) −25.0000 −0.200000
\(26\) 4.77086i 0.0359863i
\(27\) 0 0
\(28\) 89.9034 0.606791
\(29\) −228.522 −1.46329 −0.731646 0.681685i \(-0.761247\pi\)
−0.731646 + 0.681685i \(0.761247\pi\)
\(30\) 0 0
\(31\) 94.1519i 0.545490i −0.962086 0.272745i \(-0.912069\pi\)
0.962086 0.272745i \(-0.0879315\pi\)
\(32\) −32.0000 −0.176777
\(33\) 0 0
\(34\) 59.8147i 0.301710i
\(35\) 112.379i 0.542730i
\(36\) 0 0
\(37\) 325.706i 1.44718i 0.690230 + 0.723590i \(0.257509\pi\)
−0.690230 + 0.723590i \(0.742491\pi\)
\(38\) 35.1662 + 161.862i 0.150124 + 0.690987i
\(39\) 0 0
\(40\) 40.0000i 0.158114i
\(41\) 241.016 0.918059 0.459029 0.888421i \(-0.348197\pi\)
0.459029 + 0.888421i \(0.348197\pi\)
\(42\) 0 0
\(43\) 59.1163 0.209655 0.104827 0.994490i \(-0.466571\pi\)
0.104827 + 0.994490i \(0.466571\pi\)
\(44\) 169.814i 0.581829i
\(45\) 0 0
\(46\) 400.023i 1.28218i
\(47\) 341.405i 1.05955i 0.848137 + 0.529777i \(0.177724\pi\)
−0.848137 + 0.529777i \(0.822276\pi\)
\(48\) 0 0
\(49\) 162.164 0.472782
\(50\) 50.0000 0.141421
\(51\) 0 0
\(52\) 9.54173i 0.0254461i
\(53\) −327.424 −0.848587 −0.424294 0.905525i \(-0.639478\pi\)
−0.424294 + 0.905525i \(0.639478\pi\)
\(54\) 0 0
\(55\) 212.268 0.520403
\(56\) −179.807 −0.429066
\(57\) 0 0
\(58\) 457.044 1.03470
\(59\) 20.0811 0.0443109 0.0221554 0.999755i \(-0.492947\pi\)
0.0221554 + 0.999755i \(0.492947\pi\)
\(60\) 0 0
\(61\) 571.115 1.19875 0.599376 0.800468i \(-0.295416\pi\)
0.599376 + 0.800468i \(0.295416\pi\)
\(62\) 188.304i 0.385720i
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 11.9272 0.0227597
\(66\) 0 0
\(67\) 230.632i 0.420539i 0.977643 + 0.210270i \(0.0674342\pi\)
−0.977643 + 0.210270i \(0.932566\pi\)
\(68\) 119.629i 0.213341i
\(69\) 0 0
\(70\) 224.759i 0.383768i
\(71\) 97.3627 0.162744 0.0813720 0.996684i \(-0.474070\pi\)
0.0813720 + 0.996684i \(0.474070\pi\)
\(72\) 0 0
\(73\) 889.552 1.42622 0.713111 0.701052i \(-0.247286\pi\)
0.713111 + 0.701052i \(0.247286\pi\)
\(74\) 651.411i 1.02331i
\(75\) 0 0
\(76\) −70.3324 323.724i −0.106154 0.488601i
\(77\) 954.180i 1.41219i
\(78\) 0 0
\(79\) 932.003i 1.32732i 0.748033 + 0.663661i \(0.230998\pi\)
−0.748033 + 0.663661i \(0.769002\pi\)
\(80\) 80.0000i 0.111803i
\(81\) 0 0
\(82\) −482.032 −0.649166
\(83\) 518.948i 0.686288i 0.939283 + 0.343144i \(0.111492\pi\)
−0.939283 + 0.343144i \(0.888508\pi\)
\(84\) 0 0
\(85\) −149.537 −0.190818
\(86\) −118.233 −0.148248
\(87\) 0 0
\(88\) 339.629i 0.411415i
\(89\) 304.991 0.363247 0.181624 0.983368i \(-0.441865\pi\)
0.181624 + 0.983368i \(0.441865\pi\)
\(90\) 0 0
\(91\) 53.6146i 0.0617620i
\(92\) 800.047i 0.906637i
\(93\) 0 0
\(94\) 682.810i 0.749218i
\(95\) 404.655 87.9155i 0.437018 0.0949467i
\(96\) 0 0
\(97\) 451.834i 0.472956i −0.971637 0.236478i \(-0.924007\pi\)
0.971637 0.236478i \(-0.0759932\pi\)
\(98\) −324.328 −0.334307
\(99\) 0 0
\(100\) −100.000 −0.100000
\(101\) 265.567i 0.261632i 0.991407 + 0.130816i \(0.0417598\pi\)
−0.991407 + 0.130816i \(0.958240\pi\)
\(102\) 0 0
\(103\) 572.517i 0.547687i −0.961774 0.273844i \(-0.911705\pi\)
0.961774 0.273844i \(-0.0882951\pi\)
\(104\) 19.0835i 0.0179931i
\(105\) 0 0
\(106\) 654.848 0.600042
\(107\) −878.043 −0.793305 −0.396653 0.917969i \(-0.629828\pi\)
−0.396653 + 0.917969i \(0.629828\pi\)
\(108\) 0 0
\(109\) 450.105i 0.395525i −0.980250 0.197763i \(-0.936632\pi\)
0.980250 0.197763i \(-0.0633675\pi\)
\(110\) −424.536 −0.367981
\(111\) 0 0
\(112\) 359.614 0.303396
\(113\) −98.2942 −0.0818295 −0.0409148 0.999163i \(-0.513027\pi\)
−0.0409148 + 0.999163i \(0.513027\pi\)
\(114\) 0 0
\(115\) −1000.06 −0.810921
\(116\) −914.087 −0.731646
\(117\) 0 0
\(118\) −40.1623 −0.0313325
\(119\) 672.193i 0.517814i
\(120\) 0 0
\(121\) −471.306 −0.354099
\(122\) −1142.23 −0.847645
\(123\) 0 0
\(124\) 376.608i 0.272745i
\(125\) 125.000i 0.0894427i
\(126\) 0 0
\(127\) 1945.78i 1.35953i −0.733432 0.679763i \(-0.762083\pi\)
0.733432 0.679763i \(-0.237917\pi\)
\(128\) −128.000 −0.0883883
\(129\) 0 0
\(130\) −23.8543 −0.0160936
\(131\) 675.534i 0.450547i 0.974296 + 0.225274i \(0.0723276\pi\)
−0.974296 + 0.225274i \(0.927672\pi\)
\(132\) 0 0
\(133\) −395.195 1818.99i −0.257652 1.18592i
\(134\) 461.263i 0.297366i
\(135\) 0 0
\(136\) 239.259i 0.150855i
\(137\) 2939.09i 1.83287i 0.400181 + 0.916436i \(0.368947\pi\)
−0.400181 + 0.916436i \(0.631053\pi\)
\(138\) 0 0
\(139\) −1142.63 −0.697240 −0.348620 0.937264i \(-0.613350\pi\)
−0.348620 + 0.937264i \(0.613350\pi\)
\(140\) 449.517i 0.271365i
\(141\) 0 0
\(142\) −194.725 −0.115077
\(143\) −101.270 −0.0592212
\(144\) 0 0
\(145\) 1142.61i 0.654404i
\(146\) −1779.10 −1.00849
\(147\) 0 0
\(148\) 1302.82i 0.723590i
\(149\) 2696.61i 1.48265i −0.671146 0.741325i \(-0.734198\pi\)
0.671146 0.741325i \(-0.265802\pi\)
\(150\) 0 0
\(151\) 2865.80i 1.54447i 0.635336 + 0.772236i \(0.280862\pi\)
−0.635336 + 0.772236i \(0.719138\pi\)
\(152\) 140.665 + 647.448i 0.0750620 + 0.345493i
\(153\) 0 0
\(154\) 1908.36i 0.998572i
\(155\) 470.760 0.243950
\(156\) 0 0
\(157\) −689.498 −0.350497 −0.175248 0.984524i \(-0.556073\pi\)
−0.175248 + 0.984524i \(0.556073\pi\)
\(158\) 1864.01i 0.938559i
\(159\) 0 0
\(160\) 160.000i 0.0790569i
\(161\) 4495.43i 2.20056i
\(162\) 0 0
\(163\) 3641.25 1.74972 0.874861 0.484373i \(-0.160952\pi\)
0.874861 + 0.484373i \(0.160952\pi\)
\(164\) 964.065 0.459029
\(165\) 0 0
\(166\) 1037.90i 0.485279i
\(167\) 1039.34 0.481595 0.240797 0.970575i \(-0.422591\pi\)
0.240797 + 0.970575i \(0.422591\pi\)
\(168\) 0 0
\(169\) 2191.31 0.997410
\(170\) 299.073 0.134929
\(171\) 0 0
\(172\) 236.465 0.104827
\(173\) 4156.02 1.82645 0.913227 0.407451i \(-0.133582\pi\)
0.913227 + 0.407451i \(0.133582\pi\)
\(174\) 0 0
\(175\) −561.896 −0.242716
\(176\) 679.257i 0.290914i
\(177\) 0 0
\(178\) −609.982 −0.256855
\(179\) −2417.06 −1.00927 −0.504635 0.863333i \(-0.668373\pi\)
−0.504635 + 0.863333i \(0.668373\pi\)
\(180\) 0 0
\(181\) 1971.67i 0.809684i −0.914387 0.404842i \(-0.867326\pi\)
0.914387 0.404842i \(-0.132674\pi\)
\(182\) 107.229i 0.0436723i
\(183\) 0 0
\(184\) 1600.09i 0.641089i
\(185\) −1628.53 −0.647199
\(186\) 0 0
\(187\) 1269.67 0.496512
\(188\) 1365.62i 0.529777i
\(189\) 0 0
\(190\) −809.310 + 175.831i −0.309019 + 0.0671375i
\(191\) 533.346i 0.202050i 0.994884 + 0.101025i \(0.0322122\pi\)
−0.994884 + 0.101025i \(0.967788\pi\)
\(192\) 0 0
\(193\) 824.873i 0.307646i 0.988098 + 0.153823i \(0.0491586\pi\)
−0.988098 + 0.153823i \(0.950841\pi\)
\(194\) 903.668i 0.334431i
\(195\) 0 0
\(196\) 648.657 0.236391
\(197\) 2475.48i 0.895283i 0.894213 + 0.447641i \(0.147736\pi\)
−0.894213 + 0.447641i \(0.852264\pi\)
\(198\) 0 0
\(199\) 2963.14 1.05553 0.527767 0.849389i \(-0.323029\pi\)
0.527767 + 0.849389i \(0.323029\pi\)
\(200\) 200.000 0.0707107
\(201\) 0 0
\(202\) 531.133i 0.185002i
\(203\) −5136.22 −1.77582
\(204\) 0 0
\(205\) 1205.08i 0.410568i
\(206\) 1145.03i 0.387273i
\(207\) 0 0
\(208\) 38.1669i 0.0127231i
\(209\) −3435.81 + 746.465i −1.13713 + 0.247053i
\(210\) 0 0
\(211\) 4285.91i 1.39836i 0.714944 + 0.699181i \(0.246452\pi\)
−0.714944 + 0.699181i \(0.753548\pi\)
\(212\) −1309.70 −0.424294
\(213\) 0 0
\(214\) 1756.09 0.560951
\(215\) 295.581i 0.0937604i
\(216\) 0 0
\(217\) 2116.14i 0.661997i
\(218\) 900.210i 0.279679i
\(219\) 0 0
\(220\) 849.071 0.260202
\(221\) 71.3419 0.0217148
\(222\) 0 0
\(223\) 128.779i 0.0386711i −0.999813 0.0193356i \(-0.993845\pi\)
0.999813 0.0193356i \(-0.00615508\pi\)
\(224\) −719.227 −0.214533
\(225\) 0 0
\(226\) 196.588 0.0578622
\(227\) −2591.65 −0.757769 −0.378884 0.925444i \(-0.623692\pi\)
−0.378884 + 0.925444i \(0.623692\pi\)
\(228\) 0 0
\(229\) 2209.90 0.637705 0.318853 0.947804i \(-0.396703\pi\)
0.318853 + 0.947804i \(0.396703\pi\)
\(230\) 2000.12 0.573408
\(231\) 0 0
\(232\) 1828.17 0.517352
\(233\) 2329.46i 0.654970i 0.944856 + 0.327485i \(0.106201\pi\)
−0.944856 + 0.327485i \(0.893799\pi\)
\(234\) 0 0
\(235\) −1707.03 −0.473847
\(236\) 80.3246 0.0221554
\(237\) 0 0
\(238\) 1344.39i 0.366150i
\(239\) 1301.18i 0.352161i 0.984376 + 0.176080i \(0.0563418\pi\)
−0.984376 + 0.176080i \(0.943658\pi\)
\(240\) 0 0
\(241\) 1772.29i 0.473708i −0.971545 0.236854i \(-0.923884\pi\)
0.971545 0.236854i \(-0.0761162\pi\)
\(242\) 942.611 0.250386
\(243\) 0 0
\(244\) 2284.46 0.599376
\(245\) 810.821i 0.211434i
\(246\) 0 0
\(247\) −193.056 + 41.9433i −0.0497321 + 0.0108048i
\(248\) 753.215i 0.192860i
\(249\) 0 0
\(250\) 250.000i 0.0632456i
\(251\) 830.188i 0.208769i −0.994537 0.104385i \(-0.966713\pi\)
0.994537 0.104385i \(-0.0332873\pi\)
\(252\) 0 0
\(253\) 8491.21 2.11003
\(254\) 3891.55i 0.961329i
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 3792.51 0.920508 0.460254 0.887787i \(-0.347758\pi\)
0.460254 + 0.887787i \(0.347758\pi\)
\(258\) 0 0
\(259\) 7320.51i 1.75627i
\(260\) 47.7086 0.0113799
\(261\) 0 0
\(262\) 1351.07i 0.318585i
\(263\) 1337.84i 0.313669i 0.987625 + 0.156835i \(0.0501290\pi\)
−0.987625 + 0.156835i \(0.949871\pi\)
\(264\) 0 0
\(265\) 1637.12i 0.379500i
\(266\) 790.390 + 3637.99i 0.182188 + 0.838569i
\(267\) 0 0
\(268\) 922.526i 0.210270i
\(269\) 584.117 0.132395 0.0661975 0.997807i \(-0.478913\pi\)
0.0661975 + 0.997807i \(0.478913\pi\)
\(270\) 0 0
\(271\) 2899.39 0.649909 0.324955 0.945730i \(-0.394651\pi\)
0.324955 + 0.945730i \(0.394651\pi\)
\(272\) 478.517i 0.106671i
\(273\) 0 0
\(274\) 5878.18i 1.29604i
\(275\) 1061.34i 0.232732i
\(276\) 0 0
\(277\) −3606.86 −0.782366 −0.391183 0.920313i \(-0.627934\pi\)
−0.391183 + 0.920313i \(0.627934\pi\)
\(278\) 2285.25 0.493023
\(279\) 0 0
\(280\) 899.034i 0.191884i
\(281\) 3157.73 0.670370 0.335185 0.942152i \(-0.391201\pi\)
0.335185 + 0.942152i \(0.391201\pi\)
\(282\) 0 0
\(283\) −3538.83 −0.743328 −0.371664 0.928367i \(-0.621213\pi\)
−0.371664 + 0.928367i \(0.621213\pi\)
\(284\) 389.451 0.0813720
\(285\) 0 0
\(286\) 202.540 0.0418757
\(287\) 5417.05 1.11414
\(288\) 0 0
\(289\) 4018.55 0.817942
\(290\) 2285.22i 0.462733i
\(291\) 0 0
\(292\) 3558.21 0.713111
\(293\) −3466.47 −0.691172 −0.345586 0.938387i \(-0.612320\pi\)
−0.345586 + 0.938387i \(0.612320\pi\)
\(294\) 0 0
\(295\) 100.406i 0.0198164i
\(296\) 2605.64i 0.511655i
\(297\) 0 0
\(298\) 5393.22i 1.04839i
\(299\) 477.114 0.0922817
\(300\) 0 0
\(301\) 1328.69 0.254433
\(302\) 5731.59i 1.09211i
\(303\) 0 0
\(304\) −281.330 1294.90i −0.0530768 0.244301i
\(305\) 2855.58i 0.536098i
\(306\) 0 0
\(307\) 6671.05i 1.24018i 0.784529 + 0.620092i \(0.212905\pi\)
−0.784529 + 0.620092i \(0.787095\pi\)
\(308\) 3816.72i 0.706097i
\(309\) 0 0
\(310\) −941.519 −0.172499
\(311\) 861.554i 0.157088i −0.996911 0.0785438i \(-0.974973\pi\)
0.996911 0.0785438i \(-0.0250271\pi\)
\(312\) 0 0
\(313\) 3303.29 0.596528 0.298264 0.954483i \(-0.403592\pi\)
0.298264 + 0.954483i \(0.403592\pi\)
\(314\) 1379.00 0.247838
\(315\) 0 0
\(316\) 3728.01i 0.663661i
\(317\) 1675.68 0.296895 0.148448 0.988920i \(-0.452572\pi\)
0.148448 + 0.988920i \(0.452572\pi\)
\(318\) 0 0
\(319\) 9701.57i 1.70277i
\(320\) 320.000i 0.0559017i
\(321\) 0 0
\(322\) 8990.87i 1.55603i
\(323\) 2420.43 525.864i 0.416955 0.0905877i
\(324\) 0 0
\(325\) 59.6358i 0.0101785i
\(326\) −7282.50 −1.23724
\(327\) 0 0
\(328\) −1928.13 −0.324583
\(329\) 7673.37i 1.28586i
\(330\) 0 0
\(331\) 373.893i 0.0620876i −0.999518 0.0310438i \(-0.990117\pi\)
0.999518 0.0310438i \(-0.00988314\pi\)
\(332\) 2075.79i 0.343144i
\(333\) 0 0
\(334\) −2078.67 −0.340539
\(335\) −1153.16 −0.188071
\(336\) 0 0
\(337\) 7012.92i 1.13359i 0.823861 + 0.566793i \(0.191816\pi\)
−0.823861 + 0.566793i \(0.808184\pi\)
\(338\) −4382.62 −0.705275
\(339\) 0 0
\(340\) −598.147 −0.0954090
\(341\) −3997.08 −0.634763
\(342\) 0 0
\(343\) −4064.44 −0.639823
\(344\) −472.930 −0.0741241
\(345\) 0 0
\(346\) −8312.05 −1.29150
\(347\) 7327.96i 1.13368i 0.823829 + 0.566838i \(0.191833\pi\)
−0.823829 + 0.566838i \(0.808167\pi\)
\(348\) 0 0
\(349\) −8323.44 −1.27663 −0.638315 0.769776i \(-0.720368\pi\)
−0.638315 + 0.769776i \(0.720368\pi\)
\(350\) 1123.79 0.171626
\(351\) 0 0
\(352\) 1358.51i 0.205708i
\(353\) 2261.55i 0.340992i −0.985358 0.170496i \(-0.945463\pi\)
0.985358 0.170496i \(-0.0545370\pi\)
\(354\) 0 0
\(355\) 486.814i 0.0727813i
\(356\) 1219.96 0.181624
\(357\) 0 0
\(358\) 4834.12 0.713662
\(359\) 4750.84i 0.698439i 0.937041 + 0.349220i \(0.113553\pi\)
−0.937041 + 0.349220i \(0.886447\pi\)
\(360\) 0 0
\(361\) −6240.67 + 2846.04i −0.909851 + 0.414935i
\(362\) 3943.33i 0.572533i
\(363\) 0 0
\(364\) 214.459i 0.0308810i
\(365\) 4447.76i 0.637825i
\(366\) 0 0
\(367\) 9673.76 1.37593 0.687965 0.725744i \(-0.258504\pi\)
0.687965 + 0.725744i \(0.258504\pi\)
\(368\) 3200.19i 0.453319i
\(369\) 0 0
\(370\) 3257.06 0.457638
\(371\) −7359.13 −1.02983
\(372\) 0 0
\(373\) 6848.65i 0.950697i 0.879798 + 0.475348i \(0.157678\pi\)
−0.879798 + 0.475348i \(0.842322\pi\)
\(374\) −2539.35 −0.351087
\(375\) 0 0
\(376\) 2731.24i 0.374609i
\(377\) 545.123i 0.0744702i
\(378\) 0 0
\(379\) 9697.05i 1.31426i 0.753778 + 0.657129i \(0.228229\pi\)
−0.753778 + 0.657129i \(0.771771\pi\)
\(380\) 1618.62 351.662i 0.218509 0.0474734i
\(381\) 0 0
\(382\) 1066.69i 0.142871i
\(383\) 13738.5 1.83292 0.916458 0.400132i \(-0.131036\pi\)
0.916458 + 0.400132i \(0.131036\pi\)
\(384\) 0 0
\(385\) 4770.90 0.631552
\(386\) 1649.75i 0.217539i
\(387\) 0 0
\(388\) 1807.34i 0.236478i
\(389\) 5890.69i 0.767789i −0.923377 0.383894i \(-0.874583\pi\)
0.923377 0.383894i \(-0.125417\pi\)
\(390\) 0 0
\(391\) −5981.82 −0.773692
\(392\) −1297.31 −0.167154
\(393\) 0 0
\(394\) 4950.96i 0.633060i
\(395\) −4660.01 −0.593597
\(396\) 0 0
\(397\) −3831.67 −0.484398 −0.242199 0.970227i \(-0.577869\pi\)
−0.242199 + 0.970227i \(0.577869\pi\)
\(398\) −5926.28 −0.746376
\(399\) 0 0
\(400\) −400.000 −0.0500000
\(401\) 11464.7 1.42773 0.713867 0.700282i \(-0.246942\pi\)
0.713867 + 0.700282i \(0.246942\pi\)
\(402\) 0 0
\(403\) −224.593 −0.0277612
\(404\) 1062.27i 0.130816i
\(405\) 0 0
\(406\) 10272.4 1.25570
\(407\) 13827.4 1.68402
\(408\) 0 0
\(409\) 8708.80i 1.05287i −0.850216 0.526433i \(-0.823529\pi\)
0.850216 0.526433i \(-0.176471\pi\)
\(410\) 2410.16i 0.290316i
\(411\) 0 0
\(412\) 2290.07i 0.273844i
\(413\) 451.341 0.0537749
\(414\) 0 0
\(415\) −2594.74 −0.306917
\(416\) 76.3338i 0.00899657i
\(417\) 0 0
\(418\) 6871.62 1492.93i 0.804072 0.174693i
\(419\) 5333.99i 0.621915i 0.950424 + 0.310957i \(0.100650\pi\)
−0.950424 + 0.310957i \(0.899350\pi\)
\(420\) 0 0
\(421\) 9410.70i 1.08943i 0.838622 + 0.544715i \(0.183362\pi\)
−0.838622 + 0.544715i \(0.816638\pi\)
\(422\) 8571.83i 0.988792i
\(423\) 0 0
\(424\) 2619.39 0.300021
\(425\) 747.683i 0.0853364i
\(426\) 0 0
\(427\) 12836.3 1.45478
\(428\) −3512.17 −0.396653
\(429\) 0 0
\(430\) 591.163i 0.0662986i
\(431\) 5216.40 0.582982 0.291491 0.956574i \(-0.405849\pi\)
0.291491 + 0.956574i \(0.405849\pi\)
\(432\) 0 0
\(433\) 12148.2i 1.34828i 0.738603 + 0.674141i \(0.235486\pi\)
−0.738603 + 0.674141i \(0.764514\pi\)
\(434\) 4232.29i 0.468102i
\(435\) 0 0
\(436\) 1800.42i 0.197763i
\(437\) 16187.2 3516.82i 1.77194 0.384971i
\(438\) 0 0
\(439\) 5737.96i 0.623822i 0.950111 + 0.311911i \(0.100969\pi\)
−0.950111 + 0.311911i \(0.899031\pi\)
\(440\) −1698.14 −0.183990
\(441\) 0 0
\(442\) −142.684 −0.0153547
\(443\) 1622.04i 0.173963i −0.996210 0.0869816i \(-0.972278\pi\)
0.996210 0.0869816i \(-0.0277221\pi\)
\(444\) 0 0
\(445\) 1524.96i 0.162449i
\(446\) 257.557i 0.0273446i
\(447\) 0 0
\(448\) 1438.45 0.151698
\(449\) −17823.7 −1.87339 −0.936693 0.350152i \(-0.886130\pi\)
−0.936693 + 0.350152i \(0.886130\pi\)
\(450\) 0 0
\(451\) 10232.0i 1.06831i
\(452\) −393.177 −0.0409148
\(453\) 0 0
\(454\) 5183.29 0.535824
\(455\) 268.073 0.0276208
\(456\) 0 0
\(457\) 4786.20 0.489911 0.244955 0.969534i \(-0.421227\pi\)
0.244955 + 0.969534i \(0.421227\pi\)
\(458\) −4419.81 −0.450926
\(459\) 0 0
\(460\) −4000.23 −0.405460
\(461\) 5467.18i 0.552347i 0.961108 + 0.276173i \(0.0890664\pi\)
−0.961108 + 0.276173i \(0.910934\pi\)
\(462\) 0 0
\(463\) −1702.99 −0.170939 −0.0854695 0.996341i \(-0.527239\pi\)
−0.0854695 + 0.996341i \(0.527239\pi\)
\(464\) −3656.35 −0.365823
\(465\) 0 0
\(466\) 4658.92i 0.463134i
\(467\) 4063.14i 0.402612i 0.979528 + 0.201306i \(0.0645186\pi\)
−0.979528 + 0.201306i \(0.935481\pi\)
\(468\) 0 0
\(469\) 5183.64i 0.510359i
\(470\) 3414.05 0.335060
\(471\) 0 0
\(472\) −160.649 −0.0156663
\(473\) 2509.70i 0.243966i
\(474\) 0 0
\(475\) 439.577 + 2023.28i 0.0424615 + 0.195441i
\(476\) 2688.77i 0.258907i
\(477\) 0 0
\(478\) 2602.36i 0.249015i
\(479\) 19517.8i 1.86177i 0.365307 + 0.930887i \(0.380964\pi\)
−0.365307 + 0.930887i \(0.619036\pi\)
\(480\) 0 0
\(481\) 776.948 0.0736503
\(482\) 3544.59i 0.334962i
\(483\) 0 0
\(484\) −1885.22 −0.177049
\(485\) 2259.17 0.211513
\(486\) 0 0
\(487\) 3339.95i 0.310775i 0.987854 + 0.155388i \(0.0496626\pi\)
−0.987854 + 0.155388i \(0.950337\pi\)
\(488\) −4568.92 −0.423822
\(489\) 0 0
\(490\) 1621.64i 0.149507i
\(491\) 4937.72i 0.453842i −0.973913 0.226921i \(-0.927134\pi\)
0.973913 0.226921i \(-0.0728659\pi\)
\(492\) 0 0
\(493\) 6834.48i 0.624360i
\(494\) 386.111 83.8866i 0.0351659 0.00764015i
\(495\) 0 0
\(496\) 1506.43i 0.136372i
\(497\) 2188.31 0.197503
\(498\) 0 0
\(499\) −17209.5 −1.54389 −0.771946 0.635688i \(-0.780716\pi\)
−0.771946 + 0.635688i \(0.780716\pi\)
\(500\) 500.000i 0.0447214i
\(501\) 0 0
\(502\) 1660.38i 0.147622i
\(503\) 10473.6i 0.928418i −0.885726 0.464209i \(-0.846339\pi\)
0.885726 0.464209i \(-0.153661\pi\)
\(504\) 0 0
\(505\) −1327.83 −0.117006
\(506\) −16982.4 −1.49202
\(507\) 0 0
\(508\) 7783.10i 0.679763i
\(509\) 2031.80 0.176931 0.0884657 0.996079i \(-0.471804\pi\)
0.0884657 + 0.996079i \(0.471804\pi\)
\(510\) 0 0
\(511\) 19993.4 1.73084
\(512\) −512.000 −0.0441942
\(513\) 0 0
\(514\) −7585.03 −0.650897
\(515\) 2862.59 0.244933
\(516\) 0 0
\(517\) 14493.9 1.23296
\(518\) 14641.0i 1.24187i
\(519\) 0 0
\(520\) −95.4173 −0.00804678
\(521\) 12633.1 1.06232 0.531159 0.847272i \(-0.321757\pi\)
0.531159 + 0.847272i \(0.321757\pi\)
\(522\) 0 0
\(523\) 3942.96i 0.329663i −0.986322 0.164831i \(-0.947292\pi\)
0.986322 0.164831i \(-0.0527080\pi\)
\(524\) 2702.14i 0.225274i
\(525\) 0 0
\(526\) 2675.69i 0.221798i
\(527\) 2815.83 0.232751
\(528\) 0 0
\(529\) −27837.7 −2.28796
\(530\) 3274.24i 0.268347i
\(531\) 0 0
\(532\) −1580.78 7275.98i −0.128826 0.592958i
\(533\) 574.928i 0.0467221i
\(534\) 0 0
\(535\) 4390.22i 0.354777i
\(536\) 1845.05i 0.148683i
\(537\) 0 0
\(538\) −1168.23 −0.0936174
\(539\) 6884.45i 0.550156i
\(540\) 0 0
\(541\) −9920.35 −0.788372 −0.394186 0.919031i \(-0.628973\pi\)
−0.394186 + 0.919031i \(0.628973\pi\)
\(542\) −5798.78 −0.459555
\(543\) 0 0
\(544\) 957.035i 0.0754274i
\(545\) 2250.53 0.176884
\(546\) 0 0
\(547\) 6562.70i 0.512982i 0.966547 + 0.256491i \(0.0825664\pi\)
−0.966547 + 0.256491i \(0.917434\pi\)
\(548\) 11756.4i 0.916436i
\(549\) 0 0
\(550\) 2122.68i 0.164566i
\(551\) 4018.12 + 18494.5i 0.310667 + 1.42993i
\(552\) 0 0
\(553\) 20947.6i 1.61082i
\(554\) 7213.73 0.553217
\(555\) 0 0
\(556\) −4570.51 −0.348620
\(557\) 4222.81i 0.321232i 0.987017 + 0.160616i \(0.0513480\pi\)
−0.987017 + 0.160616i \(0.948652\pi\)
\(558\) 0 0
\(559\) 141.018i 0.0106698i
\(560\) 1798.07i 0.135683i
\(561\) 0 0
\(562\) −6315.45 −0.474023
\(563\) −3323.03 −0.248755 −0.124377 0.992235i \(-0.539693\pi\)
−0.124377 + 0.992235i \(0.539693\pi\)
\(564\) 0 0
\(565\) 491.471i 0.0365953i
\(566\) 7077.66 0.525612
\(567\) 0 0
\(568\) −778.902 −0.0575387
\(569\) −20572.3 −1.51570 −0.757852 0.652427i \(-0.773751\pi\)
−0.757852 + 0.652427i \(0.773751\pi\)
\(570\) 0 0
\(571\) 6592.85 0.483191 0.241596 0.970377i \(-0.422329\pi\)
0.241596 + 0.970377i \(0.422329\pi\)
\(572\) −405.080 −0.0296106
\(573\) 0 0
\(574\) −10834.1 −0.787816
\(575\) 5000.29i 0.362655i
\(576\) 0 0
\(577\) 4473.99 0.322799 0.161399 0.986889i \(-0.448399\pi\)
0.161399 + 0.986889i \(0.448399\pi\)
\(578\) −8037.10 −0.578373
\(579\) 0 0
\(580\) 4570.44i 0.327202i
\(581\) 11663.8i 0.832867i
\(582\) 0 0
\(583\) 13900.3i 0.987465i
\(584\) −7116.41 −0.504245
\(585\) 0 0
\(586\) 6932.94 0.488732
\(587\) 8353.93i 0.587399i −0.955898 0.293700i \(-0.905113\pi\)
0.955898 0.293700i \(-0.0948866\pi\)
\(588\) 0 0
\(589\) −7619.81 + 1655.48i −0.533054 + 0.115811i
\(590\) 200.811i 0.0140123i
\(591\) 0 0
\(592\) 5211.29i 0.361795i
\(593\) 18308.0i 1.26782i −0.773406 0.633911i \(-0.781449\pi\)
0.773406 0.633911i \(-0.218551\pi\)
\(594\) 0 0
\(595\) −3360.97 −0.231573
\(596\) 10786.4i 0.741325i
\(597\) 0 0
\(598\) −954.228 −0.0652530
\(599\) 21546.2 1.46971 0.734853 0.678226i \(-0.237251\pi\)
0.734853 + 0.678226i \(0.237251\pi\)
\(600\) 0 0
\(601\) 316.494i 0.0214810i −0.999942 0.0107405i \(-0.996581\pi\)
0.999942 0.0107405i \(-0.00341887\pi\)
\(602\) −2657.38 −0.179911
\(603\) 0 0
\(604\) 11463.2i 0.772236i
\(605\) 2356.53i 0.158358i
\(606\) 0 0
\(607\) 20223.3i 1.35229i −0.736769 0.676144i \(-0.763650\pi\)
0.736769 0.676144i \(-0.236350\pi\)
\(608\) 562.659 + 2589.79i 0.0375310 + 0.172747i
\(609\) 0 0
\(610\) 5711.15i 0.379078i
\(611\) 814.399 0.0539231
\(612\) 0 0
\(613\) −3531.01 −0.232653 −0.116327 0.993211i \(-0.537112\pi\)
−0.116327 + 0.993211i \(0.537112\pi\)
\(614\) 13342.1i 0.876943i
\(615\) 0 0
\(616\) 7633.44i 0.499286i
\(617\) 23322.1i 1.52174i −0.648906 0.760868i \(-0.724773\pi\)
0.648906 0.760868i \(-0.275227\pi\)
\(618\) 0 0
\(619\) −22505.5 −1.46134 −0.730672 0.682728i \(-0.760793\pi\)
−0.730672 + 0.682728i \(0.760793\pi\)
\(620\) 1883.04 0.121975
\(621\) 0 0
\(622\) 1723.11i 0.111078i
\(623\) 6854.94 0.440830
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) −6606.59 −0.421809
\(627\) 0 0
\(628\) −2757.99 −0.175248
\(629\) −9740.98 −0.617486
\(630\) 0 0
\(631\) −10839.7 −0.683868 −0.341934 0.939724i \(-0.611082\pi\)
−0.341934 + 0.939724i \(0.611082\pi\)
\(632\) 7456.02i 0.469279i
\(633\) 0 0
\(634\) −3351.37 −0.209937
\(635\) 9728.88 0.607998
\(636\) 0 0
\(637\) 386.832i 0.0240610i
\(638\) 19403.1i 1.20404i
\(639\) 0 0
\(640\) 640.000i 0.0395285i
\(641\) 23380.1 1.44065 0.720325 0.693636i \(-0.243992\pi\)
0.720325 + 0.693636i \(0.243992\pi\)
\(642\) 0 0
\(643\) −16998.5 −1.04255 −0.521273 0.853390i \(-0.674543\pi\)
−0.521273 + 0.853390i \(0.674543\pi\)
\(644\) 17981.7i 1.10028i
\(645\) 0 0
\(646\) −4840.86 + 1051.73i −0.294832 + 0.0640552i
\(647\) 30776.4i 1.87009i −0.354536 0.935043i \(-0.615361\pi\)
0.354536 0.935043i \(-0.384639\pi\)
\(648\) 0 0
\(649\) 852.516i 0.0515627i
\(650\) 119.272i 0.00719726i
\(651\) 0 0
\(652\) 14565.0 0.874861
\(653\) 17565.5i 1.05267i 0.850279 + 0.526333i \(0.176433\pi\)
−0.850279 + 0.526333i \(0.823567\pi\)
\(654\) 0 0
\(655\) −3377.67 −0.201491
\(656\) 3856.26 0.229515
\(657\) 0 0
\(658\) 15346.7i 0.909237i
\(659\) −11056.4 −0.653560 −0.326780 0.945100i \(-0.605964\pi\)
−0.326780 + 0.945100i \(0.605964\pi\)
\(660\) 0 0
\(661\) 17060.3i 1.00389i 0.864900 + 0.501944i \(0.167382\pi\)
−0.864900 + 0.501944i \(0.832618\pi\)
\(662\) 747.785i 0.0439026i
\(663\) 0 0
\(664\) 4151.58i 0.242640i
\(665\) 9094.97 1975.98i 0.530358 0.115226i
\(666\) 0 0
\(667\) 45707.0i 2.65335i
\(668\) 4157.35 0.240797
\(669\) 0 0
\(670\) 2306.32 0.132986
\(671\) 24245.9i 1.39494i
\(672\) 0 0
\(673\) 16848.9i 0.965046i 0.875883 + 0.482523i \(0.160280\pi\)
−0.875883 + 0.482523i \(0.839720\pi\)
\(674\) 14025.8i 0.801566i
\(675\) 0 0
\(676\) 8765.24 0.498705
\(677\) −26123.6 −1.48303 −0.741514 0.670937i \(-0.765892\pi\)
−0.741514 + 0.670937i \(0.765892\pi\)
\(678\) 0 0
\(679\) 10155.4i 0.573972i
\(680\) 1196.29 0.0674644
\(681\) 0 0
\(682\) 7994.17 0.448845
\(683\) −24701.4 −1.38385 −0.691927 0.721967i \(-0.743238\pi\)
−0.691927 + 0.721967i \(0.743238\pi\)
\(684\) 0 0
\(685\) −14695.5 −0.819685
\(686\) 8128.88 0.452423
\(687\) 0 0
\(688\) 945.861 0.0524137
\(689\) 781.048i 0.0431866i
\(690\) 0 0
\(691\) 3254.24 0.179156 0.0895781 0.995980i \(-0.471448\pi\)
0.0895781 + 0.995980i \(0.471448\pi\)
\(692\) 16624.1 0.913227
\(693\) 0 0
\(694\) 14655.9i 0.801630i
\(695\) 5713.13i 0.311815i
\(696\) 0 0
\(697\) 7208.15i 0.391719i
\(698\) 16646.9 0.902713
\(699\) 0 0
\(700\) −2247.59 −0.121358
\(701\) 23601.1i 1.27161i −0.771849 0.635806i \(-0.780668\pi\)
0.771849 0.635806i \(-0.219332\pi\)
\(702\) 0 0
\(703\) 26359.7 5726.91i 1.41419 0.307247i
\(704\) 2717.03i 0.145457i
\(705\) 0 0
\(706\) 4523.10i 0.241118i
\(707\) 5968.84i 0.317512i
\(708\) 0 0
\(709\) −3542.29 −0.187635 −0.0938176 0.995589i \(-0.529907\pi\)
−0.0938176 + 0.995589i \(0.529907\pi\)
\(710\) 973.627i 0.0514642i
\(711\) 0 0
\(712\) −2439.93 −0.128427
\(713\) 18831.5 0.989123
\(714\) 0 0
\(715\) 506.351i 0.0264845i
\(716\) −9668.24 −0.504635
\(717\) 0 0
\(718\) 9501.68i 0.493871i
\(719\) 34404.2i 1.78451i −0.451536 0.892253i \(-0.649124\pi\)
0.451536 0.892253i \(-0.350876\pi\)
\(720\) 0 0
\(721\) 12867.8i 0.664664i
\(722\) 12481.3 5692.07i 0.643362 0.293403i
\(723\) 0 0
\(724\) 7886.67i 0.404842i
\(725\) 5713.05 0.292658
\(726\) 0 0
\(727\) −26173.7 −1.33525 −0.667626 0.744497i \(-0.732689\pi\)
−0.667626 + 0.744497i \(0.732689\pi\)
\(728\) 428.917i 0.0218362i
\(729\) 0 0
\(730\) 8895.52i 0.451011i
\(731\) 1768.01i 0.0894559i
\(732\) 0 0
\(733\) 30180.2 1.52078 0.760391 0.649466i \(-0.225007\pi\)
0.760391 + 0.649466i \(0.225007\pi\)
\(734\) −19347.5 −0.972929
\(735\) 0 0
\(736\) 6400.37i 0.320545i
\(737\) 9791.13 0.489364
\(738\) 0 0
\(739\) −28512.5 −1.41928 −0.709641 0.704563i \(-0.751143\pi\)
−0.709641 + 0.704563i \(0.751143\pi\)
\(740\) −6514.11 −0.323599
\(741\) 0 0
\(742\) 14718.3 0.728200
\(743\) −27376.4 −1.35174 −0.675871 0.737020i \(-0.736232\pi\)
−0.675871 + 0.737020i \(0.736232\pi\)
\(744\) 0 0
\(745\) 13483.0 0.663061
\(746\) 13697.3i 0.672244i
\(747\) 0 0
\(748\) 5078.69 0.248256
\(749\) −19734.8 −0.962741
\(750\) 0 0
\(751\) 17264.9i 0.838889i −0.907781 0.419445i \(-0.862225\pi\)
0.907781 0.419445i \(-0.137775\pi\)
\(752\) 5462.48i 0.264889i
\(753\) 0 0
\(754\) 1090.25i 0.0526584i
\(755\) −14329.0 −0.690709
\(756\) 0 0
\(757\) 612.504 0.0294080 0.0147040 0.999892i \(-0.495319\pi\)
0.0147040 + 0.999892i \(0.495319\pi\)
\(758\) 19394.1i 0.929321i
\(759\) 0 0
\(760\) −3237.24 + 703.324i −0.154509 + 0.0335687i
\(761\) 38634.7i 1.84035i −0.391505 0.920176i \(-0.628046\pi\)
0.391505 0.920176i \(-0.371954\pi\)
\(762\) 0 0
\(763\) 10116.5i 0.480002i
\(764\) 2133.39i 0.101025i
\(765\) 0 0
\(766\) −27477.1 −1.29607
\(767\) 47.9022i 0.00225508i
\(768\) 0 0
\(769\) −25600.5 −1.20049 −0.600246 0.799815i \(-0.704931\pi\)
−0.600246 + 0.799815i \(0.704931\pi\)
\(770\) −9541.80 −0.446575
\(771\) 0 0
\(772\) 3299.49i 0.153823i
\(773\) −5903.06 −0.274668 −0.137334 0.990525i \(-0.543853\pi\)
−0.137334 + 0.990525i \(0.543853\pi\)
\(774\) 0 0
\(775\) 2353.80i 0.109098i
\(776\) 3614.67i 0.167215i
\(777\) 0 0
\(778\) 11781.4i 0.542909i
\(779\) −4237.81 19505.7i −0.194911 0.897130i
\(780\) 0 0
\(781\) 4133.39i 0.189378i
\(782\) 11963.6 0.547083
\(783\) 0 0
\(784\) 2594.63 0.118195
\(785\) 3447.49i 0.156747i
\(786\) 0 0
\(787\) 23987.9i 1.08650i −0.839571 0.543250i \(-0.817194\pi\)
0.839571 0.543250i \(-0.182806\pi\)
\(788\) 9901.92i 0.447641i
\(789\) 0 0
\(790\) 9320.03 0.419736
\(791\) −2209.25 −0.0993069
\(792\) 0 0
\(793\) 1362.36i 0.0610072i
\(794\) 7663.34 0.342521
\(795\) 0 0
\(796\) 11852.6 0.527767
\(797\) 35133.4 1.56147 0.780733 0.624865i \(-0.214846\pi\)
0.780733 + 0.624865i \(0.214846\pi\)
\(798\) 0 0
\(799\) −10210.5 −0.452093
\(800\) 800.000 0.0353553
\(801\) 0 0
\(802\) −22929.5 −1.00956
\(803\) 37764.6i 1.65963i
\(804\) 0 0
\(805\) −22477.2 −0.984119
\(806\) 449.186 0.0196302
\(807\) 0 0
\(808\) 2124.53i 0.0925010i
\(809\) 20827.9i 0.905156i 0.891725 + 0.452578i \(0.149496\pi\)
−0.891725 + 0.452578i \(0.850504\pi\)
\(810\) 0 0
\(811\) 26513.2i 1.14797i 0.818865 + 0.573986i \(0.194604\pi\)
−0.818865 + 0.573986i \(0.805396\pi\)
\(812\) −20544.9 −0.887912
\(813\) 0 0
\(814\) −27654.7 −1.19078
\(815\) 18206.3i 0.782500i
\(816\) 0 0
\(817\) −1039.45 4784.34i −0.0445112 0.204875i
\(818\) 17417.6i 0.744489i
\(819\) 0 0
\(820\) 4820.32i 0.205284i
\(821\) 17644.1i 0.750039i −0.927017 0.375019i \(-0.877636\pi\)
0.927017 0.375019i \(-0.122364\pi\)
\(822\) 0 0
\(823\) 11304.5 0.478797 0.239398 0.970921i \(-0.423050\pi\)
0.239398 + 0.970921i \(0.423050\pi\)
\(824\) 4580.14i 0.193637i
\(825\) 0 0
\(826\) −902.682 −0.0380246
\(827\) −11918.6 −0.501150 −0.250575 0.968097i \(-0.580620\pi\)
−0.250575 + 0.968097i \(0.580620\pi\)
\(828\) 0 0
\(829\) 1394.07i 0.0584056i −0.999574 0.0292028i \(-0.990703\pi\)
0.999574 0.0292028i \(-0.00929686\pi\)
\(830\) 5189.48 0.217023
\(831\) 0 0
\(832\) 152.668i 0.00636154i
\(833\) 4849.90i 0.201728i
\(834\) 0 0
\(835\) 5196.68i 0.215376i
\(836\) −13743.2 + 2985.86i −0.568565 + 0.123527i
\(837\) 0 0
\(838\) 10668.0i 0.439760i
\(839\) 17.1301 0.000704884 0.000352442 1.00000i \(-0.499888\pi\)
0.000352442 1.00000i \(0.499888\pi\)
\(840\) 0 0
\(841\) 27833.2 1.14122
\(842\) 18821.4i 0.770343i
\(843\) 0 0
\(844\) 17143.7i 0.699181i
\(845\) 10956.5i 0.446055i
\(846\) 0 0
\(847\) −10593.0 −0.429728
\(848\) −5238.78 −0.212147
\(849\) 0 0
\(850\) 1495.37i 0.0603419i
\(851\) −65144.9 −2.62413
\(852\) 0 0
\(853\) 3452.91 0.138599 0.0692997 0.997596i \(-0.477924\pi\)
0.0692997 + 0.997596i \(0.477924\pi\)
\(854\) −25672.6 −1.02869
\(855\) 0 0
\(856\) 7024.35 0.280476
\(857\) 46709.0 1.86178 0.930892 0.365295i \(-0.119032\pi\)
0.930892 + 0.365295i \(0.119032\pi\)
\(858\) 0 0
\(859\) 38063.0 1.51187 0.755933 0.654649i \(-0.227183\pi\)
0.755933 + 0.654649i \(0.227183\pi\)
\(860\) 1182.33i 0.0468802i
\(861\) 0 0
\(862\) −10432.8 −0.412230
\(863\) 7848.64 0.309584 0.154792 0.987947i \(-0.450529\pi\)
0.154792 + 0.987947i \(0.450529\pi\)
\(864\) 0 0
\(865\) 20780.1i 0.816815i
\(866\) 24296.4i 0.953380i
\(867\) 0 0
\(868\) 8464.58i 0.330998i
\(869\) 39566.8 1.54455
\(870\) 0 0
\(871\) 550.156 0.0214022
\(872\) 3600.84i 0.139839i
\(873\) 0 0
\(874\) −32374.3 + 7033.65i −1.25295 + 0.272216i
\(875\) 2809.48i 0.108546i
\(876\) 0 0
\(877\) 45942.0i 1.76893i 0.466606 + 0.884465i \(0.345477\pi\)
−0.466606 + 0.884465i \(0.654523\pi\)
\(878\) 11475.9i 0.441109i
\(879\) 0 0
\(880\) 3396.29 0.130101
\(881\) 9920.82i 0.379388i −0.981843 0.189694i \(-0.939250\pi\)
0.981843 0.189694i \(-0.0607496\pi\)
\(882\) 0 0
\(883\) 34368.3 1.30984 0.654918 0.755700i \(-0.272703\pi\)
0.654918 + 0.755700i \(0.272703\pi\)
\(884\) 285.368 0.0108574
\(885\) 0 0
\(886\) 3244.09i 0.123010i
\(887\) 41880.5 1.58535 0.792677 0.609642i \(-0.208687\pi\)
0.792677 + 0.609642i \(0.208687\pi\)
\(888\) 0 0
\(889\) 43733.0i 1.64990i
\(890\) 3049.91i 0.114869i
\(891\) 0 0
\(892\) 515.115i 0.0193356i
\(893\) 27630.3 6002.96i 1.03540 0.224951i
\(894\) 0 0
\(895\) 12085.3i 0.451360i
\(896\) −2876.91 −0.107267
\(897\) 0 0
\(898\) 35647.3 1.32468
\(899\) 21515.8i 0.798210i
\(900\) 0 0
\(901\) 9792.38i 0.362077i
\(902\) 20464.0i 0.755406i
\(903\) 0 0
\(904\) 786.353 0.0289311
\(905\) 9858.34 0.362102
\(906\) 0 0
\(907\) 49300.8i 1.80486i −0.430840 0.902428i \(-0.641783\pi\)
0.430840 0.902428i \(-0.358217\pi\)
\(908\) −10366.6 −0.378884
\(909\) 0 0
\(910\) −536.146 −0.0195309
\(911\) −29350.9 −1.06744 −0.533720 0.845661i \(-0.679207\pi\)
−0.533720 + 0.845661i \(0.679207\pi\)
\(912\) 0 0
\(913\) 22031.2 0.798605
\(914\) −9572.41 −0.346419
\(915\) 0 0
\(916\) 8839.61 0.318853
\(917\) 15183.2i 0.546776i
\(918\) 0 0
\(919\) −24760.2 −0.888751 −0.444376 0.895841i \(-0.646574\pi\)
−0.444376 + 0.895841i \(0.646574\pi\)
\(920\) 8000.47 0.286704
\(921\) 0 0
\(922\) 10934.4i 0.390568i
\(923\) 232.252i 0.00828242i
\(924\) 0 0
\(925\) 8142.64i 0.289436i
\(926\) 3405.98 0.120872
\(927\) 0 0
\(928\) 7312.70 0.258676
\(929\) 15223.8i 0.537651i 0.963189 + 0.268826i \(0.0866356\pi\)
−0.963189 + 0.268826i \(0.913364\pi\)
\(930\) 0 0
\(931\) −2851.35 13124.1i −0.100375 0.462004i
\(932\) 9317.85i 0.327485i
\(933\) 0 0
\(934\) 8126.28i 0.284690i
\(935\) 6348.37i 0.222047i
\(936\) 0 0
\(937\) −45560.8 −1.58848 −0.794241 0.607603i \(-0.792131\pi\)
−0.794241 + 0.607603i \(0.792131\pi\)
\(938\) 10367.3i 0.360878i
\(939\) 0 0
\(940\) −6828.10 −0.236923
\(941\) 47113.0 1.63214 0.816069 0.577955i \(-0.196149\pi\)
0.816069 + 0.577955i \(0.196149\pi\)
\(942\) 0 0
\(943\) 48206.0i 1.66469i
\(944\) 321.298 0.0110777
\(945\) 0 0
\(946\) 5019.40i 0.172510i
\(947\) 13466.3i 0.462086i 0.972944 + 0.231043i \(0.0742137\pi\)
−0.972944 + 0.231043i \(0.925786\pi\)
\(948\) 0 0
\(949\) 2121.96i 0.0725837i
\(950\) −879.155 4046.55i −0.0300248 0.138197i
\(951\) 0 0
\(952\) 5377.54i 0.183075i
\(953\) −53686.4 −1.82484 −0.912421 0.409253i \(-0.865789\pi\)
−0.912421 + 0.409253i \(0.865789\pi\)
\(954\) 0 0
\(955\) −2666.73 −0.0903596
\(956\) 5204.72i 0.176080i
\(957\) 0 0
\(958\) 39035.6i 1.31647i
\(959\) 66058.6i 2.22434i
\(960\) 0 0
\(961\) 20926.4 0.702441
\(962\) −1553.90 −0.0520786
\(963\) 0 0
\(964\) 7089.18i 0.236854i
\(965\) −4124.37 −0.137583
\(966\) 0 0
\(967\) −14565.1 −0.484367 −0.242184 0.970230i \(-0.577864\pi\)
−0.242184 + 0.970230i \(0.577864\pi\)
\(968\) 3770.45 0.125193
\(969\) 0 0
\(970\) −4518.34 −0.149562
\(971\) −18361.1 −0.606834 −0.303417 0.952858i \(-0.598128\pi\)
−0.303417 + 0.952858i \(0.598128\pi\)
\(972\) 0 0
\(973\) −25681.5 −0.846158
\(974\) 6679.90i 0.219751i
\(975\) 0 0
\(976\) 9137.84 0.299688
\(977\) 4120.05 0.134915 0.0674575 0.997722i \(-0.478511\pi\)
0.0674575 + 0.997722i \(0.478511\pi\)
\(978\) 0 0
\(979\) 12948.0i 0.422695i
\(980\) 3243.28i 0.105717i
\(981\) 0 0
\(982\) 9875.45i 0.320915i
\(983\) 11800.1 0.382874 0.191437 0.981505i \(-0.438685\pi\)
0.191437 + 0.981505i \(0.438685\pi\)
\(984\) 0 0
\(985\) −12377.4 −0.400383
\(986\) 13669.0i 0.441489i
\(987\) 0 0
\(988\) −772.222 + 167.773i −0.0248661 + 0.00540240i
\(989\) 11823.9i 0.380161i
\(990\) 0 0
\(991\) 19341.0i 0.619965i 0.950742 + 0.309983i \(0.100323\pi\)
−0.950742 + 0.309983i \(0.899677\pi\)
\(992\) 3012.86i 0.0964299i
\(993\) 0 0
\(994\) −4376.62 −0.139656
\(995\) 14815.7i 0.472049i
\(996\) 0 0
\(997\) −30687.7 −0.974813 −0.487407 0.873175i \(-0.662057\pi\)
−0.487407 + 0.873175i \(0.662057\pi\)
\(998\) 34419.0 1.09170
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1710.4.f.a.341.8 yes 40
3.2 odd 2 1710.4.f.b.341.7 yes 40
19.18 odd 2 1710.4.f.b.341.8 yes 40
57.56 even 2 inner 1710.4.f.a.341.7 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1710.4.f.a.341.7 40 57.56 even 2 inner
1710.4.f.a.341.8 yes 40 1.1 even 1 trivial
1710.4.f.b.341.7 yes 40 3.2 odd 2
1710.4.f.b.341.8 yes 40 19.18 odd 2