Properties

Label 1710.2.n.g.647.4
Level $1710$
Weight $2$
Character 1710.647
Analytic conductor $13.654$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1710,2,Mod(647,1710)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1710.647"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1710, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1710.n (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,8,0,-8,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.6544187456\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.110166016.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 10x^{6} + 19x^{4} + 10x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 647.4
Root \(-0.360409i\) of defining polynomial
Character \(\chi\) \(=\) 1710.647
Dual form 1710.2.n.g.1673.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{2} -1.00000i q^{4} +(0.292893 + 2.21680i) q^{5} +(-2.41421 - 2.41421i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(1.77462 + 1.36041i) q^{10} +5.41421i q^{11} +(4.43361 - 4.43361i) q^{13} -3.41421 q^{14} -1.00000 q^{16} +(1.20309 - 1.20309i) q^{17} -1.00000i q^{19} +(2.21680 - 0.292893i) q^{20} +(3.82843 + 3.82843i) q^{22} +(-0.904518 - 0.904518i) q^{23} +(-4.82843 + 1.29857i) q^{25} -6.27006i q^{26} +(-2.41421 + 2.41421i) q^{28} +8.86721 q^{29} +10.6762 q^{31} +(-0.707107 + 0.707107i) q^{32} -1.70143i q^{34} +(4.64473 - 6.05894i) q^{35} +(1.41421 + 1.41421i) q^{37} +(-0.707107 - 0.707107i) q^{38} +(1.36041 - 1.77462i) q^{40} +0.980608i q^{41} +(-2.01939 + 2.01939i) q^{43} +5.41421 q^{44} -1.27918 q^{46} +(5.77173 - 5.77173i) q^{47} +4.65685i q^{49} +(-2.49598 + 4.33244i) q^{50} +(-4.43361 - 4.43361i) q^{52} +(-4.24264 - 4.24264i) q^{53} +(-12.0022 + 1.58579i) q^{55} +3.41421i q^{56} +(6.27006 - 6.27006i) q^{58} +9.84782 q^{59} +9.09849 q^{61} +(7.54925 - 7.54925i) q^{62} +1.00000i q^{64} +(11.1270 + 8.52985i) q^{65} +(-5.84782 - 5.84782i) q^{67} +(-1.20309 - 1.20309i) q^{68} +(-1.00000 - 7.56864i) q^{70} +15.0985i q^{71} +(3.82843 - 3.82843i) q^{73} +2.00000 q^{74} -1.00000 q^{76} +(13.0711 - 13.0711i) q^{77} -9.28946i q^{79} +(-0.292893 - 2.21680i) q^{80} +(0.693395 + 0.693395i) q^{82} +(-9.30961 - 9.30961i) q^{83} +(3.01939 + 2.31464i) q^{85} +2.85585i q^{86} +(3.82843 - 3.82843i) q^{88} +8.46103 q^{89} -21.4073 q^{91} +(-0.904518 + 0.904518i) q^{92} -8.16246i q^{94} +(2.21680 - 0.292893i) q^{95} +(10.1464 + 10.1464i) q^{97} +(3.29289 + 3.29289i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{5} - 8 q^{7} - 4 q^{10} - 16 q^{14} - 8 q^{16} + 8 q^{22} - 8 q^{23} - 16 q^{25} - 8 q^{28} + 16 q^{31} + 4 q^{40} + 8 q^{43} + 32 q^{44} - 24 q^{46} - 24 q^{47} - 16 q^{50} + 32 q^{59} + 24 q^{62}+ \cdots + 32 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1710\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(1027\) \(1351\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 0.707107i 0.500000 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) 0.292893 + 2.21680i 0.130986 + 0.991384i
\(6\) 0 0
\(7\) −2.41421 2.41421i −0.912487 0.912487i 0.0839804 0.996467i \(-0.473237\pi\)
−0.996467 + 0.0839804i \(0.973237\pi\)
\(8\) −0.707107 0.707107i −0.250000 0.250000i
\(9\) 0 0
\(10\) 1.77462 + 1.36041i 0.561185 + 0.430199i
\(11\) 5.41421i 1.63245i 0.577736 + 0.816223i \(0.303936\pi\)
−0.577736 + 0.816223i \(0.696064\pi\)
\(12\) 0 0
\(13\) 4.43361 4.43361i 1.22966 1.22966i 0.265569 0.964092i \(-0.414440\pi\)
0.964092 0.265569i \(-0.0855598\pi\)
\(14\) −3.41421 −0.912487
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 1.20309 1.20309i 0.291792 0.291792i −0.545996 0.837788i \(-0.683848\pi\)
0.837788 + 0.545996i \(0.183848\pi\)
\(18\) 0 0
\(19\) 1.00000i 0.229416i
\(20\) 2.21680 0.292893i 0.495692 0.0654929i
\(21\) 0 0
\(22\) 3.82843 + 3.82843i 0.816223 + 0.816223i
\(23\) −0.904518 0.904518i −0.188605 0.188605i 0.606488 0.795093i \(-0.292578\pi\)
−0.795093 + 0.606488i \(0.792578\pi\)
\(24\) 0 0
\(25\) −4.82843 + 1.29857i −0.965685 + 0.259715i
\(26\) 6.27006i 1.22966i
\(27\) 0 0
\(28\) −2.41421 + 2.41421i −0.456243 + 0.456243i
\(29\) 8.86721 1.64660 0.823300 0.567607i \(-0.192131\pi\)
0.823300 + 0.567607i \(0.192131\pi\)
\(30\) 0 0
\(31\) 10.6762 1.91751 0.958755 0.284233i \(-0.0917390\pi\)
0.958755 + 0.284233i \(0.0917390\pi\)
\(32\) −0.707107 + 0.707107i −0.125000 + 0.125000i
\(33\) 0 0
\(34\) 1.70143i 0.291792i
\(35\) 4.64473 6.05894i 0.785102 1.02415i
\(36\) 0 0
\(37\) 1.41421 + 1.41421i 0.232495 + 0.232495i 0.813733 0.581238i \(-0.197432\pi\)
−0.581238 + 0.813733i \(0.697432\pi\)
\(38\) −0.707107 0.707107i −0.114708 0.114708i
\(39\) 0 0
\(40\) 1.36041 1.77462i 0.215100 0.280593i
\(41\) 0.980608i 0.153145i 0.997064 + 0.0765727i \(0.0243977\pi\)
−0.997064 + 0.0765727i \(0.975602\pi\)
\(42\) 0 0
\(43\) −2.01939 + 2.01939i −0.307954 + 0.307954i −0.844116 0.536161i \(-0.819874\pi\)
0.536161 + 0.844116i \(0.319874\pi\)
\(44\) 5.41421 0.816223
\(45\) 0 0
\(46\) −1.27918 −0.188605
\(47\) 5.77173 5.77173i 0.841893 0.841893i −0.147212 0.989105i \(-0.547030\pi\)
0.989105 + 0.147212i \(0.0470299\pi\)
\(48\) 0 0
\(49\) 4.65685i 0.665265i
\(50\) −2.49598 + 4.33244i −0.352985 + 0.612700i
\(51\) 0 0
\(52\) −4.43361 4.43361i −0.614830 0.614830i
\(53\) −4.24264 4.24264i −0.582772 0.582772i 0.352892 0.935664i \(-0.385198\pi\)
−0.935664 + 0.352892i \(0.885198\pi\)
\(54\) 0 0
\(55\) −12.0022 + 1.58579i −1.61838 + 0.213827i
\(56\) 3.41421i 0.456243i
\(57\) 0 0
\(58\) 6.27006 6.27006i 0.823300 0.823300i
\(59\) 9.84782 1.28208 0.641038 0.767509i \(-0.278504\pi\)
0.641038 + 0.767509i \(0.278504\pi\)
\(60\) 0 0
\(61\) 9.09849 1.16494 0.582471 0.812851i \(-0.302086\pi\)
0.582471 + 0.812851i \(0.302086\pi\)
\(62\) 7.54925 7.54925i 0.958755 0.958755i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 11.1270 + 8.52985i 1.38013 + 1.05800i
\(66\) 0 0
\(67\) −5.84782 5.84782i −0.714425 0.714425i 0.253033 0.967458i \(-0.418572\pi\)
−0.967458 + 0.253033i \(0.918572\pi\)
\(68\) −1.20309 1.20309i −0.145896 0.145896i
\(69\) 0 0
\(70\) −1.00000 7.56864i −0.119523 0.904625i
\(71\) 15.0985i 1.79186i 0.444194 + 0.895931i \(0.353490\pi\)
−0.444194 + 0.895931i \(0.646510\pi\)
\(72\) 0 0
\(73\) 3.82843 3.82843i 0.448084 0.448084i −0.446634 0.894717i \(-0.647377\pi\)
0.894717 + 0.446634i \(0.147377\pi\)
\(74\) 2.00000 0.232495
\(75\) 0 0
\(76\) −1.00000 −0.114708
\(77\) 13.0711 13.0711i 1.48959 1.48959i
\(78\) 0 0
\(79\) 9.28946i 1.04515i −0.852595 0.522573i \(-0.824972\pi\)
0.852595 0.522573i \(-0.175028\pi\)
\(80\) −0.292893 2.21680i −0.0327465 0.247846i
\(81\) 0 0
\(82\) 0.693395 + 0.693395i 0.0765727 + 0.0765727i
\(83\) −9.30961 9.30961i −1.02186 1.02186i −0.999756 0.0221073i \(-0.992962\pi\)
−0.0221073 0.999756i \(-0.507038\pi\)
\(84\) 0 0
\(85\) 3.01939 + 2.31464i 0.327499 + 0.251058i
\(86\) 2.85585i 0.307954i
\(87\) 0 0
\(88\) 3.82843 3.82843i 0.408112 0.408112i
\(89\) 8.46103 0.896867 0.448434 0.893816i \(-0.351982\pi\)
0.448434 + 0.893816i \(0.351982\pi\)
\(90\) 0 0
\(91\) −21.4073 −2.24410
\(92\) −0.904518 + 0.904518i −0.0943025 + 0.0943025i
\(93\) 0 0
\(94\) 8.16246i 0.841893i
\(95\) 2.21680 0.292893i 0.227439 0.0300502i
\(96\) 0 0
\(97\) 10.1464 + 10.1464i 1.03021 + 1.03021i 0.999529 + 0.0306807i \(0.00976752\pi\)
0.0306807 + 0.999529i \(0.490232\pi\)
\(98\) 3.29289 + 3.29289i 0.332632 + 0.332632i
\(99\) 0 0
\(100\) 1.29857 + 4.82843i 0.129857 + 0.482843i
\(101\) 10.2426i 1.01918i −0.860417 0.509590i \(-0.829797\pi\)
0.860417 0.509590i \(-0.170203\pi\)
\(102\) 0 0
\(103\) −7.15442 + 7.15442i −0.704946 + 0.704946i −0.965468 0.260522i \(-0.916105\pi\)
0.260522 + 0.965468i \(0.416105\pi\)
\(104\) −6.27006 −0.614830
\(105\) 0 0
\(106\) −6.00000 −0.582772
\(107\) −3.17157 + 3.17157i −0.306608 + 0.306608i −0.843592 0.536985i \(-0.819563\pi\)
0.536985 + 0.843592i \(0.319563\pi\)
\(108\) 0 0
\(109\) 12.3492i 1.18284i 0.806365 + 0.591418i \(0.201432\pi\)
−0.806365 + 0.591418i \(0.798568\pi\)
\(110\) −7.36555 + 9.60819i −0.702277 + 0.916105i
\(111\) 0 0
\(112\) 2.41421 + 2.41421i 0.228122 + 0.228122i
\(113\) 2.02742 + 2.02742i 0.190724 + 0.190724i 0.796009 0.605285i \(-0.206941\pi\)
−0.605285 + 0.796009i \(0.706941\pi\)
\(114\) 0 0
\(115\) 1.74021 2.27006i 0.162275 0.211685i
\(116\) 8.86721i 0.823300i
\(117\) 0 0
\(118\) 6.96346 6.96346i 0.641038 0.641038i
\(119\) −5.80904 −0.532513
\(120\) 0 0
\(121\) −18.3137 −1.66488
\(122\) 6.43361 6.43361i 0.582471 0.582471i
\(123\) 0 0
\(124\) 10.6762i 0.958755i
\(125\) −4.29289 10.3233i −0.383968 0.923346i
\(126\) 0 0
\(127\) −1.94407 1.94407i −0.172508 0.172508i 0.615572 0.788080i \(-0.288925\pi\)
−0.788080 + 0.615572i \(0.788925\pi\)
\(128\) 0.707107 + 0.707107i 0.0625000 + 0.0625000i
\(129\) 0 0
\(130\) 13.8995 1.83646i 1.21907 0.161068i
\(131\) 12.3605i 1.07994i 0.841683 + 0.539972i \(0.181565\pi\)
−0.841683 + 0.539972i \(0.818435\pi\)
\(132\) 0 0
\(133\) −2.41421 + 2.41421i −0.209339 + 0.209339i
\(134\) −8.27006 −0.714425
\(135\) 0 0
\(136\) −1.70143 −0.145896
\(137\) 1.47316 1.47316i 0.125860 0.125860i −0.641371 0.767231i \(-0.721634\pi\)
0.767231 + 0.641371i \(0.221634\pi\)
\(138\) 0 0
\(139\) 7.05971i 0.598797i −0.954128 0.299398i \(-0.903214\pi\)
0.954128 0.299398i \(-0.0967859\pi\)
\(140\) −6.05894 4.64473i −0.512074 0.392551i
\(141\) 0 0
\(142\) 10.6762 + 10.6762i 0.895931 + 0.895931i
\(143\) 24.0045 + 24.0045i 2.00736 + 2.00736i
\(144\) 0 0
\(145\) 2.59715 + 19.6569i 0.215681 + 1.63241i
\(146\) 5.41421i 0.448084i
\(147\) 0 0
\(148\) 1.41421 1.41421i 0.116248 0.116248i
\(149\) −10.4175 −0.853438 −0.426719 0.904384i \(-0.640331\pi\)
−0.426719 + 0.904384i \(0.640331\pi\)
\(150\) 0 0
\(151\) 5.50467 0.447964 0.223982 0.974593i \(-0.428094\pi\)
0.223982 + 0.974593i \(0.428094\pi\)
\(152\) −0.707107 + 0.707107i −0.0573539 + 0.0573539i
\(153\) 0 0
\(154\) 18.4853i 1.48959i
\(155\) 3.12700 + 23.6671i 0.251167 + 1.90099i
\(156\) 0 0
\(157\) −2.82039 2.82039i −0.225092 0.225092i 0.585547 0.810639i \(-0.300880\pi\)
−0.810639 + 0.585547i \(0.800880\pi\)
\(158\) −6.56864 6.56864i −0.522573 0.522573i
\(159\) 0 0
\(160\) −1.77462 1.36041i −0.140296 0.107550i
\(161\) 4.36740i 0.344199i
\(162\) 0 0
\(163\) −11.4165 + 11.4165i −0.894206 + 0.894206i −0.994916 0.100710i \(-0.967889\pi\)
0.100710 + 0.994916i \(0.467889\pi\)
\(164\) 0.980608 0.0765727
\(165\) 0 0
\(166\) −13.1658 −1.02186
\(167\) 5.67292 5.67292i 0.438984 0.438984i −0.452686 0.891670i \(-0.649534\pi\)
0.891670 + 0.452686i \(0.149534\pi\)
\(168\) 0 0
\(169\) 26.3137i 2.02413i
\(170\) 3.77173 0.498336i 0.289278 0.0382207i
\(171\) 0 0
\(172\) 2.01939 + 2.01939i 0.153977 + 0.153977i
\(173\) 0.776751 + 0.776751i 0.0590553 + 0.0590553i 0.736018 0.676962i \(-0.236704\pi\)
−0.676962 + 0.736018i \(0.736704\pi\)
\(174\) 0 0
\(175\) 14.7919 + 8.52182i 1.11816 + 0.644189i
\(176\) 5.41421i 0.408112i
\(177\) 0 0
\(178\) 5.98285 5.98285i 0.448434 0.448434i
\(179\) −21.7908 −1.62872 −0.814361 0.580359i \(-0.802912\pi\)
−0.814361 + 0.580359i \(0.802912\pi\)
\(180\) 0 0
\(181\) −19.7747 −1.46984 −0.734922 0.678151i \(-0.762781\pi\)
−0.734922 + 0.678151i \(0.762781\pi\)
\(182\) −15.1373 + 15.1373i −1.12205 + 1.12205i
\(183\) 0 0
\(184\) 1.27918i 0.0943025i
\(185\) −2.72082 + 3.54925i −0.200039 + 0.260946i
\(186\) 0 0
\(187\) 6.51379 + 6.51379i 0.476335 + 0.476335i
\(188\) −5.77173 5.77173i −0.420947 0.420947i
\(189\) 0 0
\(190\) 1.36041 1.77462i 0.0986945 0.128745i
\(191\) 21.3639i 1.54583i 0.634507 + 0.772917i \(0.281203\pi\)
−0.634507 + 0.772917i \(0.718797\pi\)
\(192\) 0 0
\(193\) 15.9942 15.9942i 1.15129 1.15129i 0.164994 0.986295i \(-0.447240\pi\)
0.986295 0.164994i \(-0.0527604\pi\)
\(194\) 14.3492 1.03021
\(195\) 0 0
\(196\) 4.65685 0.332632
\(197\) 9.55334 9.55334i 0.680647 0.680647i −0.279499 0.960146i \(-0.590168\pi\)
0.960146 + 0.279499i \(0.0901683\pi\)
\(198\) 0 0
\(199\) 16.7393i 1.18662i −0.804975 0.593308i \(-0.797822\pi\)
0.804975 0.593308i \(-0.202178\pi\)
\(200\) 4.33244 + 2.49598i 0.306350 + 0.176493i
\(201\) 0 0
\(202\) −7.24264 7.24264i −0.509590 0.509590i
\(203\) −21.4073 21.4073i −1.50250 1.50250i
\(204\) 0 0
\(205\) −2.17382 + 0.287214i −0.151826 + 0.0200599i
\(206\) 10.1179i 0.704946i
\(207\) 0 0
\(208\) −4.43361 + 4.43361i −0.307415 + 0.307415i
\(209\) 5.41421 0.374509
\(210\) 0 0
\(211\) −9.11456 −0.627472 −0.313736 0.949510i \(-0.601581\pi\)
−0.313736 + 0.949510i \(0.601581\pi\)
\(212\) −4.24264 + 4.24264i −0.291386 + 0.291386i
\(213\) 0 0
\(214\) 4.48528i 0.306608i
\(215\) −5.06806 3.88513i −0.345639 0.264963i
\(216\) 0 0
\(217\) −25.7747 25.7747i −1.74970 1.74970i
\(218\) 8.73218 + 8.73218i 0.591418 + 0.591418i
\(219\) 0 0
\(220\) 1.58579 + 12.0022i 0.106914 + 0.809191i
\(221\) 10.6681i 0.717611i
\(222\) 0 0
\(223\) −5.75310 + 5.75310i −0.385256 + 0.385256i −0.872992 0.487735i \(-0.837823\pi\)
0.487735 + 0.872992i \(0.337823\pi\)
\(224\) 3.41421 0.228122
\(225\) 0 0
\(226\) 2.86721 0.190724
\(227\) −4.19096 + 4.19096i −0.278164 + 0.278164i −0.832376 0.554212i \(-0.813020\pi\)
0.554212 + 0.832376i \(0.313020\pi\)
\(228\) 0 0
\(229\) 13.7687i 0.909863i −0.890527 0.454931i \(-0.849664\pi\)
0.890527 0.454931i \(-0.150336\pi\)
\(230\) −0.374664 2.83569i −0.0247046 0.186980i
\(231\) 0 0
\(232\) −6.27006 6.27006i −0.411650 0.411650i
\(233\) 12.7513 + 12.7513i 0.835362 + 0.835362i 0.988244 0.152882i \(-0.0488555\pi\)
−0.152882 + 0.988244i \(0.548855\pi\)
\(234\) 0 0
\(235\) 14.4853 + 11.1043i 0.944916 + 0.724363i
\(236\) 9.84782i 0.641038i
\(237\) 0 0
\(238\) −4.10761 + 4.10761i −0.266257 + 0.266257i
\(239\) 1.82039 0.117752 0.0588758 0.998265i \(-0.481248\pi\)
0.0588758 + 0.998265i \(0.481248\pi\)
\(240\) 0 0
\(241\) −0.365864 −0.0235674 −0.0117837 0.999931i \(-0.503751\pi\)
−0.0117837 + 0.999931i \(0.503751\pi\)
\(242\) −12.9497 + 12.9497i −0.832441 + 0.832441i
\(243\) 0 0
\(244\) 9.09849i 0.582471i
\(245\) −10.3233 + 1.36396i −0.659533 + 0.0871403i
\(246\) 0 0
\(247\) −4.43361 4.43361i −0.282104 0.282104i
\(248\) −7.54925 7.54925i −0.479378 0.479378i
\(249\) 0 0
\(250\) −10.3352 4.26416i −0.653657 0.269689i
\(251\) 1.06953i 0.0675084i 0.999430 + 0.0337542i \(0.0107463\pi\)
−0.999430 + 0.0337542i \(0.989254\pi\)
\(252\) 0 0
\(253\) 4.89725 4.89725i 0.307888 0.307888i
\(254\) −2.74933 −0.172508
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −2.77675 + 2.77675i −0.173209 + 0.173209i −0.788388 0.615179i \(-0.789084\pi\)
0.615179 + 0.788388i \(0.289084\pi\)
\(258\) 0 0
\(259\) 6.82843i 0.424298i
\(260\) 8.52985 11.1270i 0.528999 0.690067i
\(261\) 0 0
\(262\) 8.74021 + 8.74021i 0.539972 + 0.539972i
\(263\) −6.95466 6.95466i −0.428843 0.428843i 0.459391 0.888234i \(-0.348068\pi\)
−0.888234 + 0.459391i \(0.848068\pi\)
\(264\) 0 0
\(265\) 8.16246 10.6477i 0.501416 0.654085i
\(266\) 3.41421i 0.209339i
\(267\) 0 0
\(268\) −5.84782 + 5.84782i −0.357212 + 0.357212i
\(269\) −1.69115 −0.103111 −0.0515557 0.998670i \(-0.516418\pi\)
−0.0515557 + 0.998670i \(0.516418\pi\)
\(270\) 0 0
\(271\) −1.88814 −0.114696 −0.0573480 0.998354i \(-0.518264\pi\)
−0.0573480 + 0.998354i \(0.518264\pi\)
\(272\) −1.20309 + 1.20309i −0.0729481 + 0.0729481i
\(273\) 0 0
\(274\) 2.08336i 0.125860i
\(275\) −7.03075 26.1421i −0.423970 1.57643i
\(276\) 0 0
\(277\) 11.3378 + 11.3378i 0.681223 + 0.681223i 0.960276 0.279053i \(-0.0900205\pi\)
−0.279053 + 0.960276i \(0.590021\pi\)
\(278\) −4.99197 4.99197i −0.299398 0.299398i
\(279\) 0 0
\(280\) −7.56864 + 1.00000i −0.452313 + 0.0597614i
\(281\) 15.0421i 0.897337i −0.893698 0.448669i \(-0.851898\pi\)
0.893698 0.448669i \(-0.148102\pi\)
\(282\) 0 0
\(283\) −10.4659 + 10.4659i −0.622133 + 0.622133i −0.946076 0.323944i \(-0.894991\pi\)
0.323944 + 0.946076i \(0.394991\pi\)
\(284\) 15.0985 0.895931
\(285\) 0 0
\(286\) 33.9475 2.00736
\(287\) 2.36740 2.36740i 0.139743 0.139743i
\(288\) 0 0
\(289\) 14.1051i 0.829714i
\(290\) 15.7360 + 12.0630i 0.924047 + 0.708366i
\(291\) 0 0
\(292\) −3.82843 3.82843i −0.224042 0.224042i
\(293\) −13.9383 13.9383i −0.814283 0.814283i 0.170990 0.985273i \(-0.445303\pi\)
−0.985273 + 0.170990i \(0.945303\pi\)
\(294\) 0 0
\(295\) 2.88436 + 21.8307i 0.167934 + 1.27103i
\(296\) 2.00000i 0.116248i
\(297\) 0 0
\(298\) −7.36631 + 7.36631i −0.426719 + 0.426719i
\(299\) −8.02055 −0.463840
\(300\) 0 0
\(301\) 9.75048 0.562009
\(302\) 3.89239 3.89239i 0.223982 0.223982i
\(303\) 0 0
\(304\) 1.00000i 0.0573539i
\(305\) 2.66489 + 20.1696i 0.152591 + 1.15491i
\(306\) 0 0
\(307\) 5.63260 + 5.63260i 0.321470 + 0.321470i 0.849331 0.527861i \(-0.177006\pi\)
−0.527861 + 0.849331i \(0.677006\pi\)
\(308\) −13.0711 13.0711i −0.744793 0.744793i
\(309\) 0 0
\(310\) 18.9463 + 14.5241i 1.07608 + 0.824911i
\(311\) 19.6354i 1.11342i 0.830706 + 0.556712i \(0.187937\pi\)
−0.830706 + 0.556712i \(0.812063\pi\)
\(312\) 0 0
\(313\) −19.7108 + 19.7108i −1.11412 + 1.11412i −0.121531 + 0.992588i \(0.538780\pi\)
−0.992588 + 0.121531i \(0.961220\pi\)
\(314\) −3.98864 −0.225092
\(315\) 0 0
\(316\) −9.28946 −0.522573
\(317\) 2.62457 2.62457i 0.147411 0.147411i −0.629550 0.776960i \(-0.716761\pi\)
0.776960 + 0.629550i \(0.216761\pi\)
\(318\) 0 0
\(319\) 48.0090i 2.68799i
\(320\) −2.21680 + 0.292893i −0.123923 + 0.0163732i
\(321\) 0 0
\(322\) 3.08822 + 3.08822i 0.172100 + 0.172100i
\(323\) −1.20309 1.20309i −0.0669418 0.0669418i
\(324\) 0 0
\(325\) −15.6500 + 27.1647i −0.868105 + 1.50683i
\(326\) 16.1453i 0.894206i
\(327\) 0 0
\(328\) 0.693395 0.693395i 0.0382863 0.0382863i
\(329\) −27.8684 −1.53643
\(330\) 0 0
\(331\) 18.6274 1.02386 0.511928 0.859029i \(-0.328932\pi\)
0.511928 + 0.859029i \(0.328932\pi\)
\(332\) −9.30961 + 9.30961i −0.510931 + 0.510931i
\(333\) 0 0
\(334\) 8.02272i 0.438984i
\(335\) 11.2507 14.6762i 0.614690 0.801849i
\(336\) 0 0
\(337\) 7.41313 + 7.41313i 0.403819 + 0.403819i 0.879576 0.475758i \(-0.157826\pi\)
−0.475758 + 0.879576i \(0.657826\pi\)
\(338\) −18.6066 18.6066i −1.01207 1.01207i
\(339\) 0 0
\(340\) 2.31464 3.01939i 0.125529 0.163749i
\(341\) 57.8035i 3.13023i
\(342\) 0 0
\(343\) −5.65685 + 5.65685i −0.305441 + 0.305441i
\(344\) 2.85585 0.153977
\(345\) 0 0
\(346\) 1.09849 0.0590553
\(347\) −25.0053 + 25.0053i −1.34235 + 1.34235i −0.448639 + 0.893713i \(0.648091\pi\)
−0.893713 + 0.448639i \(0.851909\pi\)
\(348\) 0 0
\(349\) 32.1239i 1.71955i 0.510670 + 0.859777i \(0.329397\pi\)
−0.510670 + 0.859777i \(0.670603\pi\)
\(350\) 16.4853 4.43361i 0.881175 0.236986i
\(351\) 0 0
\(352\) −3.82843 3.82843i −0.204056 0.204056i
\(353\) −7.88404 7.88404i −0.419625 0.419625i 0.465449 0.885075i \(-0.345893\pi\)
−0.885075 + 0.465449i \(0.845893\pi\)
\(354\) 0 0
\(355\) −33.4704 + 4.42225i −1.77642 + 0.234708i
\(356\) 8.46103i 0.448434i
\(357\) 0 0
\(358\) −15.4084 + 15.4084i −0.814361 + 0.814361i
\(359\) −8.82372 −0.465698 −0.232849 0.972513i \(-0.574805\pi\)
−0.232849 + 0.972513i \(0.574805\pi\)
\(360\) 0 0
\(361\) −1.00000 −0.0526316
\(362\) −13.9829 + 13.9829i −0.734922 + 0.734922i
\(363\) 0 0
\(364\) 21.4073i 1.12205i
\(365\) 9.60819 + 7.36555i 0.502916 + 0.385530i
\(366\) 0 0
\(367\) −1.47818 1.47818i −0.0771603 0.0771603i 0.667473 0.744634i \(-0.267376\pi\)
−0.744634 + 0.667473i \(0.767376\pi\)
\(368\) 0.904518 + 0.904518i 0.0471512 + 0.0471512i
\(369\) 0 0
\(370\) 0.585786 + 4.43361i 0.0304536 + 0.230492i
\(371\) 20.4853i 1.06354i
\(372\) 0 0
\(373\) 10.8171 10.8171i 0.560087 0.560087i −0.369245 0.929332i \(-0.620384\pi\)
0.929332 + 0.369245i \(0.120384\pi\)
\(374\) 9.21189 0.476335
\(375\) 0 0
\(376\) −8.16246 −0.420947
\(377\) 39.3137 39.3137i 2.02476 2.02476i
\(378\) 0 0
\(379\) 18.7393i 0.962572i −0.876564 0.481286i \(-0.840170\pi\)
0.876564 0.481286i \(-0.159830\pi\)
\(380\) −0.292893 2.21680i −0.0150251 0.113720i
\(381\) 0 0
\(382\) 15.1065 + 15.1065i 0.772917 + 0.772917i
\(383\) 13.0824 + 13.0824i 0.668481 + 0.668481i 0.957364 0.288883i \(-0.0932840\pi\)
−0.288883 + 0.957364i \(0.593284\pi\)
\(384\) 0 0
\(385\) 32.8044 + 25.1475i 1.67187 + 1.28164i
\(386\) 22.6192i 1.15129i
\(387\) 0 0
\(388\) 10.1464 10.1464i 0.515105 0.515105i
\(389\) 27.1647 1.37730 0.688652 0.725092i \(-0.258203\pi\)
0.688652 + 0.725092i \(0.258203\pi\)
\(390\) 0 0
\(391\) −2.17643 −0.110067
\(392\) 3.29289 3.29289i 0.166316 0.166316i
\(393\) 0 0
\(394\) 13.5105i 0.680647i
\(395\) 20.5929 2.72082i 1.03614 0.136899i
\(396\) 0 0
\(397\) 21.1981 + 21.1981i 1.06390 + 1.06390i 0.997814 + 0.0660866i \(0.0210514\pi\)
0.0660866 + 0.997814i \(0.478949\pi\)
\(398\) −11.8365 11.8365i −0.593308 0.593308i
\(399\) 0 0
\(400\) 4.82843 1.29857i 0.241421 0.0649286i
\(401\) 3.42711i 0.171142i 0.996332 + 0.0855708i \(0.0272714\pi\)
−0.996332 + 0.0855708i \(0.972729\pi\)
\(402\) 0 0
\(403\) 47.3343 47.3343i 2.35789 2.35789i
\(404\) −10.2426 −0.509590
\(405\) 0 0
\(406\) −30.2745 −1.50250
\(407\) −7.65685 + 7.65685i −0.379536 + 0.379536i
\(408\) 0 0
\(409\) 8.42071i 0.416377i −0.978089 0.208189i \(-0.933243\pi\)
0.978089 0.208189i \(-0.0667568\pi\)
\(410\) −1.33403 + 1.74021i −0.0658830 + 0.0859429i
\(411\) 0 0
\(412\) 7.15442 + 7.15442i 0.352473 + 0.352473i
\(413\) −23.7747 23.7747i −1.16988 1.16988i
\(414\) 0 0
\(415\) 17.9109 23.3643i 0.879209 1.14691i
\(416\) 6.27006i 0.307415i
\(417\) 0 0
\(418\) 3.82843 3.82843i 0.187254 0.187254i
\(419\) −31.4757 −1.53769 −0.768845 0.639436i \(-0.779168\pi\)
−0.768845 + 0.639436i \(0.779168\pi\)
\(420\) 0 0
\(421\) −39.4155 −1.92100 −0.960498 0.278288i \(-0.910233\pi\)
−0.960498 + 0.278288i \(0.910233\pi\)
\(422\) −6.44496 + 6.44496i −0.313736 + 0.313736i
\(423\) 0 0
\(424\) 6.00000i 0.291386i
\(425\) −4.24673 + 7.37134i −0.205997 + 0.357562i
\(426\) 0 0
\(427\) −21.9657 21.9657i −1.06299 1.06299i
\(428\) 3.17157 + 3.17157i 0.153304 + 0.153304i
\(429\) 0 0
\(430\) −6.33086 + 0.836459i −0.305301 + 0.0403377i
\(431\) 20.9478i 1.00902i 0.863405 + 0.504511i \(0.168327\pi\)
−0.863405 + 0.504511i \(0.831673\pi\)
\(432\) 0 0
\(433\) 16.3213 16.3213i 0.784351 0.784351i −0.196211 0.980562i \(-0.562864\pi\)
0.980562 + 0.196211i \(0.0628636\pi\)
\(434\) −36.4510 −1.74970
\(435\) 0 0
\(436\) 12.3492 0.591418
\(437\) −0.904518 + 0.904518i −0.0432690 + 0.0432690i
\(438\) 0 0
\(439\) 17.1455i 0.818308i −0.912465 0.409154i \(-0.865824\pi\)
0.912465 0.409154i \(-0.134176\pi\)
\(440\) 9.60819 + 7.36555i 0.458052 + 0.351139i
\(441\) 0 0
\(442\) −7.54346 7.54346i −0.358806 0.358806i
\(443\) 6.12668 + 6.12668i 0.291087 + 0.291087i 0.837510 0.546422i \(-0.184011\pi\)
−0.546422 + 0.837510i \(0.684011\pi\)
\(444\) 0 0
\(445\) 2.47818 + 18.7564i 0.117477 + 0.889140i
\(446\) 8.13612i 0.385256i
\(447\) 0 0
\(448\) 2.41421 2.41421i 0.114061 0.114061i
\(449\) −29.6674 −1.40009 −0.700045 0.714099i \(-0.746837\pi\)
−0.700045 + 0.714099i \(0.746837\pi\)
\(450\) 0 0
\(451\) −5.30922 −0.250002
\(452\) 2.02742 2.02742i 0.0953620 0.0953620i
\(453\) 0 0
\(454\) 5.92692i 0.278164i
\(455\) −6.27006 47.4558i −0.293945 2.22476i
\(456\) 0 0
\(457\) 17.4122 + 17.4122i 0.814508 + 0.814508i 0.985306 0.170798i \(-0.0546345\pi\)
−0.170798 + 0.985306i \(0.554634\pi\)
\(458\) −9.73595 9.73595i −0.454931 0.454931i
\(459\) 0 0
\(460\) −2.27006 1.74021i −0.105842 0.0811377i
\(461\) 32.5918i 1.51795i −0.651119 0.758976i \(-0.725700\pi\)
0.651119 0.758976i \(-0.274300\pi\)
\(462\) 0 0
\(463\) −7.10073 + 7.10073i −0.329999 + 0.329999i −0.852586 0.522587i \(-0.824967\pi\)
0.522587 + 0.852586i \(0.324967\pi\)
\(464\) −8.86721 −0.411650
\(465\) 0 0
\(466\) 18.0330 0.835362
\(467\) −5.96848 + 5.96848i −0.276188 + 0.276188i −0.831585 0.555397i \(-0.812566\pi\)
0.555397 + 0.831585i \(0.312566\pi\)
\(468\) 0 0
\(469\) 28.2358i 1.30381i
\(470\) 18.0946 2.39073i 0.834640 0.110276i
\(471\) 0 0
\(472\) −6.96346 6.96346i −0.320519 0.320519i
\(473\) −10.9334 10.9334i −0.502719 0.502719i
\(474\) 0 0
\(475\) 1.29857 + 4.82843i 0.0595826 + 0.221543i
\(476\) 5.80904i 0.266257i
\(477\) 0 0
\(478\) 1.28721 1.28721i 0.0588758 0.0588758i
\(479\) 6.51271 0.297573 0.148787 0.988869i \(-0.452463\pi\)
0.148787 + 0.988869i \(0.452463\pi\)
\(480\) 0 0
\(481\) 12.5401 0.571781
\(482\) −0.258705 + 0.258705i −0.0117837 + 0.0117837i
\(483\) 0 0
\(484\) 18.3137i 0.832441i
\(485\) −19.5207 + 25.4644i −0.886391 + 1.15628i
\(486\) 0 0
\(487\) −18.8904 18.8904i −0.856005 0.856005i 0.134860 0.990865i \(-0.456942\pi\)
−0.990865 + 0.134860i \(0.956942\pi\)
\(488\) −6.43361 6.43361i −0.291236 0.291236i
\(489\) 0 0
\(490\) −6.33523 + 8.26416i −0.286196 + 0.373337i
\(491\) 41.9916i 1.89505i −0.319676 0.947527i \(-0.603574\pi\)
0.319676 0.947527i \(-0.396426\pi\)
\(492\) 0 0
\(493\) 10.6681 10.6681i 0.480465 0.480465i
\(494\) −6.27006 −0.282104
\(495\) 0 0
\(496\) −10.6762 −0.479378
\(497\) 36.4510 36.4510i 1.63505 1.63505i
\(498\) 0 0
\(499\) 2.97907i 0.133362i −0.997774 0.0666808i \(-0.978759\pi\)
0.997774 0.0666808i \(-0.0212409\pi\)
\(500\) −10.3233 + 4.29289i −0.461673 + 0.191984i
\(501\) 0 0
\(502\) 0.756275 + 0.756275i 0.0337542 + 0.0337542i
\(503\) 3.14716 + 3.14716i 0.140325 + 0.140325i 0.773780 0.633455i \(-0.218364\pi\)
−0.633455 + 0.773780i \(0.718364\pi\)
\(504\) 0 0
\(505\) 22.7059 3.00000i 1.01040 0.133498i
\(506\) 6.92576i 0.307888i
\(507\) 0 0
\(508\) −1.94407 + 1.94407i −0.0862541 + 0.0862541i
\(509\) 4.92206 0.218166 0.109083 0.994033i \(-0.465209\pi\)
0.109083 + 0.994033i \(0.465209\pi\)
\(510\) 0 0
\(511\) −18.4853 −0.817741
\(512\) 0.707107 0.707107i 0.0312500 0.0312500i
\(513\) 0 0
\(514\) 3.92692i 0.173209i
\(515\) −17.9554 13.7645i −0.791211 0.606535i
\(516\) 0 0
\(517\) 31.2494 + 31.2494i 1.37435 + 1.37435i
\(518\) −4.82843 4.82843i −0.212149 0.212149i
\(519\) 0 0
\(520\) −1.83646 13.8995i −0.0805341 0.609533i
\(521\) 21.3767i 0.936532i 0.883588 + 0.468266i \(0.155121\pi\)
−0.883588 + 0.468266i \(0.844879\pi\)
\(522\) 0 0
\(523\) 8.96454 8.96454i 0.391992 0.391992i −0.483405 0.875397i \(-0.660600\pi\)
0.875397 + 0.483405i \(0.160600\pi\)
\(524\) 12.3605 0.539972
\(525\) 0 0
\(526\) −9.83537 −0.428843
\(527\) 12.8445 12.8445i 0.559515 0.559515i
\(528\) 0 0
\(529\) 21.3637i 0.928856i
\(530\) −1.75736 13.3008i −0.0763348 0.577750i
\(531\) 0 0
\(532\) 2.41421 + 2.41421i 0.104669 + 0.104669i
\(533\) 4.34763 + 4.34763i 0.188317 + 0.188317i
\(534\) 0 0
\(535\) −7.95968 6.10182i −0.344127 0.263805i
\(536\) 8.27006i 0.357212i
\(537\) 0 0
\(538\) −1.19583 + 1.19583i −0.0515557 + 0.0515557i
\(539\) −25.2132 −1.08601
\(540\) 0 0
\(541\) −22.4670 −0.965934 −0.482967 0.875639i \(-0.660441\pi\)
−0.482967 + 0.875639i \(0.660441\pi\)
\(542\) −1.33511 + 1.33511i −0.0573480 + 0.0573480i
\(543\) 0 0
\(544\) 1.70143i 0.0729481i
\(545\) −27.3757 + 3.61699i −1.17264 + 0.154935i
\(546\) 0 0
\(547\) −3.12274 3.12274i −0.133519 0.133519i 0.637189 0.770708i \(-0.280097\pi\)
−0.770708 + 0.637189i \(0.780097\pi\)
\(548\) −1.47316 1.47316i −0.0629301 0.0629301i
\(549\) 0 0
\(550\) −23.4568 13.5138i −1.00020 0.576230i
\(551\) 8.86721i 0.377756i
\(552\) 0 0
\(553\) −22.4267 + 22.4267i −0.953682 + 0.953682i
\(554\) 16.0341 0.681223
\(555\) 0 0
\(556\) −7.05971 −0.299398
\(557\) −2.98896 + 2.98896i −0.126646 + 0.126646i −0.767589 0.640943i \(-0.778544\pi\)
0.640943 + 0.767589i \(0.278544\pi\)
\(558\) 0 0
\(559\) 17.9064i 0.757359i
\(560\) −4.64473 + 6.05894i −0.196276 + 0.256037i
\(561\) 0 0
\(562\) −10.6364 10.6364i −0.448669 0.448669i
\(563\) 4.94631 + 4.94631i 0.208462 + 0.208462i 0.803614 0.595151i \(-0.202908\pi\)
−0.595151 + 0.803614i \(0.702908\pi\)
\(564\) 0 0
\(565\) −3.90058 + 5.08822i −0.164099 + 0.214063i
\(566\) 14.8010i 0.622133i
\(567\) 0 0
\(568\) 10.6762 10.6762i 0.447965 0.447965i
\(569\) 25.8135 1.08216 0.541080 0.840971i \(-0.318016\pi\)
0.541080 + 0.840971i \(0.318016\pi\)
\(570\) 0 0
\(571\) −13.6150 −0.569770 −0.284885 0.958562i \(-0.591955\pi\)
−0.284885 + 0.958562i \(0.591955\pi\)
\(572\) 24.0045 24.0045i 1.00368 1.00368i
\(573\) 0 0
\(574\) 3.34801i 0.139743i
\(575\) 5.54198 + 3.19282i 0.231117 + 0.133150i
\(576\) 0 0
\(577\) −25.1867 25.1867i −1.04854 1.04854i −0.998760 0.0497760i \(-0.984149\pi\)
−0.0497760 0.998760i \(-0.515851\pi\)
\(578\) 9.97384 + 9.97384i 0.414857 + 0.414857i
\(579\) 0 0
\(580\) 19.6569 2.59715i 0.816206 0.107841i
\(581\) 44.9508i 1.86487i
\(582\) 0 0
\(583\) 22.9706 22.9706i 0.951344 0.951344i
\(584\) −5.41421 −0.224042
\(585\) 0 0
\(586\) −19.7117 −0.814283
\(587\) −0.127318 + 0.127318i −0.00525496 + 0.00525496i −0.709729 0.704474i \(-0.751183\pi\)
0.704474 + 0.709729i \(0.251183\pi\)
\(588\) 0 0
\(589\) 10.6762i 0.439907i
\(590\) 17.4762 + 13.3971i 0.719482 + 0.551548i
\(591\) 0 0
\(592\) −1.41421 1.41421i −0.0581238 0.0581238i
\(593\) 17.6481 + 17.6481i 0.724719 + 0.724719i 0.969563 0.244844i \(-0.0787367\pi\)
−0.244844 + 0.969563i \(0.578737\pi\)
\(594\) 0 0
\(595\) −1.70143 12.8775i −0.0697517 0.527925i
\(596\) 10.4175i 0.426719i
\(597\) 0 0
\(598\) −5.67138 + 5.67138i −0.231920 + 0.231920i
\(599\) 19.6613 0.803341 0.401670 0.915784i \(-0.368430\pi\)
0.401670 + 0.915784i \(0.368430\pi\)
\(600\) 0 0
\(601\) 24.6047 1.00365 0.501823 0.864970i \(-0.332663\pi\)
0.501823 + 0.864970i \(0.332663\pi\)
\(602\) 6.89463 6.89463i 0.281004 0.281004i
\(603\) 0 0
\(604\) 5.50467i 0.223982i
\(605\) −5.36396 40.5979i −0.218076 1.65054i
\(606\) 0 0
\(607\) 27.0713 + 27.0713i 1.09879 + 1.09879i 0.994552 + 0.104238i \(0.0332402\pi\)
0.104238 + 0.994552i \(0.466760\pi\)
\(608\) 0.707107 + 0.707107i 0.0286770 + 0.0286770i
\(609\) 0 0
\(610\) 16.1464 + 12.3777i 0.653748 + 0.501157i
\(611\) 51.1791i 2.07049i
\(612\) 0 0
\(613\) −20.0125 + 20.0125i −0.808298 + 0.808298i −0.984376 0.176078i \(-0.943659\pi\)
0.176078 + 0.984376i \(0.443659\pi\)
\(614\) 7.96570 0.321470
\(615\) 0 0
\(616\) −18.4853 −0.744793
\(617\) −15.1849 + 15.1849i −0.611319 + 0.611319i −0.943290 0.331970i \(-0.892287\pi\)
0.331970 + 0.943290i \(0.392287\pi\)
\(618\) 0 0
\(619\) 47.2955i 1.90097i −0.310777 0.950483i \(-0.600589\pi\)
0.310777 0.950483i \(-0.399411\pi\)
\(620\) 23.6671 3.12700i 0.950495 0.125583i
\(621\) 0 0
\(622\) 13.8844 + 13.8844i 0.556712 + 0.556712i
\(623\) −20.4267 20.4267i −0.818380 0.818380i
\(624\) 0 0
\(625\) 21.6274 12.5401i 0.865097 0.501605i
\(626\) 27.8752i 1.11412i
\(627\) 0 0
\(628\) −2.82039 + 2.82039i −0.112546 + 0.112546i
\(629\) 3.40285 0.135681
\(630\) 0 0
\(631\) −12.7639 −0.508121 −0.254061 0.967188i \(-0.581766\pi\)
−0.254061 + 0.967188i \(0.581766\pi\)
\(632\) −6.56864 + 6.56864i −0.261286 + 0.261286i
\(633\) 0 0
\(634\) 3.71170i 0.147411i
\(635\) 3.74021 4.87902i 0.148426 0.193618i
\(636\) 0 0
\(637\) 20.6467 + 20.6467i 0.818050 + 0.818050i
\(638\) 33.9475 + 33.9475i 1.34399 + 1.34399i
\(639\) 0 0
\(640\) −1.36041 + 1.77462i −0.0537749 + 0.0701481i
\(641\) 19.2346i 0.759721i −0.925044 0.379861i \(-0.875972\pi\)
0.925044 0.379861i \(-0.124028\pi\)
\(642\) 0 0
\(643\) 23.0060 23.0060i 0.907269 0.907269i −0.0887822 0.996051i \(-0.528298\pi\)
0.996051 + 0.0887822i \(0.0282975\pi\)
\(644\) 4.36740 0.172100
\(645\) 0 0
\(646\) −1.70143 −0.0669418
\(647\) −22.7943 + 22.7943i −0.896136 + 0.896136i −0.995092 0.0989558i \(-0.968450\pi\)
0.0989558 + 0.995092i \(0.468450\pi\)
\(648\) 0 0
\(649\) 53.3182i 2.09292i
\(650\) 8.14214 + 30.2745i 0.319361 + 1.18747i
\(651\) 0 0
\(652\) 11.4165 + 11.4165i 0.447103 + 0.447103i
\(653\) 27.7329 + 27.7329i 1.08527 + 1.08527i 0.996008 + 0.0892662i \(0.0284522\pi\)
0.0892662 + 0.996008i \(0.471548\pi\)
\(654\) 0 0
\(655\) −27.4008 + 3.62031i −1.07064 + 0.141457i
\(656\) 0.980608i 0.0382863i
\(657\) 0 0
\(658\) −19.7059 + 19.7059i −0.768216 + 0.768216i
\(659\) 19.1085 0.744363 0.372181 0.928160i \(-0.378610\pi\)
0.372181 + 0.928160i \(0.378610\pi\)
\(660\) 0 0
\(661\) 40.4494 1.57330 0.786651 0.617398i \(-0.211813\pi\)
0.786651 + 0.617398i \(0.211813\pi\)
\(662\) 13.1716 13.1716i 0.511928 0.511928i
\(663\) 0 0
\(664\) 13.1658i 0.510931i
\(665\) −6.05894 4.64473i −0.234956 0.180115i
\(666\) 0 0
\(667\) −8.02055 8.02055i −0.310557 0.310557i
\(668\) −5.67292 5.67292i −0.219492 0.219492i
\(669\) 0 0
\(670\) −2.42225 18.3331i −0.0935795 0.708269i
\(671\) 49.2612i 1.90171i
\(672\) 0 0
\(673\) 27.4191 27.4191i 1.05693 1.05693i 0.0586520 0.998278i \(-0.481320\pi\)
0.998278 0.0586520i \(-0.0186802\pi\)
\(674\) 10.4837 0.403819
\(675\) 0 0
\(676\) −26.3137 −1.01207
\(677\) −14.7197 + 14.7197i −0.565725 + 0.565725i −0.930928 0.365203i \(-0.881000\pi\)
0.365203 + 0.930928i \(0.381000\pi\)
\(678\) 0 0
\(679\) 48.9911i 1.88011i
\(680\) −0.498336 3.77173i −0.0191103 0.144639i
\(681\) 0 0
\(682\) 40.8732 + 40.8732i 1.56512 + 1.56512i
\(683\) 1.91085 + 1.91085i 0.0731168 + 0.0731168i 0.742719 0.669603i \(-0.233536\pi\)
−0.669603 + 0.742719i \(0.733536\pi\)
\(684\) 0 0
\(685\) 3.69717 + 2.83422i 0.141262 + 0.108290i
\(686\) 8.00000i 0.305441i
\(687\) 0 0
\(688\) 2.01939 2.01939i 0.0769886 0.0769886i
\(689\) −37.6204 −1.43322
\(690\) 0 0
\(691\) −7.11673 −0.270733 −0.135366 0.990796i \(-0.543221\pi\)
−0.135366 + 0.990796i \(0.543221\pi\)
\(692\) 0.776751 0.776751i 0.0295276 0.0295276i
\(693\) 0 0
\(694\) 35.3628i 1.34235i
\(695\) 15.6500 2.06774i 0.593638 0.0784339i
\(696\) 0 0
\(697\) 1.17976 + 1.17976i 0.0446866 + 0.0446866i
\(698\) 22.7150 + 22.7150i 0.859777 + 0.859777i
\(699\) 0 0
\(700\) 8.52182 14.7919i 0.322095 0.559081i
\(701\) 37.7115i 1.42434i −0.702006 0.712172i \(-0.747712\pi\)
0.702006 0.712172i \(-0.252288\pi\)
\(702\) 0 0
\(703\) 1.41421 1.41421i 0.0533381 0.0533381i
\(704\) −5.41421 −0.204056
\(705\) 0 0
\(706\) −11.1497 −0.419625
\(707\) −24.7279 + 24.7279i −0.929989 + 0.929989i
\(708\) 0 0
\(709\) 14.6617i 0.550632i 0.961354 + 0.275316i \(0.0887825\pi\)
−0.961354 + 0.275316i \(0.911217\pi\)
\(710\) −20.5401 + 26.7941i −0.770857 + 1.00557i
\(711\) 0 0
\(712\) −5.98285 5.98285i −0.224217 0.224217i
\(713\) −9.65685 9.65685i −0.361652 0.361652i
\(714\) 0 0
\(715\) −46.1825 + 60.2440i −1.72713 + 2.25300i
\(716\) 21.7908i 0.814361i
\(717\) 0 0
\(718\) −6.23931 + 6.23931i −0.232849 + 0.232849i
\(719\) −30.3665 −1.13248 −0.566240 0.824240i \(-0.691603\pi\)
−0.566240 + 0.824240i \(0.691603\pi\)
\(720\) 0 0
\(721\) 34.5446 1.28651
\(722\) −0.707107 + 0.707107i −0.0263158 + 0.0263158i
\(723\) 0 0
\(724\) 19.7747i 0.734922i
\(725\) −42.8147 + 11.5147i −1.59010 + 0.427646i
\(726\) 0 0
\(727\) −11.3320 11.3320i −0.420281 0.420281i 0.465019 0.885301i \(-0.346047\pi\)
−0.885301 + 0.465019i \(0.846047\pi\)
\(728\) 15.1373 + 15.1373i 0.561025 + 0.561025i
\(729\) 0 0
\(730\) 12.0022 1.58579i 0.444223 0.0586926i
\(731\) 4.85902i 0.179717i
\(732\) 0 0
\(733\) 1.95527 1.95527i 0.0722196 0.0722196i −0.670074 0.742294i \(-0.733738\pi\)
0.742294 + 0.670074i \(0.233738\pi\)
\(734\) −2.09046 −0.0771603
\(735\) 0 0
\(736\) 1.27918 0.0471512
\(737\) 31.6613 31.6613i 1.16626 1.16626i
\(738\) 0 0
\(739\) 16.6983i 0.614258i −0.951668 0.307129i \(-0.900632\pi\)
0.951668 0.307129i \(-0.0993683\pi\)
\(740\) 3.54925 + 2.72082i 0.130473 + 0.100019i
\(741\) 0 0
\(742\) 14.4853 + 14.4853i 0.531771 + 0.531771i
\(743\) 7.94298 + 7.94298i 0.291400 + 0.291400i 0.837633 0.546233i \(-0.183939\pi\)
−0.546233 + 0.837633i \(0.683939\pi\)
\(744\) 0 0
\(745\) −3.05123 23.0936i −0.111788 0.846085i
\(746\) 15.2976i 0.560087i
\(747\) 0 0
\(748\) 6.51379 6.51379i 0.238168 0.238168i
\(749\) 15.3137 0.559551
\(750\) 0 0
\(751\) 2.07910 0.0758674 0.0379337 0.999280i \(-0.487922\pi\)
0.0379337 + 0.999280i \(0.487922\pi\)
\(752\) −5.77173 + 5.77173i −0.210473 + 0.210473i
\(753\) 0 0
\(754\) 55.5980i 2.02476i
\(755\) 1.61228 + 12.2028i 0.0586769 + 0.444104i
\(756\) 0 0
\(757\) −26.2277 26.2277i −0.953263 0.953263i 0.0456924 0.998956i \(-0.485451\pi\)
−0.998956 + 0.0456924i \(0.985451\pi\)
\(758\) −13.2507 13.2507i −0.481286 0.481286i
\(759\) 0 0
\(760\) −1.77462 1.36041i −0.0643723 0.0493472i
\(761\) 52.3146i 1.89640i 0.317667 + 0.948202i \(0.397100\pi\)
−0.317667 + 0.948202i \(0.602900\pi\)
\(762\) 0 0
\(763\) 29.8135 29.8135i 1.07932 1.07932i
\(764\) 21.3639 0.772917
\(765\) 0 0
\(766\) 18.5013 0.668481
\(767\) 43.6613 43.6613i 1.57652 1.57652i
\(768\) 0 0
\(769\) 0.430434i 0.0155218i −0.999970 0.00776092i \(-0.997530\pi\)
0.999970 0.00776092i \(-0.00247040\pi\)
\(770\) 40.9782 5.41421i 1.47675 0.195115i
\(771\) 0 0
\(772\) −15.9942 15.9942i −0.575644 0.575644i
\(773\) −18.5354 18.5354i −0.666673 0.666673i 0.290271 0.956944i \(-0.406254\pi\)
−0.956944 + 0.290271i \(0.906254\pi\)
\(774\) 0 0
\(775\) −51.5495 + 13.8639i −1.85171 + 0.498005i
\(776\) 14.3492i 0.515105i
\(777\) 0 0
\(778\) 19.2083 19.2083i 0.688652 0.688652i
\(779\) 0.980608 0.0351339
\(780\) 0 0
\(781\) −81.7465 −2.92512
\(782\) −1.53897 + 1.53897i −0.0550335 + 0.0550335i
\(783\) 0 0
\(784\) 4.65685i 0.166316i
\(785\) 5.42618 7.07833i 0.193669 0.252637i
\(786\) 0 0
\(787\) −34.8490 34.8490i −1.24223 1.24223i −0.959073 0.283159i \(-0.908618\pi\)
−0.283159 0.959073i \(-0.591382\pi\)
\(788\) −9.55334 9.55334i −0.340324 0.340324i
\(789\) 0 0
\(790\) 12.6375 16.4853i 0.449621 0.586520i
\(791\) 9.78927i 0.348066i
\(792\) 0 0
\(793\) 40.3391 40.3391i 1.43248 1.43248i
\(794\) 29.9786 1.06390
\(795\) 0 0
\(796\) −16.7393 −0.593308
\(797\) −8.17961 + 8.17961i −0.289736 + 0.289736i −0.836976 0.547240i \(-0.815679\pi\)
0.547240 + 0.836976i \(0.315679\pi\)
\(798\) 0 0
\(799\) 13.8878i 0.491316i
\(800\) 2.49598 4.33244i 0.0882464 0.153175i
\(801\) 0 0
\(802\) 2.42333 + 2.42333i 0.0855708 + 0.0855708i
\(803\) 20.7279 + 20.7279i 0.731472 + 0.731472i
\(804\) 0 0
\(805\) −9.68166 + 1.27918i −0.341234 + 0.0450852i
\(806\) 66.9407i 2.35789i
\(807\) 0 0
\(808\) −7.24264 + 7.24264i −0.254795 + 0.254795i
\(809\) −12.0334 −0.423073 −0.211537 0.977370i \(-0.567847\pi\)
−0.211537 + 0.977370i \(0.567847\pi\)
\(810\) 0 0
\(811\) −28.4488 −0.998973 −0.499486 0.866322i \(-0.666478\pi\)
−0.499486 + 0.866322i \(0.666478\pi\)
\(812\) −21.4073 + 21.4073i −0.751250 + 0.751250i
\(813\) 0 0
\(814\) 10.8284i 0.379536i
\(815\) −28.6518 21.9642i −1.00363 0.769373i
\(816\) 0 0
\(817\) 2.01939 + 2.01939i 0.0706496 + 0.0706496i
\(818\) −5.95434 5.95434i −0.208189 0.208189i
\(819\) 0 0
\(820\) 0.287214 + 2.17382i 0.0100299 + 0.0759129i
\(821\) 12.7928i 0.446472i 0.974764 + 0.223236i \(0.0716621\pi\)
−0.974764 + 0.223236i \(0.928338\pi\)
\(822\) 0 0
\(823\) 32.3068 32.3068i 1.12615 1.12615i 0.135347 0.990798i \(-0.456785\pi\)
0.990798 0.135347i \(-0.0432150\pi\)
\(824\) 10.1179 0.352473
\(825\) 0 0
\(826\) −33.6226 −1.16988
\(827\) 11.2976 11.2976i 0.392858 0.392858i −0.482847 0.875705i \(-0.660397\pi\)
0.875705 + 0.482847i \(0.160397\pi\)
\(828\) 0 0
\(829\) 40.8572i 1.41903i −0.704691 0.709514i \(-0.748915\pi\)
0.704691 0.709514i \(-0.251085\pi\)
\(830\) −3.85617 29.1859i −0.133850 1.01306i
\(831\) 0 0
\(832\) 4.43361 + 4.43361i 0.153708 + 0.153708i
\(833\) 5.60262 + 5.60262i 0.194119 + 0.194119i
\(834\) 0 0
\(835\) 14.2373 + 10.9142i 0.492702 + 0.377701i
\(836\) 5.41421i 0.187254i
\(837\) 0 0
\(838\) −22.2567 + 22.2567i −0.768845 + 0.768845i
\(839\) −16.7802 −0.579318 −0.289659 0.957130i \(-0.593542\pi\)
−0.289659 + 0.957130i \(0.593542\pi\)
\(840\) 0 0
\(841\) 49.6274 1.71129
\(842\) −27.8710 + 27.8710i −0.960498 + 0.960498i
\(843\) 0 0
\(844\) 9.11456i 0.313736i
\(845\) 58.3323 7.70711i 2.00669 0.265133i
\(846\) 0 0
\(847\) 44.2132 + 44.2132i 1.51918 + 1.51918i
\(848\) 4.24264 + 4.24264i 0.145693 + 0.145693i
\(849\) 0 0
\(850\) 2.20943 + 8.21522i 0.0757827 + 0.281780i
\(851\) 2.55836i 0.0876995i
\(852\) 0 0
\(853\) −12.1317 + 12.1317i −0.415382 + 0.415382i −0.883608 0.468227i \(-0.844893\pi\)
0.468227 + 0.883608i \(0.344893\pi\)
\(854\) −31.0642 −1.06299
\(855\) 0 0
\(856\) 4.48528 0.153304
\(857\) −18.4579 + 18.4579i −0.630508 + 0.630508i −0.948196 0.317687i \(-0.897094\pi\)
0.317687 + 0.948196i \(0.397094\pi\)
\(858\) 0 0
\(859\) 4.07757i 0.139125i −0.997578 0.0695624i \(-0.977840\pi\)
0.997578 0.0695624i \(-0.0221603\pi\)
\(860\) −3.88513 + 5.06806i −0.132482 + 0.172819i
\(861\) 0 0
\(862\) 14.8124 + 14.8124i 0.504511 + 0.504511i
\(863\) −38.8505 38.8505i −1.32249 1.32249i −0.911757 0.410730i \(-0.865274\pi\)
−0.410730 0.911757i \(-0.634726\pi\)
\(864\) 0 0
\(865\) −1.49440 + 1.94941i −0.0508111 + 0.0662819i
\(866\) 23.0818i 0.784351i
\(867\) 0 0
\(868\) −25.7747 + 25.7747i −0.874852 + 0.874852i
\(869\) 50.2951 1.70614
\(870\) 0 0
\(871\) −51.8538 −1.75700
\(872\) 8.73218 8.73218i 0.295709 0.295709i
\(873\) 0 0
\(874\) 1.27918i 0.0432690i
\(875\) −14.5588 + 35.2867i −0.492176 + 1.19291i
\(876\) 0 0
\(877\) −29.1662 29.1662i −0.984874 0.984874i 0.0150136 0.999887i \(-0.495221\pi\)
−0.999887 + 0.0150136i \(0.995221\pi\)
\(878\) −12.1237 12.1237i −0.409154 0.409154i
\(879\) 0 0
\(880\) 12.0022 1.58579i 0.404596 0.0534568i
\(881\) 15.6849i 0.528438i −0.964463 0.264219i \(-0.914886\pi\)
0.964463 0.264219i \(-0.0851142\pi\)
\(882\) 0 0
\(883\) −10.9472 + 10.9472i −0.368404 + 0.368404i −0.866895 0.498491i \(-0.833888\pi\)
0.498491 + 0.866895i \(0.333888\pi\)
\(884\) −10.6681 −0.358806
\(885\) 0 0
\(886\) 8.66444 0.291087
\(887\) 21.7527 21.7527i 0.730383 0.730383i −0.240313 0.970695i \(-0.577250\pi\)
0.970695 + 0.240313i \(0.0772500\pi\)
\(888\) 0 0
\(889\) 9.38679i 0.314823i
\(890\) 15.0151 + 11.5105i 0.503308 + 0.385832i
\(891\) 0 0
\(892\) 5.75310 + 5.75310i 0.192628 + 0.192628i
\(893\) −5.77173 5.77173i −0.193144 0.193144i
\(894\) 0 0
\(895\) −6.38238 48.3059i −0.213339 1.61469i
\(896\) 3.41421i 0.114061i
\(897\) 0 0
\(898\) −20.9780 + 20.9780i −0.700045 + 0.700045i
\(899\) 94.6685 3.15737
\(900\) 0 0
\(901\) −10.2086 −0.340097
\(902\) −3.75419 + 3.75419i −0.125001 + 0.125001i
\(903\) 0 0
\(904\) 2.86721i 0.0953620i
\(905\) −5.79189 43.8367i −0.192529 1.45718i
\(906\) 0 0
\(907\) 8.54230 + 8.54230i 0.283642 + 0.283642i 0.834560 0.550917i \(-0.185722\pi\)
−0.550917 + 0.834560i \(0.685722\pi\)
\(908\) 4.19096 + 4.19096i 0.139082 + 0.139082i
\(909\) 0 0
\(910\) −37.9900 29.1227i −1.25935 0.965410i
\(911\) 1.17374i 0.0388878i 0.999811 + 0.0194439i \(0.00618958\pi\)
−0.999811 + 0.0194439i \(0.993810\pi\)
\(912\) 0 0
\(913\) 50.4042 50.4042i 1.66814 1.66814i
\(914\) 24.6246 0.814508
\(915\) 0 0
\(916\) −13.7687 −0.454931
\(917\) 29.8409 29.8409i 0.985435 0.985435i
\(918\) 0 0
\(919\) 7.31371i 0.241257i −0.992698 0.120628i \(-0.961509\pi\)
0.992698 0.120628i \(-0.0384910\pi\)
\(920\) −2.83569 + 0.374664i −0.0934900 + 0.0123523i
\(921\) 0 0
\(922\) −23.0459 23.0459i −0.758976 0.758976i
\(923\) 66.9407 + 66.9407i 2.20338 + 2.20338i
\(924\) 0 0
\(925\) −8.66489 4.99197i −0.284900 0.164135i
\(926\) 10.0420i 0.329999i
\(927\) 0 0
\(928\) −6.27006 + 6.27006i −0.205825 + 0.205825i
\(929\) −39.0201 −1.28021 −0.640103 0.768289i \(-0.721109\pi\)
−0.640103 + 0.768289i \(0.721109\pi\)
\(930\) 0 0
\(931\) 4.65685 0.152622
\(932\) 12.7513 12.7513i 0.417681 0.417681i
\(933\) 0 0
\(934\) 8.44071i 0.276188i
\(935\) −12.5319 + 16.3476i −0.409838 + 0.534625i
\(936\) 0 0
\(937\) −36.7344 36.7344i −1.20006 1.20006i −0.974147 0.225914i \(-0.927463\pi\)
−0.225914 0.974147i \(-0.572537\pi\)
\(938\) 19.9657 + 19.9657i 0.651903 + 0.651903i
\(939\) 0 0
\(940\) 11.1043 14.4853i 0.362182 0.472458i
\(941\) 26.8739i 0.876063i 0.898960 + 0.438031i \(0.144324\pi\)
−0.898960 + 0.438031i \(0.855676\pi\)
\(942\) 0 0
\(943\) 0.886978 0.886978i 0.0288840 0.0288840i
\(944\) −9.84782 −0.320519
\(945\) 0 0
\(946\) −15.4622 −0.502719
\(947\) −6.36932 + 6.36932i −0.206975 + 0.206975i −0.802980 0.596005i \(-0.796754\pi\)
0.596005 + 0.802980i \(0.296754\pi\)
\(948\) 0 0
\(949\) 33.9475i 1.10198i
\(950\) 4.33244 + 2.49598i 0.140563 + 0.0809804i
\(951\) 0 0
\(952\) 4.10761 + 4.10761i 0.133128 + 0.133128i
\(953\) 19.2863 + 19.2863i 0.624744 + 0.624744i 0.946741 0.321997i \(-0.104354\pi\)
−0.321997 + 0.946741i \(0.604354\pi\)
\(954\) 0 0
\(955\) −47.3594 + 6.25733i −1.53252 + 0.202482i
\(956\) 1.82039i 0.0588758i
\(957\) 0 0
\(958\) 4.60518 4.60518i 0.148787 0.148787i
\(959\) −7.11302 −0.229691
\(960\) 0 0
\(961\) 82.9822 2.67685
\(962\) 8.86721 8.86721i 0.285890 0.285890i
\(963\) 0 0
\(964\) 0.365864i 0.0117837i
\(965\) 40.1406 + 30.7714i 1.29217 + 0.990567i
\(966\) 0 0
\(967\) −23.2083 23.2083i −0.746330 0.746330i 0.227458 0.973788i \(-0.426959\pi\)
−0.973788 + 0.227458i \(0.926959\pi\)
\(968\) 12.9497 + 12.9497i 0.416221 + 0.416221i
\(969\) 0 0
\(970\) 4.20277 + 31.8093i 0.134943 + 1.02133i
\(971\) 24.4289i 0.783961i 0.919974 + 0.391980i \(0.128210\pi\)
−0.919974 + 0.391980i \(0.871790\pi\)
\(972\) 0 0
\(973\) −17.0436 + 17.0436i −0.546394 + 0.546394i
\(974\) −26.7150 −0.856005
\(975\) 0 0
\(976\) −9.09849 −0.291236
\(977\) −16.5209 + 16.5209i −0.528550 + 0.528550i −0.920140 0.391590i \(-0.871925\pi\)
0.391590 + 0.920140i \(0.371925\pi\)
\(978\) 0 0
\(979\) 45.8098i 1.46409i
\(980\) 1.36396 + 10.3233i 0.0435701 + 0.329767i
\(981\) 0 0
\(982\) −29.6925 29.6925i −0.947527 0.947527i
\(983\) 7.13881 + 7.13881i 0.227693 + 0.227693i 0.811728 0.584035i \(-0.198527\pi\)
−0.584035 + 0.811728i \(0.698527\pi\)
\(984\) 0 0
\(985\) 23.9760 + 18.3798i 0.763938 + 0.585628i
\(986\) 15.0869i 0.480465i
\(987\) 0 0
\(988\) −4.43361 + 4.43361i −0.141052 + 0.141052i
\(989\) 3.65315 0.116163
\(990\) 0 0
\(991\) 4.31255 0.136993 0.0684963 0.997651i \(-0.478180\pi\)
0.0684963 + 0.997651i \(0.478180\pi\)
\(992\) −7.54925 + 7.54925i −0.239689 + 0.239689i
\(993\) 0 0
\(994\) 51.5495i 1.63505i
\(995\) 37.1077 4.90282i 1.17639 0.155430i
\(996\) 0 0
\(997\) 32.5869 + 32.5869i 1.03204 + 1.03204i 0.999469 + 0.0325694i \(0.0103690\pi\)
0.0325694 + 0.999469i \(0.489631\pi\)
\(998\) −2.10652 2.10652i −0.0666808 0.0666808i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1710.2.n.g.647.4 yes 8
3.2 odd 2 1710.2.n.f.647.1 8
5.3 odd 4 1710.2.n.f.1673.2 yes 8
15.8 even 4 inner 1710.2.n.g.1673.3 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1710.2.n.f.647.1 8 3.2 odd 2
1710.2.n.f.1673.2 yes 8 5.3 odd 4
1710.2.n.g.647.4 yes 8 1.1 even 1 trivial
1710.2.n.g.1673.3 yes 8 15.8 even 4 inner