Properties

Label 1710.2.d.c.1369.1
Level $1710$
Weight $2$
Character 1710.1369
Analytic conductor $13.654$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1710,2,Mod(1369,1710)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1710, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1710.1369");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1710.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.6544187456\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 190)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1369.1
Root \(0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1710.1369
Dual form 1710.2.d.c.1369.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000 q^{4} +(-0.707107 + 2.12132i) q^{5} -4.41421i q^{7} +1.00000i q^{8} +O(q^{10})\) \(q-1.00000i q^{2} -1.00000 q^{4} +(-0.707107 + 2.12132i) q^{5} -4.41421i q^{7} +1.00000i q^{8} +(2.12132 + 0.707107i) q^{10} +1.41421 q^{11} +5.82843i q^{13} -4.41421 q^{14} +1.00000 q^{16} +1.00000i q^{17} +1.00000 q^{19} +(0.707107 - 2.12132i) q^{20} -1.41421i q^{22} -0.757359i q^{23} +(-4.00000 - 3.00000i) q^{25} +5.82843 q^{26} +4.41421i q^{28} -0.171573 q^{29} +6.24264 q^{31} -1.00000i q^{32} +1.00000 q^{34} +(9.36396 + 3.12132i) q^{35} +8.48528i q^{37} -1.00000i q^{38} +(-2.12132 - 0.707107i) q^{40} +4.24264 q^{41} +1.75736i q^{43} -1.41421 q^{44} -0.757359 q^{46} -12.4853 q^{49} +(-3.00000 + 4.00000i) q^{50} -5.82843i q^{52} -5.48528i q^{53} +(-1.00000 + 3.00000i) q^{55} +4.41421 q^{56} +0.171573i q^{58} +6.89949 q^{59} +14.2426 q^{61} -6.24264i q^{62} -1.00000 q^{64} +(-12.3640 - 4.12132i) q^{65} -4.75736i q^{67} -1.00000i q^{68} +(3.12132 - 9.36396i) q^{70} +13.4142 q^{71} +11.4853i q^{73} +8.48528 q^{74} -1.00000 q^{76} -6.24264i q^{77} +6.48528 q^{79} +(-0.707107 + 2.12132i) q^{80} -4.24264i q^{82} -14.4853i q^{83} +(-2.12132 - 0.707107i) q^{85} +1.75736 q^{86} +1.41421i q^{88} +7.07107 q^{89} +25.7279 q^{91} +0.757359i q^{92} +(-0.707107 + 2.12132i) q^{95} +0.343146i q^{97} +12.4853i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{4} - 12 q^{14} + 4 q^{16} + 4 q^{19} - 16 q^{25} + 12 q^{26} - 12 q^{29} + 8 q^{31} + 4 q^{34} + 12 q^{35} - 20 q^{46} - 16 q^{49} - 12 q^{50} - 4 q^{55} + 12 q^{56} - 12 q^{59} + 40 q^{61} - 4 q^{64} - 24 q^{65} + 4 q^{70} + 48 q^{71} - 4 q^{76} - 8 q^{79} + 24 q^{86} + 52 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1710\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(1027\) \(1351\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) −0.707107 + 2.12132i −0.316228 + 0.948683i
\(6\) 0 0
\(7\) 4.41421i 1.66842i −0.551450 0.834208i \(-0.685925\pi\)
0.551450 0.834208i \(-0.314075\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 2.12132 + 0.707107i 0.670820 + 0.223607i
\(11\) 1.41421 0.426401 0.213201 0.977008i \(-0.431611\pi\)
0.213201 + 0.977008i \(0.431611\pi\)
\(12\) 0 0
\(13\) 5.82843i 1.61651i 0.588829 + 0.808257i \(0.299589\pi\)
−0.588829 + 0.808257i \(0.700411\pi\)
\(14\) −4.41421 −1.17975
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 1.00000i 0.242536i 0.992620 + 0.121268i \(0.0386960\pi\)
−0.992620 + 0.121268i \(0.961304\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0.707107 2.12132i 0.158114 0.474342i
\(21\) 0 0
\(22\) 1.41421i 0.301511i
\(23\) 0.757359i 0.157920i −0.996878 0.0789602i \(-0.974840\pi\)
0.996878 0.0789602i \(-0.0251600\pi\)
\(24\) 0 0
\(25\) −4.00000 3.00000i −0.800000 0.600000i
\(26\) 5.82843 1.14305
\(27\) 0 0
\(28\) 4.41421i 0.834208i
\(29\) −0.171573 −0.0318603 −0.0159301 0.999873i \(-0.505071\pi\)
−0.0159301 + 0.999873i \(0.505071\pi\)
\(30\) 0 0
\(31\) 6.24264 1.12121 0.560606 0.828083i \(-0.310568\pi\)
0.560606 + 0.828083i \(0.310568\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 1.00000 0.171499
\(35\) 9.36396 + 3.12132i 1.58280 + 0.527599i
\(36\) 0 0
\(37\) 8.48528i 1.39497i 0.716599 + 0.697486i \(0.245698\pi\)
−0.716599 + 0.697486i \(0.754302\pi\)
\(38\) 1.00000i 0.162221i
\(39\) 0 0
\(40\) −2.12132 0.707107i −0.335410 0.111803i
\(41\) 4.24264 0.662589 0.331295 0.943527i \(-0.392515\pi\)
0.331295 + 0.943527i \(0.392515\pi\)
\(42\) 0 0
\(43\) 1.75736i 0.267995i 0.990982 + 0.133997i \(0.0427814\pi\)
−0.990982 + 0.133997i \(0.957219\pi\)
\(44\) −1.41421 −0.213201
\(45\) 0 0
\(46\) −0.757359 −0.111667
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) −12.4853 −1.78361
\(50\) −3.00000 + 4.00000i −0.424264 + 0.565685i
\(51\) 0 0
\(52\) 5.82843i 0.808257i
\(53\) 5.48528i 0.753461i −0.926323 0.376731i \(-0.877048\pi\)
0.926323 0.376731i \(-0.122952\pi\)
\(54\) 0 0
\(55\) −1.00000 + 3.00000i −0.134840 + 0.404520i
\(56\) 4.41421 0.589874
\(57\) 0 0
\(58\) 0.171573i 0.0225286i
\(59\) 6.89949 0.898238 0.449119 0.893472i \(-0.351738\pi\)
0.449119 + 0.893472i \(0.351738\pi\)
\(60\) 0 0
\(61\) 14.2426 1.82358 0.911792 0.410653i \(-0.134699\pi\)
0.911792 + 0.410653i \(0.134699\pi\)
\(62\) 6.24264i 0.792816i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −12.3640 4.12132i −1.53356 0.511187i
\(66\) 0 0
\(67\) 4.75736i 0.581204i −0.956844 0.290602i \(-0.906144\pi\)
0.956844 0.290602i \(-0.0938555\pi\)
\(68\) 1.00000i 0.121268i
\(69\) 0 0
\(70\) 3.12132 9.36396i 0.373069 1.11921i
\(71\) 13.4142 1.59197 0.795987 0.605314i \(-0.206952\pi\)
0.795987 + 0.605314i \(0.206952\pi\)
\(72\) 0 0
\(73\) 11.4853i 1.34425i 0.740437 + 0.672125i \(0.234618\pi\)
−0.740437 + 0.672125i \(0.765382\pi\)
\(74\) 8.48528 0.986394
\(75\) 0 0
\(76\) −1.00000 −0.114708
\(77\) 6.24264i 0.711415i
\(78\) 0 0
\(79\) 6.48528 0.729651 0.364826 0.931076i \(-0.381129\pi\)
0.364826 + 0.931076i \(0.381129\pi\)
\(80\) −0.707107 + 2.12132i −0.0790569 + 0.237171i
\(81\) 0 0
\(82\) 4.24264i 0.468521i
\(83\) 14.4853i 1.58997i −0.606632 0.794983i \(-0.707480\pi\)
0.606632 0.794983i \(-0.292520\pi\)
\(84\) 0 0
\(85\) −2.12132 0.707107i −0.230089 0.0766965i
\(86\) 1.75736 0.189501
\(87\) 0 0
\(88\) 1.41421i 0.150756i
\(89\) 7.07107 0.749532 0.374766 0.927119i \(-0.377723\pi\)
0.374766 + 0.927119i \(0.377723\pi\)
\(90\) 0 0
\(91\) 25.7279 2.69702
\(92\) 0.757359i 0.0789602i
\(93\) 0 0
\(94\) 0 0
\(95\) −0.707107 + 2.12132i −0.0725476 + 0.217643i
\(96\) 0 0
\(97\) 0.343146i 0.0348412i 0.999848 + 0.0174206i \(0.00554543\pi\)
−0.999848 + 0.0174206i \(0.994455\pi\)
\(98\) 12.4853i 1.26120i
\(99\) 0 0
\(100\) 4.00000 + 3.00000i 0.400000 + 0.300000i
\(101\) −13.0711 −1.30062 −0.650310 0.759669i \(-0.725361\pi\)
−0.650310 + 0.759669i \(0.725361\pi\)
\(102\) 0 0
\(103\) 4.24264i 0.418040i 0.977911 + 0.209020i \(0.0670273\pi\)
−0.977911 + 0.209020i \(0.932973\pi\)
\(104\) −5.82843 −0.571524
\(105\) 0 0
\(106\) −5.48528 −0.532778
\(107\) 19.7279i 1.90717i 0.301124 + 0.953585i \(0.402638\pi\)
−0.301124 + 0.953585i \(0.597362\pi\)
\(108\) 0 0
\(109\) 17.9706 1.72127 0.860634 0.509224i \(-0.170068\pi\)
0.860634 + 0.509224i \(0.170068\pi\)
\(110\) 3.00000 + 1.00000i 0.286039 + 0.0953463i
\(111\) 0 0
\(112\) 4.41421i 0.417104i
\(113\) 10.2426i 0.963547i 0.876296 + 0.481773i \(0.160007\pi\)
−0.876296 + 0.481773i \(0.839993\pi\)
\(114\) 0 0
\(115\) 1.60660 + 0.535534i 0.149816 + 0.0499388i
\(116\) 0.171573 0.0159301
\(117\) 0 0
\(118\) 6.89949i 0.635150i
\(119\) 4.41421 0.404650
\(120\) 0 0
\(121\) −9.00000 −0.818182
\(122\) 14.2426i 1.28947i
\(123\) 0 0
\(124\) −6.24264 −0.560606
\(125\) 9.19239 6.36396i 0.822192 0.569210i
\(126\) 0 0
\(127\) 2.48528i 0.220533i 0.993902 + 0.110267i \(0.0351704\pi\)
−0.993902 + 0.110267i \(0.964830\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) −4.12132 + 12.3640i −0.361464 + 1.08439i
\(131\) 16.9706 1.48272 0.741362 0.671105i \(-0.234180\pi\)
0.741362 + 0.671105i \(0.234180\pi\)
\(132\) 0 0
\(133\) 4.41421i 0.382761i
\(134\) −4.75736 −0.410973
\(135\) 0 0
\(136\) −1.00000 −0.0857493
\(137\) 13.0000i 1.11066i 0.831628 + 0.555332i \(0.187409\pi\)
−0.831628 + 0.555332i \(0.812591\pi\)
\(138\) 0 0
\(139\) 12.0000 1.01783 0.508913 0.860818i \(-0.330047\pi\)
0.508913 + 0.860818i \(0.330047\pi\)
\(140\) −9.36396 3.12132i −0.791399 0.263800i
\(141\) 0 0
\(142\) 13.4142i 1.12570i
\(143\) 8.24264i 0.689284i
\(144\) 0 0
\(145\) 0.121320 0.363961i 0.0100751 0.0302253i
\(146\) 11.4853 0.950529
\(147\) 0 0
\(148\) 8.48528i 0.697486i
\(149\) 17.6569 1.44651 0.723253 0.690583i \(-0.242646\pi\)
0.723253 + 0.690583i \(0.242646\pi\)
\(150\) 0 0
\(151\) −10.4853 −0.853280 −0.426640 0.904422i \(-0.640303\pi\)
−0.426640 + 0.904422i \(0.640303\pi\)
\(152\) 1.00000i 0.0811107i
\(153\) 0 0
\(154\) −6.24264 −0.503046
\(155\) −4.41421 + 13.2426i −0.354558 + 1.06367i
\(156\) 0 0
\(157\) 11.6569i 0.930318i −0.885227 0.465159i \(-0.845997\pi\)
0.885227 0.465159i \(-0.154003\pi\)
\(158\) 6.48528i 0.515941i
\(159\) 0 0
\(160\) 2.12132 + 0.707107i 0.167705 + 0.0559017i
\(161\) −3.34315 −0.263477
\(162\) 0 0
\(163\) 10.2426i 0.802266i −0.916020 0.401133i \(-0.868617\pi\)
0.916020 0.401133i \(-0.131383\pi\)
\(164\) −4.24264 −0.331295
\(165\) 0 0
\(166\) −14.4853 −1.12428
\(167\) 18.2426i 1.41166i −0.708382 0.705829i \(-0.750575\pi\)
0.708382 0.705829i \(-0.249425\pi\)
\(168\) 0 0
\(169\) −20.9706 −1.61312
\(170\) −0.707107 + 2.12132i −0.0542326 + 0.162698i
\(171\) 0 0
\(172\) 1.75736i 0.133997i
\(173\) 0.485281i 0.0368953i −0.999830 0.0184476i \(-0.994128\pi\)
0.999830 0.0184476i \(-0.00587240\pi\)
\(174\) 0 0
\(175\) −13.2426 + 17.6569i −1.00105 + 1.33473i
\(176\) 1.41421 0.106600
\(177\) 0 0
\(178\) 7.07107i 0.529999i
\(179\) −11.6569 −0.871274 −0.435637 0.900122i \(-0.643477\pi\)
−0.435637 + 0.900122i \(0.643477\pi\)
\(180\) 0 0
\(181\) −8.48528 −0.630706 −0.315353 0.948974i \(-0.602123\pi\)
−0.315353 + 0.948974i \(0.602123\pi\)
\(182\) 25.7279i 1.90708i
\(183\) 0 0
\(184\) 0.757359 0.0558333
\(185\) −18.0000 6.00000i −1.32339 0.441129i
\(186\) 0 0
\(187\) 1.41421i 0.103418i
\(188\) 0 0
\(189\) 0 0
\(190\) 2.12132 + 0.707107i 0.153897 + 0.0512989i
\(191\) −12.5563 −0.908546 −0.454273 0.890863i \(-0.650101\pi\)
−0.454273 + 0.890863i \(0.650101\pi\)
\(192\) 0 0
\(193\) 0.343146i 0.0247002i −0.999924 0.0123501i \(-0.996069\pi\)
0.999924 0.0123501i \(-0.00393125\pi\)
\(194\) 0.343146 0.0246364
\(195\) 0 0
\(196\) 12.4853 0.891806
\(197\) 11.7574i 0.837677i −0.908061 0.418839i \(-0.862437\pi\)
0.908061 0.418839i \(-0.137563\pi\)
\(198\) 0 0
\(199\) −9.24264 −0.655193 −0.327597 0.944818i \(-0.606239\pi\)
−0.327597 + 0.944818i \(0.606239\pi\)
\(200\) 3.00000 4.00000i 0.212132 0.282843i
\(201\) 0 0
\(202\) 13.0711i 0.919677i
\(203\) 0.757359i 0.0531562i
\(204\) 0 0
\(205\) −3.00000 + 9.00000i −0.209529 + 0.628587i
\(206\) 4.24264 0.295599
\(207\) 0 0
\(208\) 5.82843i 0.404129i
\(209\) 1.41421 0.0978232
\(210\) 0 0
\(211\) −19.7279 −1.35813 −0.679063 0.734080i \(-0.737614\pi\)
−0.679063 + 0.734080i \(0.737614\pi\)
\(212\) 5.48528i 0.376731i
\(213\) 0 0
\(214\) 19.7279 1.34857
\(215\) −3.72792 1.24264i −0.254242 0.0847474i
\(216\) 0 0
\(217\) 27.5563i 1.87065i
\(218\) 17.9706i 1.21712i
\(219\) 0 0
\(220\) 1.00000 3.00000i 0.0674200 0.202260i
\(221\) −5.82843 −0.392062
\(222\) 0 0
\(223\) 15.1716i 1.01596i −0.861368 0.507982i \(-0.830392\pi\)
0.861368 0.507982i \(-0.169608\pi\)
\(224\) −4.41421 −0.294937
\(225\) 0 0
\(226\) 10.2426 0.681330
\(227\) 16.7574i 1.11223i −0.831107 0.556113i \(-0.812292\pi\)
0.831107 0.556113i \(-0.187708\pi\)
\(228\) 0 0
\(229\) −14.9706 −0.989283 −0.494641 0.869097i \(-0.664701\pi\)
−0.494641 + 0.869097i \(0.664701\pi\)
\(230\) 0.535534 1.60660i 0.0353121 0.105936i
\(231\) 0 0
\(232\) 0.171573i 0.0112643i
\(233\) 24.9706i 1.63588i 0.575306 + 0.817938i \(0.304883\pi\)
−0.575306 + 0.817938i \(0.695117\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −6.89949 −0.449119
\(237\) 0 0
\(238\) 4.41421i 0.286131i
\(239\) −6.89949 −0.446291 −0.223146 0.974785i \(-0.571633\pi\)
−0.223146 + 0.974785i \(0.571633\pi\)
\(240\) 0 0
\(241\) 8.97056 0.577845 0.288922 0.957353i \(-0.406703\pi\)
0.288922 + 0.957353i \(0.406703\pi\)
\(242\) 9.00000i 0.578542i
\(243\) 0 0
\(244\) −14.2426 −0.911792
\(245\) 8.82843 26.4853i 0.564028 1.69208i
\(246\) 0 0
\(247\) 5.82843i 0.370854i
\(248\) 6.24264i 0.396408i
\(249\) 0 0
\(250\) −6.36396 9.19239i −0.402492 0.581378i
\(251\) −3.55635 −0.224475 −0.112237 0.993681i \(-0.535802\pi\)
−0.112237 + 0.993681i \(0.535802\pi\)
\(252\) 0 0
\(253\) 1.07107i 0.0673375i
\(254\) 2.48528 0.155940
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 20.7279i 1.29297i 0.762926 + 0.646486i \(0.223762\pi\)
−0.762926 + 0.646486i \(0.776238\pi\)
\(258\) 0 0
\(259\) 37.4558 2.32739
\(260\) 12.3640 + 4.12132i 0.766780 + 0.255593i
\(261\) 0 0
\(262\) 16.9706i 1.04844i
\(263\) 26.9706i 1.66308i 0.555468 + 0.831538i \(0.312539\pi\)
−0.555468 + 0.831538i \(0.687461\pi\)
\(264\) 0 0
\(265\) 11.6360 + 3.87868i 0.714796 + 0.238265i
\(266\) −4.41421 −0.270653
\(267\) 0 0
\(268\) 4.75736i 0.290602i
\(269\) −16.6274 −1.01379 −0.506896 0.862007i \(-0.669207\pi\)
−0.506896 + 0.862007i \(0.669207\pi\)
\(270\) 0 0
\(271\) −27.2426 −1.65487 −0.827436 0.561560i \(-0.810202\pi\)
−0.827436 + 0.561560i \(0.810202\pi\)
\(272\) 1.00000i 0.0606339i
\(273\) 0 0
\(274\) 13.0000 0.785359
\(275\) −5.65685 4.24264i −0.341121 0.255841i
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 12.0000i 0.719712i
\(279\) 0 0
\(280\) −3.12132 + 9.36396i −0.186535 + 0.559604i
\(281\) −4.24264 −0.253095 −0.126547 0.991961i \(-0.540390\pi\)
−0.126547 + 0.991961i \(0.540390\pi\)
\(282\) 0 0
\(283\) 32.1421i 1.91065i 0.295555 + 0.955326i \(0.404496\pi\)
−0.295555 + 0.955326i \(0.595504\pi\)
\(284\) −13.4142 −0.795987
\(285\) 0 0
\(286\) 8.24264 0.487398
\(287\) 18.7279i 1.10547i
\(288\) 0 0
\(289\) 16.0000 0.941176
\(290\) −0.363961 0.121320i −0.0213725 0.00712418i
\(291\) 0 0
\(292\) 11.4853i 0.672125i
\(293\) 5.48528i 0.320454i 0.987080 + 0.160227i \(0.0512226\pi\)
−0.987080 + 0.160227i \(0.948777\pi\)
\(294\) 0 0
\(295\) −4.87868 + 14.6360i −0.284048 + 0.852143i
\(296\) −8.48528 −0.493197
\(297\) 0 0
\(298\) 17.6569i 1.02283i
\(299\) 4.41421 0.255281
\(300\) 0 0
\(301\) 7.75736 0.447127
\(302\) 10.4853i 0.603360i
\(303\) 0 0
\(304\) 1.00000 0.0573539
\(305\) −10.0711 + 30.2132i −0.576668 + 1.73000i
\(306\) 0 0
\(307\) 17.6569i 1.00773i 0.863782 + 0.503865i \(0.168089\pi\)
−0.863782 + 0.503865i \(0.831911\pi\)
\(308\) 6.24264i 0.355707i
\(309\) 0 0
\(310\) 13.2426 + 4.41421i 0.752131 + 0.250710i
\(311\) 4.75736 0.269765 0.134883 0.990862i \(-0.456934\pi\)
0.134883 + 0.990862i \(0.456934\pi\)
\(312\) 0 0
\(313\) 7.97056i 0.450523i −0.974298 0.225261i \(-0.927676\pi\)
0.974298 0.225261i \(-0.0723236\pi\)
\(314\) −11.6569 −0.657834
\(315\) 0 0
\(316\) −6.48528 −0.364826
\(317\) 9.48528i 0.532746i −0.963870 0.266373i \(-0.914175\pi\)
0.963870 0.266373i \(-0.0858254\pi\)
\(318\) 0 0
\(319\) −0.242641 −0.0135853
\(320\) 0.707107 2.12132i 0.0395285 0.118585i
\(321\) 0 0
\(322\) 3.34315i 0.186306i
\(323\) 1.00000i 0.0556415i
\(324\) 0 0
\(325\) 17.4853 23.3137i 0.969909 1.29321i
\(326\) −10.2426 −0.567287
\(327\) 0 0
\(328\) 4.24264i 0.234261i
\(329\) 0 0
\(330\) 0 0
\(331\) −19.2426 −1.05767 −0.528836 0.848724i \(-0.677371\pi\)
−0.528836 + 0.848724i \(0.677371\pi\)
\(332\) 14.4853i 0.794983i
\(333\) 0 0
\(334\) −18.2426 −0.998193
\(335\) 10.0919 + 3.36396i 0.551378 + 0.183793i
\(336\) 0 0
\(337\) 14.1005i 0.768103i −0.923312 0.384052i \(-0.874528\pi\)
0.923312 0.384052i \(-0.125472\pi\)
\(338\) 20.9706i 1.14065i
\(339\) 0 0
\(340\) 2.12132 + 0.707107i 0.115045 + 0.0383482i
\(341\) 8.82843 0.478086
\(342\) 0 0
\(343\) 24.2132i 1.30739i
\(344\) −1.75736 −0.0947505
\(345\) 0 0
\(346\) −0.485281 −0.0260889
\(347\) 5.51472i 0.296046i −0.988984 0.148023i \(-0.952709\pi\)
0.988984 0.148023i \(-0.0472909\pi\)
\(348\) 0 0
\(349\) −6.00000 −0.321173 −0.160586 0.987022i \(-0.551338\pi\)
−0.160586 + 0.987022i \(0.551338\pi\)
\(350\) 17.6569 + 13.2426i 0.943799 + 0.707849i
\(351\) 0 0
\(352\) 1.41421i 0.0753778i
\(353\) 2.51472i 0.133845i 0.997758 + 0.0669225i \(0.0213180\pi\)
−0.997758 + 0.0669225i \(0.978682\pi\)
\(354\) 0 0
\(355\) −9.48528 + 28.4558i −0.503426 + 1.51028i
\(356\) −7.07107 −0.374766
\(357\) 0 0
\(358\) 11.6569i 0.616084i
\(359\) −22.7574 −1.20109 −0.600544 0.799592i \(-0.705049\pi\)
−0.600544 + 0.799592i \(0.705049\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 8.48528i 0.445976i
\(363\) 0 0
\(364\) −25.7279 −1.34851
\(365\) −24.3640 8.12132i −1.27527 0.425089i
\(366\) 0 0
\(367\) 25.4558i 1.32878i 0.747384 + 0.664392i \(0.231309\pi\)
−0.747384 + 0.664392i \(0.768691\pi\)
\(368\) 0.757359i 0.0394801i
\(369\) 0 0
\(370\) −6.00000 + 18.0000i −0.311925 + 0.935775i
\(371\) −24.2132 −1.25709
\(372\) 0 0
\(373\) 9.00000i 0.466002i 0.972476 + 0.233001i \(0.0748546\pi\)
−0.972476 + 0.233001i \(0.925145\pi\)
\(374\) 1.41421 0.0731272
\(375\) 0 0
\(376\) 0 0
\(377\) 1.00000i 0.0515026i
\(378\) 0 0
\(379\) −11.2426 −0.577496 −0.288748 0.957405i \(-0.593239\pi\)
−0.288748 + 0.957405i \(0.593239\pi\)
\(380\) 0.707107 2.12132i 0.0362738 0.108821i
\(381\) 0 0
\(382\) 12.5563i 0.642439i
\(383\) 12.2426i 0.625570i −0.949824 0.312785i \(-0.898738\pi\)
0.949824 0.312785i \(-0.101262\pi\)
\(384\) 0 0
\(385\) 13.2426 + 4.41421i 0.674907 + 0.224969i
\(386\) −0.343146 −0.0174657
\(387\) 0 0
\(388\) 0.343146i 0.0174206i
\(389\) 22.9289 1.16254 0.581272 0.813710i \(-0.302555\pi\)
0.581272 + 0.813710i \(0.302555\pi\)
\(390\) 0 0
\(391\) 0.757359 0.0383013
\(392\) 12.4853i 0.630602i
\(393\) 0 0
\(394\) −11.7574 −0.592327
\(395\) −4.58579 + 13.7574i −0.230736 + 0.692208i
\(396\) 0 0
\(397\) 24.0000i 1.20453i −0.798298 0.602263i \(-0.794266\pi\)
0.798298 0.602263i \(-0.205734\pi\)
\(398\) 9.24264i 0.463292i
\(399\) 0 0
\(400\) −4.00000 3.00000i −0.200000 0.150000i
\(401\) 25.4142 1.26913 0.634563 0.772871i \(-0.281180\pi\)
0.634563 + 0.772871i \(0.281180\pi\)
\(402\) 0 0
\(403\) 36.3848i 1.81245i
\(404\) 13.0711 0.650310
\(405\) 0 0
\(406\) 0.757359 0.0375871
\(407\) 12.0000i 0.594818i
\(408\) 0 0
\(409\) −25.2132 −1.24671 −0.623356 0.781938i \(-0.714231\pi\)
−0.623356 + 0.781938i \(0.714231\pi\)
\(410\) 9.00000 + 3.00000i 0.444478 + 0.148159i
\(411\) 0 0
\(412\) 4.24264i 0.209020i
\(413\) 30.4558i 1.49863i
\(414\) 0 0
\(415\) 30.7279 + 10.2426i 1.50837 + 0.502791i
\(416\) 5.82843 0.285762
\(417\) 0 0
\(418\) 1.41421i 0.0691714i
\(419\) 19.4142 0.948446 0.474223 0.880405i \(-0.342729\pi\)
0.474223 + 0.880405i \(0.342729\pi\)
\(420\) 0 0
\(421\) 19.4853 0.949655 0.474827 0.880079i \(-0.342511\pi\)
0.474827 + 0.880079i \(0.342511\pi\)
\(422\) 19.7279i 0.960340i
\(423\) 0 0
\(424\) 5.48528 0.266389
\(425\) 3.00000 4.00000i 0.145521 0.194029i
\(426\) 0 0
\(427\) 62.8701i 3.04250i
\(428\) 19.7279i 0.953585i
\(429\) 0 0
\(430\) −1.24264 + 3.72792i −0.0599255 + 0.179776i
\(431\) 6.38478 0.307544 0.153772 0.988106i \(-0.450858\pi\)
0.153772 + 0.988106i \(0.450858\pi\)
\(432\) 0 0
\(433\) 9.55635i 0.459249i −0.973279 0.229624i \(-0.926250\pi\)
0.973279 0.229624i \(-0.0737498\pi\)
\(434\) −27.5563 −1.32275
\(435\) 0 0
\(436\) −17.9706 −0.860634
\(437\) 0.757359i 0.0362294i
\(438\) 0 0
\(439\) 5.75736 0.274784 0.137392 0.990517i \(-0.456128\pi\)
0.137392 + 0.990517i \(0.456128\pi\)
\(440\) −3.00000 1.00000i −0.143019 0.0476731i
\(441\) 0 0
\(442\) 5.82843i 0.277230i
\(443\) 4.24264i 0.201574i −0.994908 0.100787i \(-0.967864\pi\)
0.994908 0.100787i \(-0.0321361\pi\)
\(444\) 0 0
\(445\) −5.00000 + 15.0000i −0.237023 + 0.711068i
\(446\) −15.1716 −0.718395
\(447\) 0 0
\(448\) 4.41421i 0.208552i
\(449\) 17.3137 0.817084 0.408542 0.912739i \(-0.366037\pi\)
0.408542 + 0.912739i \(0.366037\pi\)
\(450\) 0 0
\(451\) 6.00000 0.282529
\(452\) 10.2426i 0.481773i
\(453\) 0 0
\(454\) −16.7574 −0.786462
\(455\) −18.1924 + 54.5772i −0.852872 + 2.55862i
\(456\) 0 0
\(457\) 3.00000i 0.140334i 0.997535 + 0.0701670i \(0.0223532\pi\)
−0.997535 + 0.0701670i \(0.977647\pi\)
\(458\) 14.9706i 0.699528i
\(459\) 0 0
\(460\) −1.60660 0.535534i −0.0749082 0.0249694i
\(461\) 3.55635 0.165636 0.0828178 0.996565i \(-0.473608\pi\)
0.0828178 + 0.996565i \(0.473608\pi\)
\(462\) 0 0
\(463\) 14.1421i 0.657241i 0.944462 + 0.328620i \(0.106584\pi\)
−0.944462 + 0.328620i \(0.893416\pi\)
\(464\) −0.171573 −0.00796507
\(465\) 0 0
\(466\) 24.9706 1.15674
\(467\) 0.727922i 0.0336842i 0.999858 + 0.0168421i \(0.00536126\pi\)
−0.999858 + 0.0168421i \(0.994639\pi\)
\(468\) 0 0
\(469\) −21.0000 −0.969690
\(470\) 0 0
\(471\) 0 0
\(472\) 6.89949i 0.317575i
\(473\) 2.48528i 0.114273i
\(474\) 0 0
\(475\) −4.00000 3.00000i −0.183533 0.137649i
\(476\) −4.41421 −0.202325
\(477\) 0 0
\(478\) 6.89949i 0.315576i
\(479\) −31.1127 −1.42158 −0.710788 0.703407i \(-0.751661\pi\)
−0.710788 + 0.703407i \(0.751661\pi\)
\(480\) 0 0
\(481\) −49.4558 −2.25499
\(482\) 8.97056i 0.408598i
\(483\) 0 0
\(484\) 9.00000 0.409091
\(485\) −0.727922 0.242641i −0.0330532 0.0110177i
\(486\) 0 0
\(487\) 37.7990i 1.71284i −0.516283 0.856418i \(-0.672685\pi\)
0.516283 0.856418i \(-0.327315\pi\)
\(488\) 14.2426i 0.644734i
\(489\) 0 0
\(490\) −26.4853 8.82843i −1.19648 0.398828i
\(491\) 33.5563 1.51438 0.757188 0.653197i \(-0.226572\pi\)
0.757188 + 0.653197i \(0.226572\pi\)
\(492\) 0 0
\(493\) 0.171573i 0.00772725i
\(494\) 5.82843 0.262233
\(495\) 0 0
\(496\) 6.24264 0.280303
\(497\) 59.2132i 2.65608i
\(498\) 0 0
\(499\) 25.7574 1.15306 0.576529 0.817077i \(-0.304407\pi\)
0.576529 + 0.817077i \(0.304407\pi\)
\(500\) −9.19239 + 6.36396i −0.411096 + 0.284605i
\(501\) 0 0
\(502\) 3.55635i 0.158728i
\(503\) 14.2721i 0.636361i −0.948030 0.318180i \(-0.896928\pi\)
0.948030 0.318180i \(-0.103072\pi\)
\(504\) 0 0
\(505\) 9.24264 27.7279i 0.411292 1.23388i
\(506\) −1.07107 −0.0476148
\(507\) 0 0
\(508\) 2.48528i 0.110267i
\(509\) 28.9706 1.28410 0.642049 0.766664i \(-0.278085\pi\)
0.642049 + 0.766664i \(0.278085\pi\)
\(510\) 0 0
\(511\) 50.6985 2.24277
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 20.7279 0.914269
\(515\) −9.00000 3.00000i −0.396587 0.132196i
\(516\) 0 0
\(517\) 0 0
\(518\) 37.4558i 1.64572i
\(519\) 0 0
\(520\) 4.12132 12.3640i 0.180732 0.542196i
\(521\) −23.3137 −1.02139 −0.510696 0.859761i \(-0.670612\pi\)
−0.510696 + 0.859761i \(0.670612\pi\)
\(522\) 0 0
\(523\) 2.27208i 0.0993510i −0.998765 0.0496755i \(-0.984181\pi\)
0.998765 0.0496755i \(-0.0158187\pi\)
\(524\) −16.9706 −0.741362
\(525\) 0 0
\(526\) 26.9706 1.17597
\(527\) 6.24264i 0.271934i
\(528\) 0 0
\(529\) 22.4264 0.975061
\(530\) 3.87868 11.6360i 0.168479 0.505437i
\(531\) 0 0
\(532\) 4.41421i 0.191380i
\(533\) 24.7279i 1.07109i
\(534\) 0 0
\(535\) −41.8492 13.9497i −1.80930 0.603100i
\(536\) 4.75736 0.205487
\(537\) 0 0
\(538\) 16.6274i 0.716859i
\(539\) −17.6569 −0.760535
\(540\) 0 0
\(541\) 9.75736 0.419502 0.209751 0.977755i \(-0.432735\pi\)
0.209751 + 0.977755i \(0.432735\pi\)
\(542\) 27.2426i 1.17017i
\(543\) 0 0
\(544\) 1.00000 0.0428746
\(545\) −12.7071 + 38.1213i −0.544313 + 1.63294i
\(546\) 0 0
\(547\) 17.3137i 0.740281i 0.928976 + 0.370140i \(0.120690\pi\)
−0.928976 + 0.370140i \(0.879310\pi\)
\(548\) 13.0000i 0.555332i
\(549\) 0 0
\(550\) −4.24264 + 5.65685i −0.180907 + 0.241209i
\(551\) −0.171573 −0.00730925
\(552\) 0 0
\(553\) 28.6274i 1.21736i
\(554\) 0 0
\(555\) 0 0
\(556\) −12.0000 −0.508913
\(557\) 16.0000i 0.677942i 0.940797 + 0.338971i \(0.110079\pi\)
−0.940797 + 0.338971i \(0.889921\pi\)
\(558\) 0 0
\(559\) −10.2426 −0.433218
\(560\) 9.36396 + 3.12132i 0.395700 + 0.131900i
\(561\) 0 0
\(562\) 4.24264i 0.178965i
\(563\) 4.97056i 0.209484i −0.994499 0.104742i \(-0.966598\pi\)
0.994499 0.104742i \(-0.0334017\pi\)
\(564\) 0 0
\(565\) −21.7279 7.24264i −0.914101 0.304700i
\(566\) 32.1421 1.35103
\(567\) 0 0
\(568\) 13.4142i 0.562848i
\(569\) −28.2843 −1.18574 −0.592869 0.805299i \(-0.702005\pi\)
−0.592869 + 0.805299i \(0.702005\pi\)
\(570\) 0 0
\(571\) −2.24264 −0.0938516 −0.0469258 0.998898i \(-0.514942\pi\)
−0.0469258 + 0.998898i \(0.514942\pi\)
\(572\) 8.24264i 0.344642i
\(573\) 0 0
\(574\) −18.7279 −0.781688
\(575\) −2.27208 + 3.02944i −0.0947522 + 0.126336i
\(576\) 0 0
\(577\) 20.3137i 0.845671i 0.906207 + 0.422835i \(0.138965\pi\)
−0.906207 + 0.422835i \(0.861035\pi\)
\(578\) 16.0000i 0.665512i
\(579\) 0 0
\(580\) −0.121320 + 0.363961i −0.00503755 + 0.0151127i
\(581\) −63.9411 −2.65272
\(582\) 0 0
\(583\) 7.75736i 0.321277i
\(584\) −11.4853 −0.475264
\(585\) 0 0
\(586\) 5.48528 0.226595
\(587\) 30.2426i 1.24825i 0.781326 + 0.624124i \(0.214544\pi\)
−0.781326 + 0.624124i \(0.785456\pi\)
\(588\) 0 0
\(589\) 6.24264 0.257224
\(590\) 14.6360 + 4.87868i 0.602556 + 0.200852i
\(591\) 0 0
\(592\) 8.48528i 0.348743i
\(593\) 22.0000i 0.903432i −0.892162 0.451716i \(-0.850812\pi\)
0.892162 0.451716i \(-0.149188\pi\)
\(594\) 0 0
\(595\) −3.12132 + 9.36396i −0.127962 + 0.383885i
\(596\) −17.6569 −0.723253
\(597\) 0 0
\(598\) 4.41421i 0.180511i
\(599\) −15.2132 −0.621595 −0.310797 0.950476i \(-0.600596\pi\)
−0.310797 + 0.950476i \(0.600596\pi\)
\(600\) 0 0
\(601\) −20.2426 −0.825715 −0.412857 0.910796i \(-0.635469\pi\)
−0.412857 + 0.910796i \(0.635469\pi\)
\(602\) 7.75736i 0.316166i
\(603\) 0 0
\(604\) 10.4853 0.426640
\(605\) 6.36396 19.0919i 0.258732 0.776195i
\(606\) 0 0
\(607\) 3.17157i 0.128730i −0.997926 0.0643651i \(-0.979498\pi\)
0.997926 0.0643651i \(-0.0205022\pi\)
\(608\) 1.00000i 0.0405554i
\(609\) 0 0
\(610\) 30.2132 + 10.0711i 1.22330 + 0.407766i
\(611\) 0 0
\(612\) 0 0
\(613\) 11.6985i 0.472497i −0.971693 0.236249i \(-0.924082\pi\)
0.971693 0.236249i \(-0.0759180\pi\)
\(614\) 17.6569 0.712573
\(615\) 0 0
\(616\) 6.24264 0.251523
\(617\) 4.48528i 0.180571i −0.995916 0.0902853i \(-0.971222\pi\)
0.995916 0.0902853i \(-0.0287779\pi\)
\(618\) 0 0
\(619\) −7.75736 −0.311795 −0.155897 0.987773i \(-0.549827\pi\)
−0.155897 + 0.987773i \(0.549827\pi\)
\(620\) 4.41421 13.2426i 0.177279 0.531837i
\(621\) 0 0
\(622\) 4.75736i 0.190753i
\(623\) 31.2132i 1.25053i
\(624\) 0 0
\(625\) 7.00000 + 24.0000i 0.280000 + 0.960000i
\(626\) −7.97056 −0.318568
\(627\) 0 0
\(628\) 11.6569i 0.465159i
\(629\) −8.48528 −0.338330
\(630\) 0 0
\(631\) −38.9706 −1.55139 −0.775697 0.631106i \(-0.782601\pi\)
−0.775697 + 0.631106i \(0.782601\pi\)
\(632\) 6.48528i 0.257971i
\(633\) 0 0
\(634\) −9.48528 −0.376709
\(635\) −5.27208 1.75736i −0.209216 0.0697387i
\(636\) 0 0
\(637\) 72.7696i 2.88323i
\(638\) 0.242641i 0.00960624i
\(639\) 0 0
\(640\) −2.12132 0.707107i −0.0838525 0.0279508i
\(641\) 18.0416 0.712602 0.356301 0.934371i \(-0.384038\pi\)
0.356301 + 0.934371i \(0.384038\pi\)
\(642\) 0 0
\(643\) 14.4853i 0.571244i −0.958342 0.285622i \(-0.907800\pi\)
0.958342 0.285622i \(-0.0922001\pi\)
\(644\) 3.34315 0.131738
\(645\) 0 0
\(646\) 1.00000 0.0393445
\(647\) 18.7574i 0.737428i −0.929543 0.368714i \(-0.879798\pi\)
0.929543 0.368714i \(-0.120202\pi\)
\(648\) 0 0
\(649\) 9.75736 0.383010
\(650\) −23.3137 17.4853i −0.914439 0.685829i
\(651\) 0 0
\(652\) 10.2426i 0.401133i
\(653\) 28.9706i 1.13371i 0.823819 + 0.566853i \(0.191839\pi\)
−0.823819 + 0.566853i \(0.808161\pi\)
\(654\) 0 0
\(655\) −12.0000 + 36.0000i −0.468879 + 1.40664i
\(656\) 4.24264 0.165647
\(657\) 0 0
\(658\) 0 0
\(659\) 18.8995 0.736220 0.368110 0.929782i \(-0.380005\pi\)
0.368110 + 0.929782i \(0.380005\pi\)
\(660\) 0 0
\(661\) −18.4558 −0.717849 −0.358925 0.933367i \(-0.616856\pi\)
−0.358925 + 0.933367i \(0.616856\pi\)
\(662\) 19.2426i 0.747886i
\(663\) 0 0
\(664\) 14.4853 0.562138
\(665\) 9.36396 + 3.12132i 0.363119 + 0.121040i
\(666\) 0 0
\(667\) 0.129942i 0.00503139i
\(668\) 18.2426i 0.705829i
\(669\) 0 0
\(670\) 3.36396 10.0919i 0.129961 0.389883i
\(671\) 20.1421 0.777579
\(672\) 0 0
\(673\) 12.0000i 0.462566i −0.972887 0.231283i \(-0.925708\pi\)
0.972887 0.231283i \(-0.0742923\pi\)
\(674\) −14.1005 −0.543131
\(675\) 0 0
\(676\) 20.9706 0.806560
\(677\) 40.9411i 1.57350i −0.617275 0.786748i \(-0.711763\pi\)
0.617275 0.786748i \(-0.288237\pi\)
\(678\) 0 0
\(679\) 1.51472 0.0581296
\(680\) 0.707107 2.12132i 0.0271163 0.0813489i
\(681\) 0 0
\(682\) 8.82843i 0.338058i
\(683\) 12.0000i 0.459167i −0.973289 0.229584i \(-0.926264\pi\)
0.973289 0.229584i \(-0.0737364\pi\)
\(684\) 0 0
\(685\) −27.5772 9.19239i −1.05367 0.351223i
\(686\) 24.2132 0.924464
\(687\) 0 0
\(688\) 1.75736i 0.0669987i
\(689\) 31.9706 1.21798
\(690\) 0 0
\(691\) 22.4853 0.855380 0.427690 0.903925i \(-0.359327\pi\)
0.427690 + 0.903925i \(0.359327\pi\)
\(692\) 0.485281i 0.0184476i
\(693\) 0 0
\(694\) −5.51472 −0.209336
\(695\) −8.48528 + 25.4558i −0.321865 + 0.965595i
\(696\) 0 0
\(697\) 4.24264i 0.160701i
\(698\) 6.00000i 0.227103i
\(699\) 0 0
\(700\) 13.2426 17.6569i 0.500525 0.667366i
\(701\) −16.9706 −0.640969 −0.320485 0.947254i \(-0.603846\pi\)
−0.320485 + 0.947254i \(0.603846\pi\)
\(702\) 0 0
\(703\) 8.48528i 0.320028i
\(704\) −1.41421 −0.0533002
\(705\) 0 0
\(706\) 2.51472 0.0946427
\(707\) 57.6985i 2.16997i
\(708\) 0 0
\(709\) 34.0000 1.27690 0.638448 0.769665i \(-0.279577\pi\)
0.638448 + 0.769665i \(0.279577\pi\)
\(710\) 28.4558 + 9.48528i 1.06793 + 0.355976i
\(711\) 0 0
\(712\) 7.07107i 0.264999i
\(713\) 4.72792i 0.177062i
\(714\) 0 0
\(715\) −17.4853 5.82843i −0.653912 0.217971i
\(716\) 11.6569 0.435637
\(717\) 0 0
\(718\) 22.7574i 0.849297i
\(719\) −5.10051 −0.190217 −0.0951084 0.995467i \(-0.530320\pi\)
−0.0951084 + 0.995467i \(0.530320\pi\)
\(720\) 0 0
\(721\) 18.7279 0.697464
\(722\) 1.00000i 0.0372161i
\(723\) 0 0
\(724\) 8.48528 0.315353
\(725\) 0.686292 + 0.514719i 0.0254882 + 0.0191162i
\(726\) 0 0
\(727\) 9.72792i 0.360789i −0.983594 0.180394i \(-0.942263\pi\)
0.983594 0.180394i \(-0.0577374\pi\)
\(728\) 25.7279i 0.953540i
\(729\) 0 0
\(730\) −8.12132 + 24.3640i −0.300584 + 0.901751i
\(731\) −1.75736 −0.0649983
\(732\) 0 0
\(733\) 12.0000i 0.443230i 0.975134 + 0.221615i \(0.0711328\pi\)
−0.975134 + 0.221615i \(0.928867\pi\)
\(734\) 25.4558 0.939592
\(735\) 0 0
\(736\) −0.757359 −0.0279166
\(737\) 6.72792i 0.247826i
\(738\) 0 0
\(739\) −1.27208 −0.0467941 −0.0233971 0.999726i \(-0.507448\pi\)
−0.0233971 + 0.999726i \(0.507448\pi\)
\(740\) 18.0000 + 6.00000i 0.661693 + 0.220564i
\(741\) 0 0
\(742\) 24.2132i 0.888895i
\(743\) 6.72792i 0.246824i −0.992356 0.123412i \(-0.960616\pi\)
0.992356 0.123412i \(-0.0393836\pi\)
\(744\) 0 0
\(745\) −12.4853 + 37.4558i −0.457425 + 1.37228i
\(746\) 9.00000 0.329513
\(747\) 0 0
\(748\) 1.41421i 0.0517088i
\(749\) 87.0833 3.18195
\(750\) 0 0
\(751\) −26.7279 −0.975316 −0.487658 0.873035i \(-0.662149\pi\)
−0.487658 + 0.873035i \(0.662149\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) −1.00000 −0.0364179
\(755\) 7.41421 22.2426i 0.269831 0.809493i
\(756\) 0 0
\(757\) 12.3431i 0.448619i −0.974518 0.224310i \(-0.927987\pi\)
0.974518 0.224310i \(-0.0720127\pi\)
\(758\) 11.2426i 0.408351i
\(759\) 0 0
\(760\) −2.12132 0.707107i −0.0769484 0.0256495i
\(761\) −43.9706 −1.59393 −0.796966 0.604024i \(-0.793563\pi\)
−0.796966 + 0.604024i \(0.793563\pi\)
\(762\) 0 0
\(763\) 79.3259i 2.87179i
\(764\) 12.5563 0.454273
\(765\) 0 0
\(766\) −12.2426 −0.442345
\(767\) 40.2132i 1.45201i
\(768\) 0 0
\(769\) 36.4558 1.31463 0.657316 0.753615i \(-0.271692\pi\)
0.657316 + 0.753615i \(0.271692\pi\)
\(770\) 4.41421 13.2426i 0.159077 0.477232i
\(771\) 0 0
\(772\) 0.343146i 0.0123501i
\(773\) 13.9706i 0.502486i −0.967924 0.251243i \(-0.919161\pi\)
0.967924 0.251243i \(-0.0808394\pi\)
\(774\) 0 0
\(775\) −24.9706 18.7279i −0.896969 0.672727i
\(776\) −0.343146 −0.0123182
\(777\) 0 0
\(778\) 22.9289i 0.822042i
\(779\) 4.24264 0.152008
\(780\) 0 0
\(781\) 18.9706 0.678820
\(782\) 0.757359i 0.0270831i
\(783\) 0 0
\(784\) −12.4853 −0.445903
\(785\) 24.7279 + 8.24264i 0.882577 + 0.294192i
\(786\) 0 0
\(787\) 41.1838i 1.46804i 0.679126 + 0.734021i \(0.262359\pi\)
−0.679126 + 0.734021i \(0.737641\pi\)
\(788\) 11.7574i 0.418839i
\(789\) 0 0
\(790\) 13.7574 + 4.58579i 0.489465 + 0.163155i
\(791\) 45.2132 1.60760