Properties

Label 1710.2.n.g.647.1
Level $1710$
Weight $2$
Character 1710.647
Analytic conductor $13.654$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1710,2,Mod(647,1710)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1710.647"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1710, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1710.n (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,8,0,-8,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.6544187456\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.110166016.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 10x^{6} + 19x^{4} + 10x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 647.1
Root \(-1.22833i\) of defining polynomial
Character \(\chi\) \(=\) 1710.647
Dual form 1710.2.n.g.1673.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} -1.00000i q^{4} +(1.70711 - 1.44423i) q^{5} +(0.414214 + 0.414214i) q^{7} +(0.707107 + 0.707107i) q^{8} +(-0.185885 + 2.22833i) q^{10} +2.58579i q^{11} +(-2.88845 + 2.88845i) q^{13} -0.585786 q^{14} -1.00000 q^{16} +(-5.60799 + 5.60799i) q^{17} -1.00000i q^{19} +(-1.44423 - 1.70711i) q^{20} +(-1.82843 - 1.82843i) q^{22} +(-0.322905 - 0.322905i) q^{23} +(0.828427 - 4.93089i) q^{25} -4.08489i q^{26} +(0.414214 - 0.414214i) q^{28} -5.77690 q^{29} -5.13109 q^{31} +(0.707107 - 0.707107i) q^{32} -7.93089i q^{34} +(1.30532 + 0.108889i) q^{35} +(-1.41421 - 1.41421i) q^{37} +(0.707107 + 0.707107i) q^{38} +(2.22833 + 0.185885i) q^{40} +5.47424i q^{41} +(2.47424 - 2.47424i) q^{43} +2.58579 q^{44} +0.456656 q^{46} +(-9.45400 + 9.45400i) q^{47} -6.65685i q^{49} +(2.90088 + 4.07245i) q^{50} +(2.88845 + 2.88845i) q^{52} +(4.24264 + 4.24264i) q^{53} +(3.73446 + 4.41421i) q^{55} +0.585786i q^{56} +(4.08489 - 4.08489i) q^{58} -0.302664 q^{59} +1.25646 q^{61} +(3.62823 - 3.62823i) q^{62} +1.00000i q^{64} +(-0.759320 + 9.10247i) q^{65} +(4.30266 + 4.30266i) q^{67} +(5.60799 + 5.60799i) q^{68} +(-1.00000 + 0.846008i) q^{70} +7.25646i q^{71} +(-1.82843 + 1.82843i) q^{73} +2.00000 q^{74} -1.00000 q^{76} +(-1.07107 + 1.07107i) q^{77} -2.61065i q^{79} +(-1.70711 + 1.44423i) q^{80} +(-3.87087 - 3.87087i) q^{82} +(-5.45023 - 5.45023i) q^{83} +(-1.47424 + 17.6726i) q^{85} +3.49910i q^{86} +(-1.82843 + 1.82843i) q^{88} +7.43908 q^{89} -2.39287 q^{91} +(-0.322905 + 0.322905i) q^{92} -13.3700i q^{94} +(-1.44423 - 1.70711i) q^{95} +(-6.23356 - 6.23356i) q^{97} +(4.70711 + 4.70711i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{5} - 8 q^{7} - 4 q^{10} - 16 q^{14} - 8 q^{16} + 8 q^{22} - 8 q^{23} - 16 q^{25} - 8 q^{28} + 16 q^{31} + 4 q^{40} + 8 q^{43} + 32 q^{44} - 24 q^{46} - 24 q^{47} - 16 q^{50} + 32 q^{59} + 24 q^{62}+ \cdots + 32 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1710\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(1027\) \(1351\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) 1.70711 1.44423i 0.763441 0.645877i
\(6\) 0 0
\(7\) 0.414214 + 0.414214i 0.156558 + 0.156558i 0.781040 0.624482i \(-0.214690\pi\)
−0.624482 + 0.781040i \(0.714690\pi\)
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) 0 0
\(10\) −0.185885 + 2.22833i −0.0587821 + 0.704659i
\(11\) 2.58579i 0.779644i 0.920890 + 0.389822i \(0.127463\pi\)
−0.920890 + 0.389822i \(0.872537\pi\)
\(12\) 0 0
\(13\) −2.88845 + 2.88845i −0.801112 + 0.801112i −0.983269 0.182157i \(-0.941692\pi\)
0.182157 + 0.983269i \(0.441692\pi\)
\(14\) −0.585786 −0.156558
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −5.60799 + 5.60799i −1.36014 + 1.36014i −0.486402 + 0.873735i \(0.661691\pi\)
−0.873735 + 0.486402i \(0.838309\pi\)
\(18\) 0 0
\(19\) 1.00000i 0.229416i
\(20\) −1.44423 1.70711i −0.322939 0.381721i
\(21\) 0 0
\(22\) −1.82843 1.82843i −0.389822 0.389822i
\(23\) −0.322905 0.322905i −0.0673303 0.0673303i 0.672640 0.739970i \(-0.265160\pi\)
−0.739970 + 0.672640i \(0.765160\pi\)
\(24\) 0 0
\(25\) 0.828427 4.93089i 0.165685 0.986179i
\(26\) 4.08489i 0.801112i
\(27\) 0 0
\(28\) 0.414214 0.414214i 0.0782790 0.0782790i
\(29\) −5.77690 −1.07274 −0.536372 0.843982i \(-0.680205\pi\)
−0.536372 + 0.843982i \(0.680205\pi\)
\(30\) 0 0
\(31\) −5.13109 −0.921571 −0.460786 0.887511i \(-0.652432\pi\)
−0.460786 + 0.887511i \(0.652432\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) 0 0
\(34\) 7.93089i 1.36014i
\(35\) 1.30532 + 0.108889i 0.220640 + 0.0184056i
\(36\) 0 0
\(37\) −1.41421 1.41421i −0.232495 0.232495i 0.581238 0.813733i \(-0.302568\pi\)
−0.813733 + 0.581238i \(0.802568\pi\)
\(38\) 0.707107 + 0.707107i 0.114708 + 0.114708i
\(39\) 0 0
\(40\) 2.22833 + 0.185885i 0.352330 + 0.0293911i
\(41\) 5.47424i 0.854932i 0.904031 + 0.427466i \(0.140594\pi\)
−0.904031 + 0.427466i \(0.859406\pi\)
\(42\) 0 0
\(43\) 2.47424 2.47424i 0.377318 0.377318i −0.492816 0.870134i \(-0.664032\pi\)
0.870134 + 0.492816i \(0.164032\pi\)
\(44\) 2.58579 0.389822
\(45\) 0 0
\(46\) 0.456656 0.0673303
\(47\) −9.45400 + 9.45400i −1.37901 + 1.37901i −0.532708 + 0.846299i \(0.678826\pi\)
−0.846299 + 0.532708i \(0.821174\pi\)
\(48\) 0 0
\(49\) 6.65685i 0.950979i
\(50\) 2.90088 + 4.07245i 0.410247 + 0.575932i
\(51\) 0 0
\(52\) 2.88845 + 2.88845i 0.400556 + 0.400556i
\(53\) 4.24264 + 4.24264i 0.582772 + 0.582772i 0.935664 0.352892i \(-0.114802\pi\)
−0.352892 + 0.935664i \(0.614802\pi\)
\(54\) 0 0
\(55\) 3.73446 + 4.41421i 0.503554 + 0.595212i
\(56\) 0.585786i 0.0782790i
\(57\) 0 0
\(58\) 4.08489 4.08489i 0.536372 0.536372i
\(59\) −0.302664 −0.0394035 −0.0197017 0.999806i \(-0.506272\pi\)
−0.0197017 + 0.999806i \(0.506272\pi\)
\(60\) 0 0
\(61\) 1.25646 0.160873 0.0804365 0.996760i \(-0.474369\pi\)
0.0804365 + 0.996760i \(0.474369\pi\)
\(62\) 3.62823 3.62823i 0.460786 0.460786i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −0.759320 + 9.10247i −0.0941821 + 1.12902i
\(66\) 0 0
\(67\) 4.30266 + 4.30266i 0.525654 + 0.525654i 0.919273 0.393619i \(-0.128777\pi\)
−0.393619 + 0.919273i \(0.628777\pi\)
\(68\) 5.60799 + 5.60799i 0.680068 + 0.680068i
\(69\) 0 0
\(70\) −1.00000 + 0.846008i −0.119523 + 0.101117i
\(71\) 7.25646i 0.861183i 0.902547 + 0.430592i \(0.141695\pi\)
−0.902547 + 0.430592i \(0.858305\pi\)
\(72\) 0 0
\(73\) −1.82843 + 1.82843i −0.214001 + 0.214001i −0.805965 0.591964i \(-0.798353\pi\)
0.591964 + 0.805965i \(0.298353\pi\)
\(74\) 2.00000 0.232495
\(75\) 0 0
\(76\) −1.00000 −0.114708
\(77\) −1.07107 + 1.07107i −0.122060 + 0.122060i
\(78\) 0 0
\(79\) 2.61065i 0.293721i −0.989157 0.146860i \(-0.953083\pi\)
0.989157 0.146860i \(-0.0469168\pi\)
\(80\) −1.70711 + 1.44423i −0.190860 + 0.161469i
\(81\) 0 0
\(82\) −3.87087 3.87087i −0.427466 0.427466i
\(83\) −5.45023 5.45023i −0.598241 0.598241i 0.341603 0.939844i \(-0.389030\pi\)
−0.939844 + 0.341603i \(0.889030\pi\)
\(84\) 0 0
\(85\) −1.47424 + 17.6726i −0.159903 + 1.91687i
\(86\) 3.49910i 0.377318i
\(87\) 0 0
\(88\) −1.82843 + 1.82843i −0.194911 + 0.194911i
\(89\) 7.43908 0.788540 0.394270 0.918995i \(-0.370997\pi\)
0.394270 + 0.918995i \(0.370997\pi\)
\(90\) 0 0
\(91\) −2.39287 −0.250841
\(92\) −0.322905 + 0.322905i −0.0336652 + 0.0336652i
\(93\) 0 0
\(94\) 13.3700i 1.37901i
\(95\) −1.44423 1.70711i −0.148174 0.175145i
\(96\) 0 0
\(97\) −6.23356 6.23356i −0.632922 0.632922i 0.315878 0.948800i \(-0.397701\pi\)
−0.948800 + 0.315878i \(0.897701\pi\)
\(98\) 4.70711 + 4.70711i 0.475490 + 0.475490i
\(99\) 0 0
\(100\) −4.93089 0.828427i −0.493089 0.0828427i
\(101\) 1.75736i 0.174864i −0.996170 0.0874319i \(-0.972134\pi\)
0.996170 0.0874319i \(-0.0278660\pi\)
\(102\) 0 0
\(103\) −1.56821 + 1.56821i −0.154520 + 0.154520i −0.780133 0.625613i \(-0.784849\pi\)
0.625613 + 0.780133i \(0.284849\pi\)
\(104\) −4.08489 −0.400556
\(105\) 0 0
\(106\) −6.00000 −0.582772
\(107\) −8.82843 + 8.82843i −0.853476 + 0.853476i −0.990560 0.137083i \(-0.956227\pi\)
0.137083 + 0.990560i \(0.456227\pi\)
\(108\) 0 0
\(109\) 6.81558i 0.652814i 0.945229 + 0.326407i \(0.105838\pi\)
−0.945229 + 0.326407i \(0.894162\pi\)
\(110\) −5.76198 0.480660i −0.549383 0.0458291i
\(111\) 0 0
\(112\) −0.414214 0.414214i −0.0391395 0.0391395i
\(113\) 8.32753 + 8.32753i 0.783388 + 0.783388i 0.980401 0.197013i \(-0.0631241\pi\)
−0.197013 + 0.980401i \(0.563124\pi\)
\(114\) 0 0
\(115\) −1.01758 0.0848857i −0.0948899 0.00791564i
\(116\) 5.77690i 0.536372i
\(117\) 0 0
\(118\) 0.214016 0.214016i 0.0197017 0.0197017i
\(119\) −4.64581 −0.425881
\(120\) 0 0
\(121\) 4.31371 0.392155
\(122\) −0.888450 + 0.888450i −0.0804365 + 0.0804365i
\(123\) 0 0
\(124\) 5.13109i 0.460786i
\(125\) −5.70711 9.61400i −0.510459 0.859902i
\(126\) 0 0
\(127\) 0.311747 + 0.311747i 0.0276631 + 0.0276631i 0.720803 0.693140i \(-0.243773\pi\)
−0.693140 + 0.720803i \(0.743773\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) 0 0
\(130\) −5.89949 6.97334i −0.517420 0.611602i
\(131\) 8.46042i 0.739190i −0.929193 0.369595i \(-0.879496\pi\)
0.929193 0.369595i \(-0.120504\pi\)
\(132\) 0 0
\(133\) 0.414214 0.414214i 0.0359169 0.0359169i
\(134\) −6.08489 −0.525654
\(135\) 0 0
\(136\) −7.93089 −0.680068
\(137\) −7.52310 + 7.52310i −0.642742 + 0.642742i −0.951229 0.308487i \(-0.900177\pi\)
0.308487 + 0.951229i \(0.400177\pi\)
\(138\) 0 0
\(139\) 8.20493i 0.695933i −0.937507 0.347967i \(-0.886872\pi\)
0.937507 0.347967i \(-0.113128\pi\)
\(140\) 0.108889 1.30532i 0.00920281 0.110320i
\(141\) 0 0
\(142\) −5.13109 5.13109i −0.430592 0.430592i
\(143\) −7.46892 7.46892i −0.624582 0.624582i
\(144\) 0 0
\(145\) −9.86179 + 8.34315i −0.818977 + 0.692861i
\(146\) 2.58579i 0.214001i
\(147\) 0 0
\(148\) −1.41421 + 1.41421i −0.116248 + 0.116248i
\(149\) 18.4920 1.51492 0.757461 0.652881i \(-0.226440\pi\)
0.757461 + 0.652881i \(0.226440\pi\)
\(150\) 0 0
\(151\) −15.9595 −1.29877 −0.649384 0.760461i \(-0.724973\pi\)
−0.649384 + 0.760461i \(0.724973\pi\)
\(152\) 0.707107 0.707107i 0.0573539 0.0573539i
\(153\) 0 0
\(154\) 1.51472i 0.122060i
\(155\) −8.75932 + 7.41045i −0.703566 + 0.595222i
\(156\) 0 0
\(157\) 13.6302 + 13.6302i 1.08781 + 1.08781i 0.995754 + 0.0920536i \(0.0293431\pi\)
0.0920536 + 0.995754i \(0.470657\pi\)
\(158\) 1.84601 + 1.84601i 0.146860 + 0.146860i
\(159\) 0 0
\(160\) 0.185885 2.22833i 0.0146955 0.176165i
\(161\) 0.267503i 0.0210822i
\(162\) 0 0
\(163\) 7.14867 7.14867i 0.559927 0.559927i −0.369359 0.929287i \(-0.620423\pi\)
0.929287 + 0.369359i \(0.120423\pi\)
\(164\) 5.47424 0.427466
\(165\) 0 0
\(166\) 7.70779 0.598241
\(167\) 15.9467 15.9467i 1.23399 1.23399i 0.271573 0.962418i \(-0.412456\pi\)
0.962418 0.271573i \(-0.0875437\pi\)
\(168\) 0 0
\(169\) 3.68629i 0.283561i
\(170\) −11.4540 13.5389i −0.878481 1.03838i
\(171\) 0 0
\(172\) −2.47424 2.47424i −0.188659 0.188659i
\(173\) 4.76840 + 4.76840i 0.362535 + 0.362535i 0.864745 0.502210i \(-0.167480\pi\)
−0.502210 + 0.864745i \(0.667480\pi\)
\(174\) 0 0
\(175\) 2.38559 1.69930i 0.180334 0.128455i
\(176\) 2.58579i 0.194911i
\(177\) 0 0
\(178\) −5.26022 + 5.26022i −0.394270 + 0.394270i
\(179\) −19.7289 −1.47461 −0.737303 0.675562i \(-0.763901\pi\)
−0.737303 + 0.675562i \(0.763901\pi\)
\(180\) 0 0
\(181\) 3.87463 0.287999 0.144000 0.989578i \(-0.454004\pi\)
0.144000 + 0.989578i \(0.454004\pi\)
\(182\) 1.69202 1.69202i 0.125421 0.125421i
\(183\) 0 0
\(184\) 0.456656i 0.0336652i
\(185\) −4.45666 0.371771i −0.327660 0.0273331i
\(186\) 0 0
\(187\) −14.5011 14.5011i −1.06042 1.06042i
\(188\) 9.45400 + 9.45400i 0.689504 + 0.689504i
\(189\) 0 0
\(190\) 2.22833 + 0.185885i 0.161660 + 0.0134855i
\(191\) 25.5382i 1.84788i −0.382540 0.923939i \(-0.624951\pi\)
0.382540 0.923939i \(-0.375049\pi\)
\(192\) 0 0
\(193\) −10.5362 + 10.5362i −0.758414 + 0.758414i −0.976034 0.217620i \(-0.930171\pi\)
0.217620 + 0.976034i \(0.430171\pi\)
\(194\) 8.81558 0.632922
\(195\) 0 0
\(196\) −6.65685 −0.475490
\(197\) −13.1357 + 13.1357i −0.935881 + 0.935881i −0.998065 0.0621839i \(-0.980193\pi\)
0.0621839 + 0.998065i \(0.480193\pi\)
\(198\) 0 0
\(199\) 24.0039i 1.70159i 0.525495 + 0.850796i \(0.323880\pi\)
−0.525495 + 0.850796i \(0.676120\pi\)
\(200\) 4.07245 2.90088i 0.287966 0.205123i
\(201\) 0 0
\(202\) 1.24264 + 1.24264i 0.0874319 + 0.0874319i
\(203\) −2.39287 2.39287i −0.167947 0.167947i
\(204\) 0 0
\(205\) 7.90603 + 9.34511i 0.552181 + 0.652691i
\(206\) 2.21778i 0.154520i
\(207\) 0 0
\(208\) 2.88845 2.88845i 0.200278 0.200278i
\(209\) 2.58579 0.178863
\(210\) 0 0
\(211\) −22.8600 −1.57375 −0.786873 0.617115i \(-0.788301\pi\)
−0.786873 + 0.617115i \(0.788301\pi\)
\(212\) 4.24264 4.24264i 0.291386 0.291386i
\(213\) 0 0
\(214\) 12.4853i 0.853476i
\(215\) 0.650431 7.79714i 0.0443590 0.531761i
\(216\) 0 0
\(217\) −2.12537 2.12537i −0.144279 0.144279i
\(218\) −4.81934 4.81934i −0.326407 0.326407i
\(219\) 0 0
\(220\) 4.41421 3.73446i 0.297606 0.251777i
\(221\) 32.3968i 2.17924i
\(222\) 0 0
\(223\) −2.33406 + 2.33406i −0.156300 + 0.156300i −0.780925 0.624625i \(-0.785252\pi\)
0.624625 + 0.780925i \(0.285252\pi\)
\(224\) 0.585786 0.0391395
\(225\) 0 0
\(226\) −11.7769 −0.783388
\(227\) −5.35419 + 5.35419i −0.355370 + 0.355370i −0.862103 0.506733i \(-0.830853\pi\)
0.506733 + 0.862103i \(0.330853\pi\)
\(228\) 0 0
\(229\) 6.96664i 0.460369i −0.973147 0.230184i \(-0.926067\pi\)
0.973147 0.230184i \(-0.0739329\pi\)
\(230\) 0.779561 0.659515i 0.0514027 0.0434871i
\(231\) 0 0
\(232\) −4.08489 4.08489i −0.268186 0.268186i
\(233\) 12.3635 + 12.3635i 0.809963 + 0.809963i 0.984628 0.174665i \(-0.0558843\pi\)
−0.174665 + 0.984628i \(0.555884\pi\)
\(234\) 0 0
\(235\) −2.48528 + 29.7927i −0.162122 + 1.94346i
\(236\) 0.302664i 0.0197017i
\(237\) 0 0
\(238\) 3.28508 3.28508i 0.212940 0.212940i
\(239\) −14.6302 −0.946348 −0.473174 0.880969i \(-0.656892\pi\)
−0.473174 + 0.880969i \(0.656892\pi\)
\(240\) 0 0
\(241\) 18.8951 1.21714 0.608572 0.793499i \(-0.291743\pi\)
0.608572 + 0.793499i \(0.291743\pi\)
\(242\) −3.05025 + 3.05025i −0.196078 + 0.196078i
\(243\) 0 0
\(244\) 1.25646i 0.0804365i
\(245\) −9.61400 11.3640i −0.614216 0.726017i
\(246\) 0 0
\(247\) 2.88845 + 2.88845i 0.183788 + 0.183788i
\(248\) −3.62823 3.62823i −0.230393 0.230393i
\(249\) 0 0
\(250\) 10.8337 + 2.76259i 0.685181 + 0.174721i
\(251\) 27.6987i 1.74833i −0.485632 0.874164i \(-0.661410\pi\)
0.485632 0.874164i \(-0.338590\pi\)
\(252\) 0 0
\(253\) 0.834963 0.834963i 0.0524937 0.0524937i
\(254\) −0.440877 −0.0276631
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −6.76840 + 6.76840i −0.422201 + 0.422201i −0.885961 0.463760i \(-0.846500\pi\)
0.463760 + 0.885961i \(0.346500\pi\)
\(258\) 0 0
\(259\) 1.17157i 0.0727980i
\(260\) 9.10247 + 0.759320i 0.564511 + 0.0470911i
\(261\) 0 0
\(262\) 5.98242 + 5.98242i 0.369595 + 0.369595i
\(263\) 17.9016 + 17.9016i 1.10386 + 1.10386i 0.993941 + 0.109917i \(0.0350586\pi\)
0.109917 + 0.993941i \(0.464941\pi\)
\(264\) 0 0
\(265\) 13.3700 + 1.11531i 0.821311 + 0.0685131i
\(266\) 0.585786i 0.0359169i
\(267\) 0 0
\(268\) 4.30266 4.30266i 0.262827 0.262827i
\(269\) −12.8636 −0.784307 −0.392153 0.919900i \(-0.628270\pi\)
−0.392153 + 0.919900i \(0.628270\pi\)
\(270\) 0 0
\(271\) 2.62349 0.159366 0.0796830 0.996820i \(-0.474609\pi\)
0.0796830 + 0.996820i \(0.474609\pi\)
\(272\) 5.60799 5.60799i 0.340034 0.340034i
\(273\) 0 0
\(274\) 10.6393i 0.642742i
\(275\) 12.7502 + 2.14214i 0.768868 + 0.129176i
\(276\) 0 0
\(277\) 21.0916 + 21.0916i 1.26727 + 1.26727i 0.947493 + 0.319778i \(0.103608\pi\)
0.319778 + 0.947493i \(0.396392\pi\)
\(278\) 5.80176 + 5.80176i 0.347967 + 0.347967i
\(279\) 0 0
\(280\) 0.846008 + 1.00000i 0.0505586 + 0.0597614i
\(281\) 20.0262i 1.19467i 0.801994 + 0.597333i \(0.203773\pi\)
−0.801994 + 0.597333i \(0.796227\pi\)
\(282\) 0 0
\(283\) 2.01104 2.01104i 0.119544 0.119544i −0.644804 0.764348i \(-0.723061\pi\)
0.764348 + 0.644804i \(0.223061\pi\)
\(284\) 7.25646 0.430592
\(285\) 0 0
\(286\) 10.5626 0.624582
\(287\) −2.26750 + 2.26750i −0.133846 + 0.133846i
\(288\) 0 0
\(289\) 45.8991i 2.69995i
\(290\) 1.07384 12.8728i 0.0630581 0.755919i
\(291\) 0 0
\(292\) 1.82843 + 1.82843i 0.107001 + 0.107001i
\(293\) 14.8480 + 14.8480i 0.867428 + 0.867428i 0.992187 0.124759i \(-0.0398159\pi\)
−0.124759 + 0.992187i \(0.539816\pi\)
\(294\) 0 0
\(295\) −0.516680 + 0.437115i −0.0300823 + 0.0254498i
\(296\) 2.00000i 0.116248i
\(297\) 0 0
\(298\) −13.0758 + 13.0758i −0.757461 + 0.757461i
\(299\) 1.86539 0.107878
\(300\) 0 0
\(301\) 2.04972 0.118144
\(302\) 11.2851 11.2851i 0.649384 0.649384i
\(303\) 0 0
\(304\) 1.00000i 0.0573539i
\(305\) 2.14491 1.81461i 0.122817 0.103904i
\(306\) 0 0
\(307\) 10.2675 + 10.2675i 0.585997 + 0.585997i 0.936545 0.350548i \(-0.114005\pi\)
−0.350548 + 0.936545i \(0.614005\pi\)
\(308\) 1.07107 + 1.07107i 0.0610298 + 0.0610298i
\(309\) 0 0
\(310\) 0.953795 11.4338i 0.0541719 0.649394i
\(311\) 14.8257i 0.840686i −0.907365 0.420343i \(-0.861910\pi\)
0.907365 0.420343i \(-0.138090\pi\)
\(312\) 0 0
\(313\) 16.9881 16.9881i 0.960227 0.960227i −0.0390121 0.999239i \(-0.512421\pi\)
0.999239 + 0.0390121i \(0.0124211\pi\)
\(314\) −19.2760 −1.08781
\(315\) 0 0
\(316\) −2.61065 −0.146860
\(317\) −3.53426 + 3.53426i −0.198504 + 0.198504i −0.799358 0.600855i \(-0.794827\pi\)
0.600855 + 0.799358i \(0.294827\pi\)
\(318\) 0 0
\(319\) 14.9378i 0.836358i
\(320\) 1.44423 + 1.70711i 0.0807346 + 0.0954302i
\(321\) 0 0
\(322\) 0.189153 + 0.189153i 0.0105411 + 0.0105411i
\(323\) 5.60799 + 5.60799i 0.312037 + 0.312037i
\(324\) 0 0
\(325\) 11.8498 + 16.6355i 0.657307 + 0.922772i
\(326\) 10.1097i 0.559927i
\(327\) 0 0
\(328\) −3.87087 + 3.87087i −0.213733 + 0.213733i
\(329\) −7.83195 −0.431789
\(330\) 0 0
\(331\) −26.6274 −1.46358 −0.731788 0.681533i \(-0.761314\pi\)
−0.731788 + 0.681533i \(0.761314\pi\)
\(332\) −5.45023 + 5.45023i −0.299120 + 0.299120i
\(333\) 0 0
\(334\) 22.5520i 1.23399i
\(335\) 13.5591 + 1.13109i 0.740814 + 0.0617981i
\(336\) 0 0
\(337\) 14.9291 + 14.9291i 0.813239 + 0.813239i 0.985118 0.171879i \(-0.0549837\pi\)
−0.171879 + 0.985118i \(0.554984\pi\)
\(338\) 2.60660 + 2.60660i 0.141780 + 0.141780i
\(339\) 0 0
\(340\) 17.6726 + 1.47424i 0.958433 + 0.0799517i
\(341\) 13.2679i 0.718497i
\(342\) 0 0
\(343\) 5.65685 5.65685i 0.305441 0.305441i
\(344\) 3.49910 0.188659
\(345\) 0 0
\(346\) −6.74354 −0.362535
\(347\) −0.844906 + 0.844906i −0.0453569 + 0.0453569i −0.729421 0.684065i \(-0.760211\pi\)
0.684065 + 0.729421i \(0.260211\pi\)
\(348\) 0 0
\(349\) 2.94095i 0.157425i 0.996897 + 0.0787127i \(0.0250810\pi\)
−0.996897 + 0.0787127i \(0.974919\pi\)
\(350\) −0.485281 + 2.88845i −0.0259394 + 0.154394i
\(351\) 0 0
\(352\) 1.82843 + 1.82843i 0.0974555 + 0.0974555i
\(353\) −22.1404 22.1404i −1.17842 1.17842i −0.980148 0.198270i \(-0.936468\pi\)
−0.198270 0.980148i \(-0.563532\pi\)
\(354\) 0 0
\(355\) 10.4800 + 12.3875i 0.556219 + 0.657463i
\(356\) 7.43908i 0.394270i
\(357\) 0 0
\(358\) 13.9504 13.9504i 0.737303 0.737303i
\(359\) 33.7080 1.77904 0.889519 0.456898i \(-0.151040\pi\)
0.889519 + 0.456898i \(0.151040\pi\)
\(360\) 0 0
\(361\) −1.00000 −0.0526316
\(362\) −2.73978 + 2.73978i −0.144000 + 0.144000i
\(363\) 0 0
\(364\) 2.39287i 0.125421i
\(365\) −0.480660 + 5.76198i −0.0251589 + 0.301596i
\(366\) 0 0
\(367\) −11.6993 11.6993i −0.610698 0.610698i 0.332430 0.943128i \(-0.392132\pi\)
−0.943128 + 0.332430i \(0.892132\pi\)
\(368\) 0.322905 + 0.322905i 0.0168326 + 0.0168326i
\(369\) 0 0
\(370\) 3.41421 2.88845i 0.177497 0.150163i
\(371\) 3.51472i 0.182475i
\(372\) 0 0
\(373\) 20.4476 20.4476i 1.05874 1.05874i 0.0605713 0.998164i \(-0.480708\pi\)
0.998164 0.0605713i \(-0.0192923\pi\)
\(374\) 20.5076 1.06042
\(375\) 0 0
\(376\) −13.3700 −0.689504
\(377\) 16.6863 16.6863i 0.859388 0.859388i
\(378\) 0 0
\(379\) 22.0039i 1.13027i 0.825000 + 0.565133i \(0.191175\pi\)
−0.825000 + 0.565133i \(0.808825\pi\)
\(380\) −1.70711 + 1.44423i −0.0875727 + 0.0740872i
\(381\) 0 0
\(382\) 18.0582 + 18.0582i 0.923939 + 0.923939i
\(383\) −16.3471 16.3471i −0.835296 0.835296i 0.152939 0.988236i \(-0.451126\pi\)
−0.988236 + 0.152939i \(0.951126\pi\)
\(384\) 0 0
\(385\) −0.281564 + 3.37529i −0.0143498 + 0.172021i
\(386\) 14.9005i 0.758414i
\(387\) 0 0
\(388\) −6.23356 + 6.23356i −0.316461 + 0.316461i
\(389\) 16.6355 0.843454 0.421727 0.906723i \(-0.361424\pi\)
0.421727 + 0.906723i \(0.361424\pi\)
\(390\) 0 0
\(391\) 3.62169 0.183157
\(392\) 4.70711 4.70711i 0.237745 0.237745i
\(393\) 0 0
\(394\) 18.5767i 0.935881i
\(395\) −3.77036 4.45666i −0.189708 0.224239i
\(396\) 0 0
\(397\) −4.83039 4.83039i −0.242430 0.242430i 0.575425 0.817855i \(-0.304837\pi\)
−0.817855 + 0.575425i \(0.804837\pi\)
\(398\) −16.9733 16.9733i −0.850796 0.850796i
\(399\) 0 0
\(400\) −0.828427 + 4.93089i −0.0414214 + 0.246545i
\(401\) 0.0625708i 0.00312464i −0.999999 0.00156232i \(-0.999503\pi\)
0.999999 0.00156232i \(-0.000497302\pi\)
\(402\) 0 0
\(403\) 14.8209 14.8209i 0.738282 0.738282i
\(404\) −1.75736 −0.0874319
\(405\) 0 0
\(406\) 3.38403 0.167947
\(407\) 3.65685 3.65685i 0.181264 0.181264i
\(408\) 0 0
\(409\) 1.75991i 0.0870218i −0.999053 0.0435109i \(-0.986146\pi\)
0.999053 0.0435109i \(-0.0138543\pi\)
\(410\) −12.1984 1.01758i −0.602436 0.0502547i
\(411\) 0 0
\(412\) 1.56821 + 1.56821i 0.0772600 + 0.0772600i
\(413\) −0.125368 0.125368i −0.00616893 0.00616893i
\(414\) 0 0
\(415\) −17.1755 1.43277i −0.843112 0.0703317i
\(416\) 4.08489i 0.200278i
\(417\) 0 0
\(418\) −1.82843 + 1.82843i −0.0894313 + 0.0894313i
\(419\) 10.9147 0.533217 0.266609 0.963805i \(-0.414097\pi\)
0.266609 + 0.963805i \(0.414097\pi\)
\(420\) 0 0
\(421\) 17.1350 0.835109 0.417555 0.908652i \(-0.362887\pi\)
0.417555 + 0.908652i \(0.362887\pi\)
\(422\) 16.1645 16.1645i 0.786873 0.786873i
\(423\) 0 0
\(424\) 6.00000i 0.291386i
\(425\) 23.0066 + 32.2982i 1.11598 + 1.56669i
\(426\) 0 0
\(427\) 0.520442 + 0.520442i 0.0251860 + 0.0251860i
\(428\) 8.82843 + 8.82843i 0.426738 + 0.426738i
\(429\) 0 0
\(430\) 5.05349 + 5.97334i 0.243701 + 0.288060i
\(431\) 17.5814i 0.846868i 0.905927 + 0.423434i \(0.139175\pi\)
−0.905927 + 0.423434i \(0.860825\pi\)
\(432\) 0 0
\(433\) −20.4829 + 20.4829i −0.984345 + 0.984345i −0.999879 0.0155343i \(-0.995055\pi\)
0.0155343 + 0.999879i \(0.495055\pi\)
\(434\) 3.00572 0.144279
\(435\) 0 0
\(436\) 6.81558 0.326407
\(437\) −0.322905 + 0.322905i −0.0154466 + 0.0154466i
\(438\) 0 0
\(439\) 37.2199i 1.77641i 0.459448 + 0.888204i \(0.348047\pi\)
−0.459448 + 0.888204i \(0.651953\pi\)
\(440\) −0.480660 + 5.76198i −0.0229146 + 0.274692i
\(441\) 0 0
\(442\) 22.9080 + 22.9080i 1.08962 + 1.08962i
\(443\) 11.8978 + 11.8978i 0.565282 + 0.565282i 0.930803 0.365521i \(-0.119109\pi\)
−0.365521 + 0.930803i \(0.619109\pi\)
\(444\) 0 0
\(445\) 12.6993 10.7437i 0.602004 0.509300i
\(446\) 3.30086i 0.156300i
\(447\) 0 0
\(448\) −0.414214 + 0.414214i −0.0195698 + 0.0195698i
\(449\) 29.9670 1.41423 0.707116 0.707097i \(-0.249996\pi\)
0.707116 + 0.707097i \(0.249996\pi\)
\(450\) 0 0
\(451\) −14.1552 −0.666543
\(452\) 8.32753 8.32753i 0.391694 0.391694i
\(453\) 0 0
\(454\) 7.57197i 0.355370i
\(455\) −4.08489 + 3.45584i −0.191502 + 0.162012i
\(456\) 0 0
\(457\) −13.0572 13.0572i −0.610792 0.610792i 0.332360 0.943153i \(-0.392155\pi\)
−0.943153 + 0.332360i \(0.892155\pi\)
\(458\) 4.92616 + 4.92616i 0.230184 + 0.230184i
\(459\) 0 0
\(460\) −0.0848857 + 1.01758i −0.00395782 + 0.0474449i
\(461\) 18.5729i 0.865028i −0.901627 0.432514i \(-0.857627\pi\)
0.901627 0.432514i \(-0.142373\pi\)
\(462\) 0 0
\(463\) 16.4780 16.4780i 0.765798 0.765798i −0.211566 0.977364i \(-0.567856\pi\)
0.977364 + 0.211566i \(0.0678564\pi\)
\(464\) 5.77690 0.268186
\(465\) 0 0
\(466\) −17.4847 −0.809963
\(467\) −18.4364 + 18.4364i −0.853136 + 0.853136i −0.990518 0.137383i \(-0.956131\pi\)
0.137383 + 0.990518i \(0.456131\pi\)
\(468\) 0 0
\(469\) 3.56444i 0.164591i
\(470\) −19.3092 22.8240i −0.890669 1.05279i
\(471\) 0 0
\(472\) −0.214016 0.214016i −0.00985087 0.00985087i
\(473\) 6.39785 + 6.39785i 0.294173 + 0.294173i
\(474\) 0 0
\(475\) −4.93089 0.828427i −0.226245 0.0380108i
\(476\) 4.64581i 0.212940i
\(477\) 0 0
\(478\) 10.3451 10.3451i 0.473174 0.473174i
\(479\) −4.15775 −0.189973 −0.0949863 0.995479i \(-0.530281\pi\)
−0.0949863 + 0.995479i \(0.530281\pi\)
\(480\) 0 0
\(481\) 8.16977 0.372510
\(482\) −13.3609 + 13.3609i −0.608572 + 0.608572i
\(483\) 0 0
\(484\) 4.31371i 0.196078i
\(485\) −19.6440 1.63869i −0.891988 0.0744090i
\(486\) 0 0
\(487\) 1.35795 + 1.35795i 0.0615347 + 0.0615347i 0.737204 0.675670i \(-0.236145\pi\)
−0.675670 + 0.737204i \(0.736145\pi\)
\(488\) 0.888450 + 0.888450i 0.0402183 + 0.0402183i
\(489\) 0 0
\(490\) 14.8337 + 1.23741i 0.670116 + 0.0559006i
\(491\) 11.1794i 0.504521i −0.967659 0.252261i \(-0.918826\pi\)
0.967659 0.252261i \(-0.0811740\pi\)
\(492\) 0 0
\(493\) 32.3968 32.3968i 1.45908 1.45908i
\(494\) −4.08489 −0.183788
\(495\) 0 0
\(496\) 5.13109 0.230393
\(497\) −3.00572 + 3.00572i −0.134825 + 0.134825i
\(498\) 0 0
\(499\) 7.15341i 0.320230i 0.987098 + 0.160115i \(0.0511866\pi\)
−0.987098 + 0.160115i \(0.948813\pi\)
\(500\) −9.61400 + 5.70711i −0.429951 + 0.255230i
\(501\) 0 0
\(502\) 19.5859 + 19.5859i 0.874164 + 0.874164i
\(503\) −5.91974 5.91974i −0.263948 0.263948i 0.562708 0.826656i \(-0.309760\pi\)
−0.826656 + 0.562708i \(0.809760\pi\)
\(504\) 0 0
\(505\) −2.53802 3.00000i −0.112941 0.133498i
\(506\) 1.18082i 0.0524937i
\(507\) 0 0
\(508\) 0.311747 0.311747i 0.0138316 0.0138316i
\(509\) 2.87815 0.127572 0.0637859 0.997964i \(-0.479683\pi\)
0.0637859 + 0.997964i \(0.479683\pi\)
\(510\) 0 0
\(511\) −1.51472 −0.0670072
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) 9.57197i 0.422201i
\(515\) −0.412252 + 4.94194i −0.0181660 + 0.217768i
\(516\) 0 0
\(517\) −24.4460 24.4460i −1.07513 1.07513i
\(518\) 0.828427 + 0.828427i 0.0363990 + 0.0363990i
\(519\) 0 0
\(520\) −6.97334 + 5.89949i −0.305801 + 0.258710i
\(521\) 26.1865i 1.14725i −0.819117 0.573627i \(-0.805536\pi\)
0.819117 0.573627i \(-0.194464\pi\)
\(522\) 0 0
\(523\) −8.12929 + 8.12929i −0.355469 + 0.355469i −0.862140 0.506671i \(-0.830876\pi\)
0.506671 + 0.862140i \(0.330876\pi\)
\(524\) −8.46042 −0.369595
\(525\) 0 0
\(526\) −25.3166 −1.10386
\(527\) 28.7751 28.7751i 1.25346 1.25346i
\(528\) 0 0
\(529\) 22.7915i 0.990933i
\(530\) −10.2426 + 8.66535i −0.444912 + 0.376399i
\(531\) 0 0
\(532\) −0.414214 0.414214i −0.0179584 0.0179584i
\(533\) −15.8121 15.8121i −0.684896 0.684896i
\(534\) 0 0
\(535\) −2.32083 + 27.8213i −0.100338 + 1.20282i
\(536\) 6.08489i 0.262827i
\(537\) 0 0
\(538\) 9.09593 9.09593i 0.392153 0.392153i
\(539\) 17.2132 0.741425
\(540\) 0 0
\(541\) −4.59780 −0.197675 −0.0988375 0.995104i \(-0.531512\pi\)
−0.0988375 + 0.995104i \(0.531512\pi\)
\(542\) −1.85509 + 1.85509i −0.0796830 + 0.0796830i
\(543\) 0 0
\(544\) 7.93089i 0.340034i
\(545\) 9.84323 + 11.6349i 0.421638 + 0.498385i
\(546\) 0 0
\(547\) 20.6679 + 20.6679i 0.883696 + 0.883696i 0.993908 0.110213i \(-0.0351531\pi\)
−0.110213 + 0.993908i \(0.535153\pi\)
\(548\) 7.52310 + 7.52310i 0.321371 + 0.321371i
\(549\) 0 0
\(550\) −10.5305 + 7.50106i −0.449022 + 0.319846i
\(551\) 5.77690i 0.246104i
\(552\) 0 0
\(553\) 1.08137 1.08137i 0.0459844 0.0459844i
\(554\) −29.8280 −1.26727
\(555\) 0 0
\(556\) −8.20493 −0.347967
\(557\) −0.618873 + 0.618873i −0.0262225 + 0.0262225i −0.720096 0.693874i \(-0.755902\pi\)
0.693874 + 0.720096i \(0.255902\pi\)
\(558\) 0 0
\(559\) 14.2934i 0.604547i
\(560\) −1.30532 0.108889i −0.0551600 0.00460140i
\(561\) 0 0
\(562\) −14.1607 14.1607i −0.597333 0.597333i
\(563\) −13.0462 13.0462i −0.549832 0.549832i 0.376560 0.926392i \(-0.377107\pi\)
−0.926392 + 0.376560i \(0.877107\pi\)
\(564\) 0 0
\(565\) 26.2428 + 2.18915i 1.10404 + 0.0920984i
\(566\) 2.84405i 0.119544i
\(567\) 0 0
\(568\) −5.13109 + 5.13109i −0.215296 + 0.215296i
\(569\) −6.82311 −0.286039 −0.143020 0.989720i \(-0.545681\pi\)
−0.143020 + 0.989720i \(0.545681\pi\)
\(570\) 0 0
\(571\) 17.9637 0.751756 0.375878 0.926669i \(-0.377341\pi\)
0.375878 + 0.926669i \(0.377341\pi\)
\(572\) −7.46892 + 7.46892i −0.312291 + 0.312291i
\(573\) 0 0
\(574\) 3.20673i 0.133846i
\(575\) −1.85971 + 1.32471i −0.0775554 + 0.0552441i
\(576\) 0 0
\(577\) −14.4456 14.4456i −0.601379 0.601379i 0.339300 0.940678i \(-0.389810\pi\)
−0.940678 + 0.339300i \(0.889810\pi\)
\(578\) 32.4555 + 32.4555i 1.34997 + 1.34997i
\(579\) 0 0
\(580\) 8.34315 + 9.86179i 0.346430 + 0.409488i
\(581\) 4.51512i 0.187319i
\(582\) 0 0
\(583\) −10.9706 + 10.9706i −0.454354 + 0.454354i
\(584\) −2.58579 −0.107001
\(585\) 0 0
\(586\) −20.9982 −0.867428
\(587\) 29.4164 29.4164i 1.21415 1.21415i 0.244497 0.969650i \(-0.421377\pi\)
0.969650 0.244497i \(-0.0786227\pi\)
\(588\) 0 0
\(589\) 5.13109i 0.211423i
\(590\) 0.0562608 0.674435i 0.00231622 0.0277660i
\(591\) 0 0
\(592\) 1.41421 + 1.41421i 0.0581238 + 0.0581238i
\(593\) −11.7724 11.7724i −0.483436 0.483436i 0.422791 0.906227i \(-0.361050\pi\)
−0.906227 + 0.422791i \(0.861050\pi\)
\(594\) 0 0
\(595\) −7.93089 + 6.70960i −0.325135 + 0.275067i
\(596\) 18.4920i 0.757461i
\(597\) 0 0
\(598\) −1.31903 + 1.31903i −0.0539391 + 0.0539391i
\(599\) −23.1258 −0.944893 −0.472447 0.881359i \(-0.656629\pi\)
−0.472447 + 0.881359i \(0.656629\pi\)
\(600\) 0 0
\(601\) 9.92458 0.404832 0.202416 0.979300i \(-0.435121\pi\)
0.202416 + 0.979300i \(0.435121\pi\)
\(602\) −1.44937 + 1.44937i −0.0590721 + 0.0590721i
\(603\) 0 0
\(604\) 15.9595i 0.649384i
\(605\) 7.36396 6.22997i 0.299388 0.253284i
\(606\) 0 0
\(607\) −30.4486 30.4486i −1.23587 1.23587i −0.961674 0.274195i \(-0.911589\pi\)
−0.274195 0.961674i \(-0.588411\pi\)
\(608\) −0.707107 0.707107i −0.0286770 0.0286770i
\(609\) 0 0
\(610\) −0.233557 + 2.79980i −0.00945646 + 0.113361i
\(611\) 54.6148i 2.20948i
\(612\) 0 0
\(613\) 0.667153 0.667153i 0.0269460 0.0269460i −0.693505 0.720451i \(-0.743935\pi\)
0.720451 + 0.693505i \(0.243935\pi\)
\(614\) −14.5204 −0.585997
\(615\) 0 0
\(616\) −1.51472 −0.0610298
\(617\) −7.47510 + 7.47510i −0.300936 + 0.300936i −0.841380 0.540444i \(-0.818256\pi\)
0.540444 + 0.841380i \(0.318256\pi\)
\(618\) 0 0
\(619\) 23.7694i 0.955372i −0.878531 0.477686i \(-0.841476\pi\)
0.878531 0.477686i \(-0.158524\pi\)
\(620\) 7.41045 + 8.75932i 0.297611 + 0.351783i
\(621\) 0 0
\(622\) 10.4833 + 10.4833i 0.420343 + 0.420343i
\(623\) 3.08137 + 3.08137i 0.123452 + 0.123452i
\(624\) 0 0
\(625\) −23.6274 8.16977i −0.945097 0.326791i
\(626\) 24.0249i 0.960227i
\(627\) 0 0
\(628\) 13.6302 13.6302i 0.543904 0.543904i
\(629\) 15.8618 0.632451
\(630\) 0 0
\(631\) −17.4168 −0.693350 −0.346675 0.937985i \(-0.612689\pi\)
−0.346675 + 0.937985i \(0.612689\pi\)
\(632\) 1.84601 1.84601i 0.0734302 0.0734302i
\(633\) 0 0
\(634\) 4.99820i 0.198504i
\(635\) 0.982420 + 0.0819527i 0.0389861 + 0.00325219i
\(636\) 0 0
\(637\) 19.2280 + 19.2280i 0.761841 + 0.761841i
\(638\) 10.5626 + 10.5626i 0.418179 + 0.418179i
\(639\) 0 0
\(640\) −2.22833 0.185885i −0.0880824 0.00734776i
\(641\) 0.0444040i 0.00175385i 1.00000 0.000876925i \(0.000279134\pi\)
−1.00000 0.000876925i \(0.999721\pi\)
\(642\) 0 0
\(643\) 6.15873 6.15873i 0.242876 0.242876i −0.575163 0.818039i \(-0.695061\pi\)
0.818039 + 0.575163i \(0.195061\pi\)
\(644\) −0.267503 −0.0105411
\(645\) 0 0
\(646\) −7.93089 −0.312037
\(647\) −25.3237 + 25.3237i −0.995575 + 0.995575i −0.999990 0.00441480i \(-0.998595\pi\)
0.00441480 + 0.999990i \(0.498595\pi\)
\(648\) 0 0
\(649\) 0.782624i 0.0307207i
\(650\) −20.1421 3.38403i −0.790040 0.132733i
\(651\) 0 0
\(652\) −7.14867 7.14867i −0.279964 0.279964i
\(653\) 21.4945 + 21.4945i 0.841144 + 0.841144i 0.989008 0.147864i \(-0.0472397\pi\)
−0.147864 + 0.989008i \(0.547240\pi\)
\(654\) 0 0
\(655\) −12.2188 14.4428i −0.477426 0.564328i
\(656\) 5.47424i 0.213733i
\(657\) 0 0
\(658\) 5.53802 5.53802i 0.215895 0.215895i
\(659\) 49.7013 1.93609 0.968043 0.250784i \(-0.0806884\pi\)
0.968043 + 0.250784i \(0.0806884\pi\)
\(660\) 0 0
\(661\) −13.6334 −0.530276 −0.265138 0.964210i \(-0.585418\pi\)
−0.265138 + 0.964210i \(0.585418\pi\)
\(662\) 18.8284 18.8284i 0.731788 0.731788i
\(663\) 0 0
\(664\) 7.70779i 0.299120i
\(665\) 0.108889 1.30532i 0.00422254 0.0506183i
\(666\) 0 0
\(667\) 1.86539 + 1.86539i 0.0722282 + 0.0722282i
\(668\) −15.9467 15.9467i −0.616995 0.616995i
\(669\) 0 0
\(670\) −10.3875 + 8.78795i −0.401306 + 0.339508i
\(671\) 3.24893i 0.125424i
\(672\) 0 0
\(673\) 18.0878 18.0878i 0.697234 0.697234i −0.266579 0.963813i \(-0.585893\pi\)
0.963813 + 0.266579i \(0.0858933\pi\)
\(674\) −21.1129 −0.813239
\(675\) 0 0
\(676\) −3.68629 −0.141780
\(677\) −26.8000 + 26.8000i −1.03001 + 1.03001i −0.0304705 + 0.999536i \(0.509701\pi\)
−0.999536 + 0.0304705i \(0.990299\pi\)
\(678\) 0 0
\(679\) 5.16405i 0.198178i
\(680\) −13.5389 + 11.4540i −0.519192 + 0.439241i
\(681\) 0 0
\(682\) 9.38183 + 9.38183i 0.359249 + 0.359249i
\(683\) −33.1755 33.1755i −1.26943 1.26943i −0.946385 0.323040i \(-0.895295\pi\)
−0.323040 0.946385i \(-0.604705\pi\)
\(684\) 0 0
\(685\) −1.97769 + 23.7078i −0.0755635 + 0.905828i
\(686\) 8.00000i 0.305441i
\(687\) 0 0
\(688\) −2.47424 + 2.47424i −0.0943294 + 0.0943294i
\(689\) −24.5093 −0.933731
\(690\) 0 0
\(691\) −0.173374 −0.00659547 −0.00329773 0.999995i \(-0.501050\pi\)
−0.00329773 + 0.999995i \(0.501050\pi\)
\(692\) 4.76840 4.76840i 0.181268 0.181268i
\(693\) 0 0
\(694\) 1.19488i 0.0453569i
\(695\) −11.8498 14.0067i −0.449487 0.531304i
\(696\) 0 0
\(697\) −30.6995 30.6995i −1.16282 1.16282i
\(698\) −2.07956 2.07956i −0.0787127 0.0787127i
\(699\) 0 0
\(700\) −1.69930 2.38559i −0.0642274 0.0901668i
\(701\) 29.3502i 1.10854i 0.832336 + 0.554272i \(0.187003\pi\)
−0.832336 + 0.554272i \(0.812997\pi\)
\(702\) 0 0
\(703\) −1.41421 + 1.41421i −0.0533381 + 0.0533381i
\(704\) −2.58579 −0.0974555
\(705\) 0 0
\(706\) 31.3113 1.17842
\(707\) 0.727922 0.727922i 0.0273763 0.0273763i
\(708\) 0 0
\(709\) 8.10697i 0.304464i −0.988345 0.152232i \(-0.951354\pi\)
0.988345 0.152232i \(-0.0486461\pi\)
\(710\) −16.1698 1.34887i −0.606841 0.0506222i
\(711\) 0 0
\(712\) 5.26022 + 5.26022i 0.197135 + 0.197135i
\(713\) 1.65685 + 1.65685i 0.0620497 + 0.0620497i
\(714\) 0 0
\(715\) −23.5370 1.96344i −0.880235 0.0734285i
\(716\) 19.7289i 0.737303i
\(717\) 0 0
\(718\) −23.8351 + 23.8351i −0.889519 + 0.889519i
\(719\) 7.30169 0.272307 0.136154 0.990688i \(-0.456526\pi\)
0.136154 + 0.990688i \(0.456526\pi\)
\(720\) 0 0
\(721\) −1.29914 −0.0483827
\(722\) 0.707107 0.707107i 0.0263158 0.0263158i
\(723\) 0 0
\(724\) 3.87463i 0.144000i
\(725\) −4.78574 + 28.4853i −0.177738 + 1.05792i
\(726\) 0 0
\(727\) 5.44464 + 5.44464i 0.201931 + 0.201931i 0.800827 0.598896i \(-0.204394\pi\)
−0.598896 + 0.800827i \(0.704394\pi\)
\(728\) −1.69202 1.69202i −0.0627103 0.0627103i
\(729\) 0 0
\(730\) −3.73446 4.41421i −0.138218 0.163377i
\(731\) 27.7510i 1.02641i
\(732\) 0 0
\(733\) 32.7419 32.7419i 1.20935 1.20935i 0.238112 0.971238i \(-0.423471\pi\)
0.971238 0.238112i \(-0.0765285\pi\)
\(734\) 16.5453 0.610698
\(735\) 0 0
\(736\) −0.456656 −0.0168326
\(737\) −11.1258 + 11.1258i −0.409823 + 0.409823i
\(738\) 0 0
\(739\) 5.63116i 0.207146i −0.994622 0.103573i \(-0.966973\pi\)
0.994622 0.103573i \(-0.0330275\pi\)
\(740\) −0.371771 + 4.45666i −0.0136666 + 0.163830i
\(741\) 0 0
\(742\) −2.48528 2.48528i −0.0912375 0.0912375i
\(743\) 16.0316 + 16.0316i 0.588141 + 0.588141i 0.937128 0.348987i \(-0.113474\pi\)
−0.348987 + 0.937128i \(0.613474\pi\)
\(744\) 0 0
\(745\) 31.5678 26.7066i 1.15655 0.978453i
\(746\) 28.9172i 1.05874i
\(747\) 0 0
\(748\) −14.5011 + 14.5011i −0.530211 + 0.530211i
\(749\) −7.31371 −0.267237
\(750\) 0 0
\(751\) −1.26930 −0.0463176 −0.0231588 0.999732i \(-0.507372\pi\)
−0.0231588 + 0.999732i \(0.507372\pi\)
\(752\) 9.45400 9.45400i 0.344752 0.344752i
\(753\) 0 0
\(754\) 23.5980i 0.859388i
\(755\) −27.2446 + 23.0491i −0.991533 + 0.838844i
\(756\) 0 0
\(757\) 9.23732 + 9.23732i 0.335736 + 0.335736i 0.854760 0.519024i \(-0.173704\pi\)
−0.519024 + 0.854760i \(0.673704\pi\)
\(758\) −15.5591 15.5591i −0.565133 0.565133i
\(759\) 0 0
\(760\) 0.185885 2.22833i 0.00674277 0.0808300i
\(761\) 44.0533i 1.59693i −0.602041 0.798466i \(-0.705645\pi\)
0.602041 0.798466i \(-0.294355\pi\)
\(762\) 0 0
\(763\) −2.82311 + 2.82311i −0.102203 + 0.102203i
\(764\) −25.5382 −0.923939
\(765\) 0 0
\(766\) 23.1182 0.835296
\(767\) 0.874230 0.874230i 0.0315666 0.0315666i
\(768\) 0 0
\(769\) 29.1403i 1.05083i 0.850847 + 0.525414i \(0.176089\pi\)
−0.850847 + 0.525414i \(0.823911\pi\)
\(770\) −2.18759 2.58579i −0.0788354 0.0931853i
\(771\) 0 0
\(772\) 10.5362 + 10.5362i 0.379207 + 0.379207i
\(773\) 22.7098 + 22.7098i 0.816813 + 0.816813i 0.985645 0.168832i \(-0.0539995\pi\)
−0.168832 + 0.985645i \(0.553999\pi\)
\(774\) 0 0
\(775\) −4.25074 + 25.3009i −0.152691 + 0.908834i
\(776\) 8.81558i 0.316461i
\(777\) 0 0
\(778\) −11.7631 + 11.7631i −0.421727 + 0.421727i
\(779\) 5.47424 0.196135
\(780\) 0 0
\(781\) −18.7637 −0.671416
\(782\) −2.56092 + 2.56092i −0.0915785 + 0.0915785i
\(783\) 0 0
\(784\) 6.65685i 0.237745i
\(785\) 42.9533 + 3.58313i 1.53307 + 0.127887i
\(786\) 0 0
\(787\) −19.3062 19.3062i −0.688191 0.688191i 0.273641 0.961832i \(-0.411772\pi\)
−0.961832 + 0.273641i \(0.911772\pi\)
\(788\) 13.1357 + 13.1357i 0.467940 + 0.467940i
\(789\) 0 0
\(790\) 5.81738 + 0.485281i 0.206973 + 0.0172655i
\(791\) 6.89875i 0.245291i
\(792\) 0 0
\(793\) −3.62922 + 3.62922i −0.128877 + 0.128877i
\(794\) 6.83120 0.242430
\(795\) 0 0
\(796\) 24.0039 0.850796
\(797\) −24.6302 + 24.6302i −0.872446 + 0.872446i −0.992739 0.120292i \(-0.961617\pi\)
0.120292 + 0.992739i \(0.461617\pi\)
\(798\) 0 0
\(799\) 106.036i 3.75128i
\(800\) −2.90088 4.07245i −0.102562 0.143983i
\(801\) 0 0
\(802\) 0.0442443 + 0.0442443i 0.00156232 + 0.00156232i
\(803\) −4.72792 4.72792i −0.166845 0.166845i
\(804\) 0 0
\(805\) −0.386335 0.456656i −0.0136165 0.0160950i
\(806\) 20.9599i 0.738282i
\(807\) 0 0
\(808\) 1.24264 1.24264i 0.0437159 0.0437159i
\(809\) −1.48625 −0.0522539 −0.0261269 0.999659i \(-0.508317\pi\)
−0.0261269 + 0.999659i \(0.508317\pi\)
\(810\) 0 0
\(811\) −9.68089 −0.339942 −0.169971 0.985449i \(-0.554367\pi\)
−0.169971 + 0.985449i \(0.554367\pi\)
\(812\) −2.39287 + 2.39287i −0.0839733 + 0.0839733i
\(813\) 0 0
\(814\) 5.17157i 0.181264i
\(815\) 1.87925 22.5278i 0.0658274 0.789116i
\(816\) 0 0
\(817\) −2.47424 2.47424i −0.0865626 0.0865626i
\(818\) 1.24444 + 1.24444i 0.0435109 + 0.0435109i
\(819\) 0 0
\(820\) 9.34511 7.90603i 0.326345 0.276091i
\(821\) 38.3719i 1.33919i 0.742727 + 0.669595i \(0.233532\pi\)
−0.742727 + 0.669595i \(0.766468\pi\)
\(822\) 0 0
\(823\) −6.50662 + 6.50662i −0.226807 + 0.226807i −0.811357 0.584551i \(-0.801271\pi\)
0.584551 + 0.811357i \(0.301271\pi\)
\(824\) −2.21778 −0.0772600
\(825\) 0 0
\(826\) 0.177296 0.00616893
\(827\) −32.9172 + 32.9172i −1.14464 + 1.14464i −0.157054 + 0.987590i \(0.550200\pi\)
−0.987590 + 0.157054i \(0.949800\pi\)
\(828\) 0 0
\(829\) 12.2217i 0.424477i 0.977218 + 0.212239i \(0.0680754\pi\)
−0.977218 + 0.212239i \(0.931925\pi\)
\(830\) 13.1580 11.1318i 0.456722 0.386390i
\(831\) 0 0
\(832\) −2.88845 2.88845i −0.100139 0.100139i
\(833\) 37.3316 + 37.3316i 1.29346 + 1.29346i
\(834\) 0 0
\(835\) 4.19209 50.2533i 0.145073 1.73909i
\(836\) 2.58579i 0.0894313i
\(837\) 0 0
\(838\) −7.71785 + 7.71785i −0.266609 + 0.266609i
\(839\) 53.6390 1.85182 0.925912 0.377739i \(-0.123298\pi\)
0.925912 + 0.377739i \(0.123298\pi\)
\(840\) 0 0
\(841\) 4.37258 0.150779
\(842\) −12.1163 + 12.1163i −0.417555 + 0.417555i
\(843\) 0 0
\(844\) 22.8600i 0.786873i
\(845\) −5.32384 6.29289i −0.183145 0.216482i
\(846\) 0 0
\(847\) 1.78680 + 1.78680i 0.0613951 + 0.0613951i
\(848\) −4.24264 4.24264i −0.145693 0.145693i
\(849\) 0 0
\(850\) −39.1064 6.57017i −1.34134 0.225355i
\(851\) 0.913313i 0.0313080i
\(852\) 0 0
\(853\) −37.1202 + 37.1202i −1.27097 + 1.27097i −0.325393 + 0.945579i \(0.605496\pi\)
−0.945579 + 0.325393i \(0.894504\pi\)
\(854\) −0.736016 −0.0251860
\(855\) 0 0
\(856\) −12.4853 −0.426738
\(857\) 4.81281 4.81281i 0.164402 0.164402i −0.620111 0.784514i \(-0.712913\pi\)
0.784514 + 0.620111i \(0.212913\pi\)
\(858\) 0 0
\(859\) 13.8969i 0.474158i 0.971490 + 0.237079i \(0.0761900\pi\)
−0.971490 + 0.237079i \(0.923810\pi\)
\(860\) −7.79714 0.650431i −0.265880 0.0221795i
\(861\) 0 0
\(862\) −12.4320 12.4320i −0.423434 0.423434i
\(863\) −37.9338 37.9338i −1.29128 1.29128i −0.933994 0.357288i \(-0.883701\pi\)
−0.357288 0.933994i \(-0.616299\pi\)
\(864\) 0 0
\(865\) 15.0268 + 1.25353i 0.510927 + 0.0426211i
\(866\) 28.9672i 0.984345i
\(867\) 0 0
\(868\) −2.12537 + 2.12537i −0.0721397 + 0.0721397i
\(869\) 6.75058 0.228998
\(870\) 0 0
\(871\) −24.8561 −0.842216
\(872\) −4.81934 + 4.81934i −0.163204 + 0.163204i
\(873\) 0 0
\(874\) 0.456656i 0.0154466i
\(875\) 1.61829 6.34621i 0.0547081 0.214541i
\(876\) 0 0
\(877\) −33.2632 33.2632i −1.12322 1.12322i −0.991255 0.131962i \(-0.957872\pi\)
−0.131962 0.991255i \(-0.542128\pi\)
\(878\) −26.3184 26.3184i −0.888204 0.888204i
\(879\) 0 0
\(880\) −3.73446 4.41421i −0.125889 0.148803i
\(881\) 24.6436i 0.830263i 0.909761 + 0.415132i \(0.136264\pi\)
−0.909761 + 0.415132i \(0.863736\pi\)
\(882\) 0 0
\(883\) −30.9401 + 30.9401i −1.04122 + 1.04122i −0.0421053 + 0.999113i \(0.513407\pi\)
−0.999113 + 0.0421053i \(0.986593\pi\)
\(884\) −32.3968 −1.08962
\(885\) 0 0
\(886\) −16.8260 −0.565282
\(887\) −6.63689 + 6.63689i −0.222845 + 0.222845i −0.809695 0.586850i \(-0.800368\pi\)
0.586850 + 0.809695i \(0.300368\pi\)
\(888\) 0 0
\(889\) 0.258260i 0.00866176i
\(890\) −1.38282 + 16.5767i −0.0463521 + 0.555652i
\(891\) 0 0
\(892\) 2.33406 + 2.33406i 0.0781502 + 0.0781502i
\(893\) 9.45400 + 9.45400i 0.316366 + 0.316366i
\(894\) 0 0
\(895\) −33.6793 + 28.4930i −1.12578 + 0.952415i
\(896\) 0.585786i 0.0195698i
\(897\) 0 0
\(898\) −21.1899 + 21.1899i −0.707116 + 0.707116i
\(899\) 29.6418 0.988610
\(900\) 0 0
\(901\) −47.5854 −1.58530
\(902\) 10.0092 10.0092i 0.333271 0.333271i
\(903\) 0 0
\(904\) 11.7769i 0.391694i
\(905\) 6.61441 5.59584i 0.219870 0.186012i
\(906\) 0 0
\(907\) −16.5168 16.5168i −0.548433 0.548433i 0.377555 0.925987i \(-0.376765\pi\)
−0.925987 + 0.377555i \(0.876765\pi\)
\(908\) 5.35419 + 5.35419i 0.177685 + 0.177685i
\(909\) 0 0
\(910\) 0.444800 5.33210i 0.0147450 0.176757i
\(911\) 13.8582i 0.459142i −0.973292 0.229571i \(-0.926268\pi\)
0.973292 0.229571i \(-0.0737323\pi\)
\(912\) 0 0
\(913\) 14.0931 14.0931i 0.466415 0.466415i
\(914\) 18.4657 0.610792
\(915\) 0 0
\(916\) −6.96664 −0.230184
\(917\) 3.50442 3.50442i 0.115726 0.115726i
\(918\) 0 0
\(919\) 15.3137i 0.505153i 0.967577 + 0.252576i \(0.0812779\pi\)
−0.967577 + 0.252576i \(0.918722\pi\)
\(920\) −0.659515 0.779561i −0.0217436 0.0257014i
\(921\) 0 0
\(922\) 13.1331 + 13.1331i 0.432514 + 0.432514i
\(923\) −20.9599 20.9599i −0.689904 0.689904i
\(924\) 0 0
\(925\) −8.14491 + 5.80176i −0.267803 + 0.190761i
\(926\) 23.3034i 0.765798i
\(927\) 0 0
\(928\) −4.08489 + 4.08489i −0.134093 + 0.134093i
\(929\) −16.1192 −0.528854 −0.264427 0.964406i \(-0.585183\pi\)
−0.264427 + 0.964406i \(0.585183\pi\)
\(930\) 0 0
\(931\) −6.65685 −0.218170
\(932\) 12.3635 12.3635i 0.404981 0.404981i
\(933\) 0 0
\(934\) 26.0730i 0.853136i
\(935\) −45.6977 3.81206i −1.49447 0.124668i
\(936\) 0 0
\(937\) −7.44620 7.44620i −0.243257 0.243257i 0.574939 0.818196i \(-0.305026\pi\)
−0.818196 + 0.574939i \(0.805026\pi\)
\(938\) −2.52044 2.52044i −0.0822954 0.0822954i
\(939\) 0 0
\(940\) 29.7927 + 2.48528i 0.971730 + 0.0810609i
\(941\) 39.9324i 1.30176i −0.759181 0.650880i \(-0.774400\pi\)
0.759181 0.650880i \(-0.225600\pi\)
\(942\) 0 0
\(943\) 1.76766 1.76766i 0.0575629 0.0575629i
\(944\) 0.302664 0.00985087
\(945\) 0 0
\(946\) −9.04792 −0.294173
\(947\) −3.65517 + 3.65517i −0.118777 + 0.118777i −0.763997 0.645220i \(-0.776766\pi\)
0.645220 + 0.763997i \(0.276766\pi\)
\(948\) 0 0
\(949\) 10.5626i 0.342878i
\(950\) 4.07245 2.90088i 0.132128 0.0941170i
\(951\) 0 0
\(952\) −3.28508 3.28508i −0.106470 0.106470i
\(953\) −9.64123 9.64123i −0.312310 0.312310i 0.533494 0.845804i \(-0.320879\pi\)
−0.845804 + 0.533494i \(0.820879\pi\)
\(954\) 0 0
\(955\) −36.8829 43.5964i −1.19350 1.41075i
\(956\) 14.6302i 0.473174i
\(957\) 0 0
\(958\) 2.93998 2.93998i 0.0949863 0.0949863i
\(959\) −6.23234 −0.201253
\(960\) 0 0
\(961\) −4.67190 −0.150707
\(962\) −5.77690 + 5.77690i −0.186255 + 0.186255i
\(963\) 0 0
\(964\) 18.8951i 0.608572i
\(965\) −2.76978 + 33.2031i −0.0891623 + 1.06885i
\(966\) 0 0
\(967\) 7.76308 + 7.76308i 0.249644 + 0.249644i 0.820824 0.571181i \(-0.193514\pi\)
−0.571181 + 0.820824i \(0.693514\pi\)
\(968\) 3.05025 + 3.05025i 0.0980388 + 0.0980388i
\(969\) 0 0
\(970\) 15.0491 12.7317i 0.483199 0.408790i
\(971\) 19.7680i 0.634385i −0.948361 0.317192i \(-0.897260\pi\)
0.948361 0.317192i \(-0.102740\pi\)
\(972\) 0 0
\(973\) 3.39859 3.39859i 0.108954 0.108954i
\(974\) −1.92044 −0.0615347
\(975\) 0 0
\(976\) −1.25646 −0.0402183
\(977\) 31.6856 31.6856i 1.01371 1.01371i 0.0138087 0.999905i \(-0.495604\pi\)
0.999905 0.0138087i \(-0.00439560\pi\)
\(978\) 0 0
\(979\) 19.2359i 0.614781i
\(980\) −11.3640 + 9.61400i −0.363008 + 0.307108i
\(981\) 0 0
\(982\) 7.90506 + 7.90506i 0.252261 + 0.252261i
\(983\) 4.93563 + 4.93563i 0.157422 + 0.157422i 0.781423 0.624001i \(-0.214494\pi\)
−0.624001 + 0.781423i \(0.714494\pi\)
\(984\) 0 0
\(985\) −3.45314 + 41.3950i −0.110026 + 1.31895i
\(986\) 45.8160i 1.45908i
\(987\) 0 0
\(988\) 2.88845 2.88845i 0.0918938 0.0918938i
\(989\) −1.59789 −0.0508098
\(990\) 0 0
\(991\) −12.9226 −0.410499 −0.205249 0.978710i \(-0.565801\pi\)
−0.205249 + 0.978710i \(0.565801\pi\)
\(992\) −3.62823 + 3.62823i −0.115196 + 0.115196i
\(993\) 0 0
\(994\) 4.25074i 0.134825i
\(995\) 34.6671 + 40.9773i 1.09902 + 1.29907i
\(996\) 0 0
\(997\) 30.0231 + 30.0231i 0.950840 + 0.950840i 0.998847 0.0480071i \(-0.0152870\pi\)
−0.0480071 + 0.998847i \(0.515287\pi\)
\(998\) −5.05822 5.05822i −0.160115 0.160115i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1710.2.n.g.647.1 yes 8
3.2 odd 2 1710.2.n.f.647.4 8
5.3 odd 4 1710.2.n.f.1673.3 yes 8
15.8 even 4 inner 1710.2.n.g.1673.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1710.2.n.f.647.4 8 3.2 odd 2
1710.2.n.f.1673.3 yes 8 5.3 odd 4
1710.2.n.g.647.1 yes 8 1.1 even 1 trivial
1710.2.n.g.1673.2 yes 8 15.8 even 4 inner