# Properties

 Label 1710.2.d.a Level $1710$ Weight $2$ Character orbit 1710.d Analytic conductor $13.654$ Analytic rank $0$ Dimension $2$ Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1710,2,Mod(1369,1710)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1710, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 1, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1710.1369");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1710.d (of order $$2$$, degree $$1$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$13.6544187456$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} + 1$$ x^2 + 1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 570) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + i q^{2} - q^{4} + (i - 2) q^{5} - i q^{8} +O(q^{10})$$ q + i * q^2 - q^4 + (i - 2) * q^5 - i * q^8 $$q + i q^{2} - q^{4} + (i - 2) q^{5} - i q^{8} + ( - 2 i - 1) q^{10} + 4 q^{11} - 4 i q^{13} + q^{16} + 6 i q^{17} + q^{19} + ( - i + 2) q^{20} + 4 i q^{22} + ( - 4 i + 3) q^{25} + 4 q^{26} - 2 q^{29} + i q^{32} - 6 q^{34} + 4 i q^{37} + i q^{38} + (2 i + 1) q^{40} + 12 q^{41} + 6 i q^{43} - 4 q^{44} + 7 q^{49} + (3 i + 4) q^{50} + 4 i q^{52} + 14 i q^{53} + (4 i - 8) q^{55} - 2 i q^{58} - 10 q^{59} - 6 q^{61} - q^{64} + (8 i + 4) q^{65} + 4 i q^{67} - 6 i q^{68} - 12 q^{71} + 8 i q^{73} - 4 q^{74} - q^{76} + 8 q^{79} + (i - 2) q^{80} + 12 i q^{82} - 12 i q^{83} + ( - 12 i - 6) q^{85} - 6 q^{86} - 4 i q^{88} - 8 q^{89} + (i - 2) q^{95} + 10 i q^{97} + 7 i q^{98} +O(q^{100})$$ q + i * q^2 - q^4 + (i - 2) * q^5 - i * q^8 + (-2*i - 1) * q^10 + 4 * q^11 - 4*i * q^13 + q^16 + 6*i * q^17 + q^19 + (-i + 2) * q^20 + 4*i * q^22 + (-4*i + 3) * q^25 + 4 * q^26 - 2 * q^29 + i * q^32 - 6 * q^34 + 4*i * q^37 + i * q^38 + (2*i + 1) * q^40 + 12 * q^41 + 6*i * q^43 - 4 * q^44 + 7 * q^49 + (3*i + 4) * q^50 + 4*i * q^52 + 14*i * q^53 + (4*i - 8) * q^55 - 2*i * q^58 - 10 * q^59 - 6 * q^61 - q^64 + (8*i + 4) * q^65 + 4*i * q^67 - 6*i * q^68 - 12 * q^71 + 8*i * q^73 - 4 * q^74 - q^76 + 8 * q^79 + (i - 2) * q^80 + 12*i * q^82 - 12*i * q^83 + (-12*i - 6) * q^85 - 6 * q^86 - 4*i * q^88 - 8 * q^89 + (i - 2) * q^95 + 10*i * q^97 + 7*i * q^98 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - 2 q^{4} - 4 q^{5}+O(q^{10})$$ 2 * q - 2 * q^4 - 4 * q^5 $$2 q - 2 q^{4} - 4 q^{5} - 2 q^{10} + 8 q^{11} + 2 q^{16} + 2 q^{19} + 4 q^{20} + 6 q^{25} + 8 q^{26} - 4 q^{29} - 12 q^{34} + 2 q^{40} + 24 q^{41} - 8 q^{44} + 14 q^{49} + 8 q^{50} - 16 q^{55} - 20 q^{59} - 12 q^{61} - 2 q^{64} + 8 q^{65} - 24 q^{71} - 8 q^{74} - 2 q^{76} + 16 q^{79} - 4 q^{80} - 12 q^{85} - 12 q^{86} - 16 q^{89} - 4 q^{95}+O(q^{100})$$ 2 * q - 2 * q^4 - 4 * q^5 - 2 * q^10 + 8 * q^11 + 2 * q^16 + 2 * q^19 + 4 * q^20 + 6 * q^25 + 8 * q^26 - 4 * q^29 - 12 * q^34 + 2 * q^40 + 24 * q^41 - 8 * q^44 + 14 * q^49 + 8 * q^50 - 16 * q^55 - 20 * q^59 - 12 * q^61 - 2 * q^64 + 8 * q^65 - 24 * q^71 - 8 * q^74 - 2 * q^76 + 16 * q^79 - 4 * q^80 - 12 * q^85 - 12 * q^86 - 16 * q^89 - 4 * q^95

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1710\mathbb{Z}\right)^\times$$.

 $$n$$ $$191$$ $$1027$$ $$1351$$ $$\chi(n)$$ $$1$$ $$-1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1369.1
 − 1.00000i 1.00000i
1.00000i 0 −1.00000 −2.00000 1.00000i 0 0 1.00000i 0 −1.00000 + 2.00000i
1369.2 1.00000i 0 −1.00000 −2.00000 + 1.00000i 0 0 1.00000i 0 −1.00000 2.00000i
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1710.2.d.a 2
3.b odd 2 1 570.2.d.b 2
5.b even 2 1 inner 1710.2.d.a 2
5.c odd 4 1 8550.2.a.j 1
5.c odd 4 1 8550.2.a.bc 1
15.d odd 2 1 570.2.d.b 2
15.e even 4 1 2850.2.a.k 1
15.e even 4 1 2850.2.a.s 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
570.2.d.b 2 3.b odd 2 1
570.2.d.b 2 15.d odd 2 1
1710.2.d.a 2 1.a even 1 1 trivial
1710.2.d.a 2 5.b even 2 1 inner
2850.2.a.k 1 15.e even 4 1
2850.2.a.s 1 15.e even 4 1
8550.2.a.j 1 5.c odd 4 1
8550.2.a.bc 1 5.c odd 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1710, [\chi])$$:

 $$T_{7}$$ T7 $$T_{11} - 4$$ T11 - 4 $$T_{13}^{2} + 16$$ T13^2 + 16

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2} + 1$$
$3$ $$T^{2}$$
$5$ $$T^{2} + 4T + 5$$
$7$ $$T^{2}$$
$11$ $$(T - 4)^{2}$$
$13$ $$T^{2} + 16$$
$17$ $$T^{2} + 36$$
$19$ $$(T - 1)^{2}$$
$23$ $$T^{2}$$
$29$ $$(T + 2)^{2}$$
$31$ $$T^{2}$$
$37$ $$T^{2} + 16$$
$41$ $$(T - 12)^{2}$$
$43$ $$T^{2} + 36$$
$47$ $$T^{2}$$
$53$ $$T^{2} + 196$$
$59$ $$(T + 10)^{2}$$
$61$ $$(T + 6)^{2}$$
$67$ $$T^{2} + 16$$
$71$ $$(T + 12)^{2}$$
$73$ $$T^{2} + 64$$
$79$ $$(T - 8)^{2}$$
$83$ $$T^{2} + 144$$
$89$ $$(T + 8)^{2}$$
$97$ $$T^{2} + 100$$