Properties

Label 1710.2.a.w
Level $1710$
Weight $2$
Character orbit 1710.a
Self dual yes
Analytic conductor $13.654$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1710,2,Mod(1,1710)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1710.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1710, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1710.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,0,2,-2,0,-1,2,0,-2,-8,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.6544187456\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 190)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{17})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + q^{4} - q^{5} - \beta q^{7} + q^{8} - q^{10} - 4 q^{11} + (3 \beta - 2) q^{13} - \beta q^{14} + q^{16} + (\beta - 6) q^{17} - q^{19} - q^{20} - 4 q^{22} - 3 \beta q^{23} + q^{25} + (3 \beta - 2) q^{26} + \cdots + (\beta - 3) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{4} - 2 q^{5} - q^{7} + 2 q^{8} - 2 q^{10} - 8 q^{11} - q^{13} - q^{14} + 2 q^{16} - 11 q^{17} - 2 q^{19} - 2 q^{20} - 8 q^{22} - 3 q^{23} + 2 q^{25} - q^{26} - q^{28} - q^{29}+ \cdots - 5 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.56155
−1.56155
1.00000 0 1.00000 −1.00000 0 −2.56155 1.00000 0 −1.00000
1.2 1.00000 0 1.00000 −1.00000 0 1.56155 1.00000 0 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( +1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1710.2.a.w 2
3.b odd 2 1 190.2.a.d 2
5.b even 2 1 8550.2.a.br 2
12.b even 2 1 1520.2.a.n 2
15.d odd 2 1 950.2.a.h 2
15.e even 4 2 950.2.b.f 4
21.c even 2 1 9310.2.a.bc 2
24.f even 2 1 6080.2.a.bb 2
24.h odd 2 1 6080.2.a.bh 2
57.d even 2 1 3610.2.a.t 2
60.h even 2 1 7600.2.a.y 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
190.2.a.d 2 3.b odd 2 1
950.2.a.h 2 15.d odd 2 1
950.2.b.f 4 15.e even 4 2
1520.2.a.n 2 12.b even 2 1
1710.2.a.w 2 1.a even 1 1 trivial
3610.2.a.t 2 57.d even 2 1
6080.2.a.bb 2 24.f even 2 1
6080.2.a.bh 2 24.h odd 2 1
7600.2.a.y 2 60.h even 2 1
8550.2.a.br 2 5.b even 2 1
9310.2.a.bc 2 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1710))\):

\( T_{7}^{2} + T_{7} - 4 \) Copy content Toggle raw display
\( T_{11} + 4 \) Copy content Toggle raw display
\( T_{13}^{2} + T_{13} - 38 \) Copy content Toggle raw display
\( T_{53}^{2} - 5T_{53} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + T - 4 \) Copy content Toggle raw display
$11$ \( (T + 4)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + T - 38 \) Copy content Toggle raw display
$17$ \( T^{2} + 11T + 26 \) Copy content Toggle raw display
$19$ \( (T + 1)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 3T - 36 \) Copy content Toggle raw display
$29$ \( T^{2} + T - 38 \) Copy content Toggle raw display
$31$ \( T^{2} + 2T - 16 \) Copy content Toggle raw display
$37$ \( (T + 6)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 8T - 52 \) Copy content Toggle raw display
$43$ \( T^{2} + 14T + 32 \) Copy content Toggle raw display
$47$ \( T^{2} - 4T - 64 \) Copy content Toggle raw display
$53$ \( T^{2} - 5T + 2 \) Copy content Toggle raw display
$59$ \( T^{2} + T - 4 \) Copy content Toggle raw display
$61$ \( T^{2} - 14T + 32 \) Copy content Toggle raw display
$67$ \( T^{2} + T - 4 \) Copy content Toggle raw display
$71$ \( T^{2} + 4T - 64 \) Copy content Toggle raw display
$73$ \( T^{2} - 9T - 18 \) Copy content Toggle raw display
$79$ \( T^{2} + 2T - 16 \) Copy content Toggle raw display
$83$ \( T^{2} + 14T + 32 \) Copy content Toggle raw display
$89$ \( (T + 2)^{2} \) Copy content Toggle raw display
$97$ \( (T - 6)^{2} \) Copy content Toggle raw display
show more
show less